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Linear Codes From Perfect Nonlinear Mappings and
Their Secret Sharing Schemes
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Abstract—In this paper, error-correcting codes from perfect
nonlinear mappings are constructed, and then employed to con-
struct secret sharing schemes. The error-correcting codes obtained
in this paper are very good in general, and many of them are op-
timal or almost optimal. The secret sharing schemes obtained in
this paper have two types of access structures. The first type is
democratic in the sense that every participant is involved in the
same number of minimal-access sets. In the second type of access
structures, there are a few dictators who are in every minimal
access set, while each of the remaining participants is in the same
number of minimal-access sets.

Index Terms—Cryptography, linear codes, perfect nonlinear
functions, planar functions, secret sharing schemes.

I. INTRODUCTION

SECRET sharing schemes were introduced by Blakley
[2] and Shamir [22] in 1979. Since then, a number of

constructions have been proposed. The relationship between
Shamir’s secret sharing scheme and the Reed–Solomon codes
was pointed out by McEliece and Sarwate in 1981 [19]. Massey
described another construction of secret sharing schemes using
error-correcting codes in 1993 [17], [18]. Later, several authors
have considered the construction of secret sharing schemes
using linear error correcting codes [1], [11], [12], [20], [21],
[23]. In principle, every linear code gives a secret sharing
scheme. However, the following problems are essential.

1. How do we determine the access structure of the secret
sharing scheme based on a linear code?

2. How do we construct the underlying linear code so that
the corresponding secret sharing scheme has a prescribed
access structure, while minimizing the information rate?

Attacking the first problem is more or less equivalent to de-
termining the set of all minimal codewords of the underlying
linear code, which is called the covering problem of the linear
code. This is a very hard problem for general linear codes, and
has been solved only for a few classes of special linear codes.
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The second problem depends on solutions to the first problem,
and is also a very hard problem in general. So far, no general
solution is known. Intuitively, only well structured linear codes
give secret sharing schemes with nice access structures. Thus,
constructing linear codes with certain properties is one inter-
esting direction in the study of secret sharing schemes.

Highly nonlinear functions are useful in constructing stream
ciphers, block ciphers, hash functions, and authentication codes.
In this paper, we use perfect nonlinear functions to construct
several classes of linear codes and develop tight lower bounds on
the minimum distance of the codes. We determine the minimum
distance of their dual codes, and analyze the access structures
of the secret sharing schemes based on the dual codes. We show
that the secret sharing schemes have nice access structures. The
error-correcting codes constructed in this paper are very good
in general, and many of them are optimal or almost optimal.

II. PERFECT NONLINEAR FUNCTIONS AND THEIR PROPERTIES

Let be a function from an Abelian group of order
to another Abelian group of order . is linear if and
only if for all . A function

is affine if and only if , where is linear and is
a constant. Clearly, the zero function is linear. If is a nonzero
linear function from to , let .
Then is a subgroup of , is a subgroup of , and,
denoting by the size of a set , . In the
case that is odd and is a power of , the only linear function
from to is the zero function, since if , then is
even, a contradiction with the fact that is odd; thus, all affine
functions are constant functions.

The (Hamming) distance between two functions and from
to , denoted by , is defined to be

One way of measuring the nonlinearity of a function from
to is to use the minimum distance between and

all affine functions from to . With this approach
the nonlinearity of is defined to be

(1)

where denotes the set of all affine functions from to
. This measure of nonlinearity is related to linear crypt-

analysis, but it is not useful in some general cases. For example,
as pointed out earlier, in the case is odd and is a power
of , this measure makes little sense as there are no nonconstant
affine functions from to .
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A robust measure of the nonlinearity of functions is related
to differential cryptanalysis and uses the derivatives

. It may be defined by

(2)

The smaller the value of , the higher the corresponding non-
linearity of (if is linear, then ). In some cases, it is
possible to find the exact relation between the two measures on
nonlinearity.

It is easily seen that

(3)

This lower bound can be considered as an upper bound for the
nonlinearity of . For applications in coding theory and cryp-
tography, we wish to find functions with the smallest possible

. A function has perfect nonlinearity if .
The following lemma and theorem about perfect nonlinear

functions were proved in [6].

Lemma 1: [6] Let and be Abelian groups of
orders and , respectively, where divides . If is a perfect
nonlinear mapping from to , then for any nonzero

(4)

where for each .

Theorem 2: [6] Let and be Abelian groups of
orders and , respectively, where is a multiple of . If is
a function from to with perfect nonlinearity , then
for any

where . Furthermore

If has exponent , i.e., for any , then for any

where . Furthermore

The bounds of Theorem 2 are tight only when has exponent
. For the case that the exponent of is not , we can improve

the bounds as follows.

Theorem 3: Let and be Abelian groups of or-
ders and , respectively, where is a multiple of . If is

a function from to with perfect nonlinearity , then
for any

where . Furthermore

Proof: Let denote the elements of . We
now prove the bounds for . The bounds for other can be
similarly proved.

First of all, note that

Then we have

(5)

where the equality holds if and only if all are equal.
Combining the first and third equations in (4), we have

which can be reformulated as

Combining this equation and (5) yields

This inequality and the first and third equations of (4) together
give

which can be easily written as

This proves the lower and upper bounds on . As mentioned
before, the bounds are proved similarly for other .
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The bounds on follow from those on and the fact that
the sum of a function with perfect nonlinearity and any affine
function gives another function with perfect nonlinearity.

It will be seen later that the bounds of Theorem 3 can be
achieved, and are the basis of the main results of this paper.

III. THE CONSTRUCTIONS OF LINEAR CODES

Let be any perfect nonlinear mapping from GF
to itself. This implies that is an odd prime. For any
GF , define

where is a positive divisor of .
An linear code is a linear subspace of GF

with dimension and minimum nonzero Hamming weight .
We now define a linear code over GF as

GF
(6)

where are all the nonzero elements of GF .
For any GF , define

We define another linear code over GF as

GF (7)

where

and are all the elements of GF .
The code is closely related to . We shall use to

construct secret sharing schemes in the sequel. Before doing
this, we prove some properties of these codes.

Theorem 4: If has perfect nonlinearity and , the
code of (6) has parameters with

Furthermore, for every nonzero weight in , we have

Proof: is a linear function. Hence, the Hamming
weight of is if .

If , then is perfect nonlinear. This is because a
perfect nonlinear function plus a linear function yields another
perfect nonlinear function. Since , by Theorem 3 the
number of times occurs in is at most

and at least

Hence the Hamming weight of satisfies

HW

HW

This proves all the bounds.

Since has perfect nonlinearity, for all
GF . Thus, is the zero codeword if and only if

. Hence, has exactly distinct codewords. Since
is obviously linear, its dimension is .

The lower bound on the minimum distance of the code
is very tight. Later we shall see that it can be met in many cases.
On the other hand, numerical data shows that the codes are
among the best codes known in many cases.

Similarly, we can prove the following.

Theorem 5: If has perfect nonlinearity, the code of (7)
has parameters with

Furthermore, for every nonzero weight in , we have

The code may give optimal and almost optimal codes.
For example, when , it is a
code which is optimal [3]. When ,
it is a code which is optimal [3]. When

, it is an code which is
either optimal or almost optimal because the minimum distance
of any ternary code with length and dimension is at most

[3]. When , it is a
code which is either optimal or almost optimal because the
minimum distance of any code over GF with length and
dimension is at most [3].

The dual code has length and dimension
. For our applications, we are interested in the minimum

distance of the dual code . We have the following conclusion.

Theorem 6: Let , and let denote the minimum
distance of the dual code of the code described in
Theorem 4. Then . In addition, if and only
if there are

GF and GF

such that .
Furthermore, in the special case that and , if

1. for all GF and
2. if and only if

then .
Proof: Clearly, . We now prove that ,

which is true for any linear code over GF with the same
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length and dimension as . Suppose that . Note that
and . We would then have

which is contrary to the sphere-packing bound. Hence, .
By definition, if and only if there are two distinct

elements and in GF and an element GF
such that

for all GF . This is equivalent to

GF

which is further equivalent to

Since , . This completes the proof of the conclu-
sion in the first part of this theorem.

Consider now the special case that and . By
assumption, for all GF . Hence,
has no codeword of weight . Then it suffices to prove that the
code has no codeword of weight three either. Clearly, has
a codeword of weight three if and only if there are three pair-
wise distinct elements GF and three ele-
ments GF such that

(8)

Without loss of generality, we only need to consider the fol-
lowing two subcases.

• , : In this subcase we have

By the perfect nonlinearity of we have , which
is a contradiction.

• : In this case

Since , we have

(9)

which is the same as

(10)

This implies that by the perfect nonlinearity of
, and is contrary to our assumption that . The

proof of this theorem is now complete.

Remark: If and , is possible when is
almost perfect nonlinear (see [5] for details).

Theorem 7: Let , and let denote the minimum
distance of the dual code of the code described in
Theorem 5. Then is a code.
Furthermore

1. if , then
2. otherwise, .

Proof: Similar to the discussion on in the proof of
Theorem 6 we can prove .

1. Suppose . First we prove has no code-
word of weight . Otherwise, there exist pairwise distinct ele-
ments GF and GF such that

(11)

Note that and . It then follows from the last
equation of (11) that . By (11) we have

and

Since we get

Note that . Applying the
perfect nonlinearity of , we have . This is equiv-
alent to , which is contradictory to our assumption.

Next we prove has no codeword of weight . Otherwise,
there exist pairwise distinct elements GF
and GF such that

(12)

Note that and . It then follows from the last
equation of (12) that two of , , and must be and the
other must be . Hence, without loss of generality, we assume

, and . Then (12) becomes

(13)

Since is a perfect nonlinear mapping, we obtain that
. This is contradictory to the assumption that these ’s are

pairwise distinct.
Finally, we prove that has a codeword of weight . We

first claim that there exist three pairwise distinct elements
GF such that . To prove

this claim, we consider all possible sets , where
are pairwise distinct elements of GF . The total

number of such sets is . The total number of
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such sets satisfying is at most
. Note that

because . Hence, there must exist such a set
with . This completes the proof of the claim
above.

Let be such a set with . Define

Since and has perfect nonlinearity, the equation

has a unique solution . Define

Then we have

(14)

We now prove that , , , , are pairwise distinct.
Note that , , are pairwise distinct. We need only to prove
that and .

(A) We now prove that .
Since , and are symmetric, we need only to prove

that . Suppose . Then (14) becomes

which is equivalent to

(15)

It then follows from the perfect nonlinearity of that .
This is contrary to the fact that . Hence, .

(B) We then prove that .
Since and , . Due to symmetry, it

remains to prove that .
Suppose . Then (14) becomes

(16)

We proved earlier that , , are pairwise distinct. By (16)
and the equality , we know that has a codeword
of weight . This is contrary to the fact we proved earlier that

has no codeword of weight . Hence, .
In summary, we proved that , , , , are pairwise

distinct. Now it follows from the equation
and (14) that has a codeword of weight . Hence, .

2. We now prove that if .

Because or , it can be verified that

It then follows from the sphere-packing bound that .
Hence, . This completes the proof of this theorem.

A. Connection Between Some Codes and Cyclic Codes
With Two Zeros

Let us choose for all . Then the code defined in
(6) is cyclic when is a power function, and is, in general,
noncyclic otherwise. In this subsection, we point out that the
code defined in (6) is the dual of a cyclic code with two
zeros when is a power function.

Define and . We now consider any integer
with and for any . We use
and to denote the minimal polynomials over GF of

and , respectively. Since for any , is not a
Galois conjugate of . Hence, the two polynomials and

are not equal.
Let denote the cyclic code generated by ,

which is an ideal of the ring GF . Our task
now is to determine the dual code . To this end, we need the
following lemma, which is referred to as Delsarte’s theorem [9].

Lemma 8: Let be a linear code of length over GF .
Then

where GF is the restriction of to
GF , and is the GF -code given by

We deduce the following result which may be familiar to
some people. For completeness, we also include a proof here.

Lemma 9: Let symbols and notations be as before. Then

where and for all with .
Proof: We first prove that is the restriction of the ideal

GF

Note that generates GF and is not a Galois conju-
gate of . Since the codewords in the ideal are
precisely those that vanish in and , the code is the re-
striction of the ideal to GF .

We then prove that

GF (17)
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where . Indeed, the polynomials in the ideal
are the vectors that are

orthogonal to

and

Since generates GF , the vector has
precisely all elements of GF as its coordinates. Hence, (17)
follows.

Finally, the conclusion of Lemma 9 follows from Lemma 8.
This completes the proof.

Lemma 9 says that our code is equivalent to the dual code
of a cyclic code with two zeros when is a power function. It
will be shown in the sequel that some perfect nonlinear func-
tions are power functions and some are not power functions.
Therefore, some of the codes of (6) obtained from perfect
nonlinear functions are certainly noncyclic and thus new.

B. The Codes From

It is straightforward to show that is a perfect non-
linear mapping from GF to itself, where is odd. In this
case, the minimum distance and all weights can be determined.
The case is treated in [10].

Theorem 10: Let and . If is even, the
code of (6) has parameters

and has the following five nonzero weights:

If is odd, the code of (6) has parameters

and has the following three nonzero weights:

This theorem shows that the lower bound on the minimum
distance of the code given in Theorem 4 can be met, and
is thus tight when is even.

Theorem 11: Let and . Then is a
code, where if ,

and if .
Proof: Using Theorem 6, it is straightforward to prove that

. We now give a necessary and sufficient condition for
to have a codeword of weight . Clearly, this condition is

that there are two nonzero elements and in GF and
three pairwise distinct elements , , in GF such
that

(18)

for all pairs GF . Equation (18) is equivalent to

(19)

We now consider the case and show that .
In this case, we put . Since , we can choose
one GF , and define to be any nonzero
element of GF . Then is
a solution to (18) and the three coordinates of this vector are
pairwise distinct and nonzero. Thus, in the case , has
a codeword of weight , and thus minimum distance .

In the case that , it follows from the second part of
Theorem 6 that .

Remark: The first part of the conclusion in Theorem 11
may be proved by combining Lemma 9 of this paper and
[7, Theorem 3]. But the second part (i.e., if )
cannot be derived from Lemma 9 and [7].

Theorem 12: Let , and . is a

code

where when , and when .
Proof: When , the conclusion follows from

Theorem 7. When , suppose has a codeword of
weight . Then there exist pairwise distinct
GF and GF such that

for all GF . Hence,

(20)

i.e.,

Since , , are pairwise distinct, the coefficient matrix
is nonsingular and there do not exist , such that (20) holds. It
then follows from Theorem 7 that .

The four classes of codes , , , contain the fol-
lowing optimal codes:

and the following best codes known:

and

according to [3].
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C. The Ternary Codes From and

Theorem 13: Let , , be odd, and

. Let , which is a perfect nonlinear mapping
from GF to GF [6]. If , then we have the
following:

a) is a code with ;
b) is a code;
c) is a code with ;
d) is a code.

Proof: a), c), and d) follow from Theorems 4, 5, and 7,
respectively. Part b) follows from the second part of Theorem 6.

Remark: The conclusion of Part b) in Theorem 13 cannot be
proved by combining Lemma 9 of this paper and [7], because it
only proves .

The ternary codes , , , described in Theorem 13
contain a number of optimal codes and are very good in general
according to [3].

Let be odd. It is known that is a
planar function from GF to itself [8], and has thus perfect
nonlinearity. This perfect nonlinear function also gives several
classes of ternary codes described in the following theorem.

Theorem 14: Let be odd, and let be
the perfect nonlinear mapping from GF to GF . Then
we have the following:

a) is a code with ;
b) is a code;
c) is a code with ;
d) is a code.

Proof: a), c), and d) follow from Theorems 4, 5, and 7,
respectively. The conclusion of b) follows from Theorem 6.

Example 1: Let and . Then
is a code with weight distribution

is a code with weight distribution

Both and are optimal ternary codes.

Remarks: The codes described in Theorem 14 are noncyclic
because the perfect nonlinear function
is not a power function.

Note that the conditions of (4) reduce to

(21)

since these two equations imply .
For example

and

are solutions to the two equations of (21). This means that both
the lower and upper bounds on given in Theorem 3 may be
obtained. We have seen again that the lower and upper bounds
on of Theorem 3 are very tight. The following problem is
open.

Open Problem 1: Determine all possible integral solutions
to (21).

If this open problem can be solved, then it is possible to de-
termine the weight distribution of the four classes of ternary
codes constructed from the perfect nonlinear functions

and . Of course it is possible to
determine the weight distribution of the codes directly without
solving the open problem above.

Open Problem 2: Find the weight distribution of the four
classes of ternary codes and obtained from the perfect
nonlinear function and

D. The Codes From

Theorem 15: Let , , and be odd.
Let , which is a perfect nonlinear mapping from
GF to GF [6]. Then

a) is a code with ;
b) is a code with

if , and if ;
c) is a code with ;
d) is a code with if

, and if .
Proof: a) and c) follow from Theorems 4 and 5, respec-

tively. Part b) follows from Theorem 6. We now prove d). When
the conclusion follows from Theorem 7.

We now prove that has no codeword of weight . Other-
wise, there exist three pairwise distinct elements
GF and two elements GF such that

(22)

Without loss of generality, suppose . Let .
From the second equation of (22) it follows that

(23)

From the last equation of (22) we get

Thus, the second equation of (22) becomes
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which is equivalent to

Note that ,
so , . This is contrary to our assumption. Thus,
has no codeword of weight . It then follows from Theorem 7
that .

Remark: The conclusion of Part b) in Theorem 15 may be
proved by combining Lemma 9 of this paper, [7, Proposition 2
and Theorem 3].

Open Problem 3: Determine the minimum distance and
weight distribution of the two classes of codes and
obtained from the perfect nonlinear function .

The ternary codes , , , described in Theorem 15
contain a number of optimal codes and are very good in general
according to [3].

IV. SECRET SHARING SCHEMES FROM THE LINEAR CODES

In this section, we analyze the access structure of the secret
sharing schemes based on the duals of the class of linear codes
from perfect nonlinear functions constructed earlier.

A. A General Construction of Secret Sharing Schemes From
Linear Codes

Let be a generator matrix of an
code , i.e., the row vectors of generate the linear

subspace . For all the linear codes in this paper no column
vector of any generator matrix is the zero vector. There are
several ways to use linear codes to construct secret sharing
schemes [17], [19]–[21]. One of them is the following described
by Massey [17].

In the secret sharing scheme based on , the secret is an
element of GF and is equally likely to be any element of
GF , which is called the secret space, and parties

and a dealer are involved.
To compute the shares with respect to a secret , the dealer

chooses randomly a vector GF
such that . There are altogether such vectors
GF . The dealer then treats as an information vector and
computes the corresponding codeword

He then gives to party as share for each .
The secret is recovered as follows. Note that .

It is easily seen that a set of shares deter-
mines the secret if and only if is a linear combination of

.
So we have the following lemma [17].

Lemma 16: Let be a generator matrix of an code
. In the secret sharing scheme based on , a set of shares

determine the secret if and only if there is a
codeword

(24)

in the dual code , where for at least one ,
, and .

If there is a codeword of form (24) in , then the vector
is a linear combination of , say

Then the secret is recovered by computing

If a group of participants can recover the secret by combining
their shares, then any group of participants containing this group
can also recover the secret. A group of participants is called
a minimal access set if they can recover the secret with their
shares, any of its proper subgroups cannot do so. Here a proper
subgroup has fewer members than this group. Due to these facts,
we are only interested in the set of all minimal-access sets. To
determine this set, we need the notion of minimal codewords.

The support of a vector GF is defined to be

A codeword covers a codeword if the support of con-
tains that of .

If a nonzero codeword covers only its multiples, but no other
nonzero codewords, then it is called a minimal codeword.

From Proposition 16 and the preceding discussions, it is clear
that there is a one-to-one correspondence between the set of
minimal-access sets and the set of minimal codewords of the
dual code whose first coordinate is . In the sequel, we shall
consider the secret sharing schemes based on the dual codes of
these linear codes from perfect nonlinear functions.

It should be noticed that to determine the access structure of
the secret sharing scheme, we need to determine only the set of
minimal codewords whose first coordinate is , i.e., a subset of
the set of all minimal codewords. However, in almost every case
we should be able to determine the set of all minimal codewords
as long as we can determine the set of minimal codewords whose
first coordinate is . The covering problem of a linear code is to
determine the set of all its minimal codewords.

The shares for the participants depend on the the selection
of the generator matrix of the code . However, by Proposi-
tion 16, the selection of does not affect the access structure
of the secret sharing scheme. Hence, in the sequel we will call
it the secret sharing scheme based on , without mentioning the
generator matrix used to compute the shares.

B. The Access Structure of the Secret Sharing Schemes

We described the general construction of secret sharing
schemes based on a linear code . Clearly, we have also a secret
sharing scheme based on the dual code . Thus, for every
given linear code we have two secret sharing schemes. In this
and later sections, we consider only the secret sharing schemes
based on the dual code of a given linear code. The reader should
not be confused about the two secret sharing schemes based on

and .
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The following describes the access structure of the secret
sharing scheme based on the dual code of a given linear code,
and is a generalization of the corresponding result in [12], [23].

Theorem 17: Let be an code, and let
be its generator matrix. We use

to denote the minimum distance of its dual code . If each
nonzero codeword of is minimal, then in the secret sharing
scheme based on there are altogether minimal-access
sets.

• When , the access structure is as follows.
If is a multiple of , , then participant

must be in every minimal access set. Such a participant
is called a dictatorial participant.
If is not a multiple of , , then participant

must be in out of minimal-access
sets.

• When , for any fixed

every group of participants is involved in

out of minimal-access sets.
Proof: We first prove that the total number of minimal-

access sets is . At the very beginning of this section, we
assumed that every column vector of any generator matrix is
nonzero. Hence, . Thus, the inner product takes on
each element of GF exactly times when ranges over
all elements of GF . Hence, there are altogether
codewords in whose first coordinator is nonzero. Since each
nonzero codeword is minimal, a codeword covers another one
if and only if they are multiples of each other. Hence, the total
number of minimal codewords is ,
which is the number of minimal-access sets.

Suppose that . We determine the access structure. For
any , if for some GF , then

implies that . Thus Participant is in
every minimal access set. For any , if and

are linearly independent, takes on each element
of GF times when the vector ranges over GF .
Hence,

and

and

and

which is the number of minimal-access sets in which is
involved.

Suppose that and .
Let be a set of positive
integers. Then are linearly indepen-
dent and takes on each element of
GF times when the vector ranges over
GF . Hence,

and

which is the number of minimal-access sets in which is in-
volved by Proposition 16.

The minimum distance of the code gives the lower bound
for the cardinality of any minimal access set, while the

minimum distance of the dual code indicates the extent
of democracy of the secret sharing scheme. However, there is a
tradeoff between the two parameters, i.e., . The
equality is achieved if is maximum-distance separable (MDS).

In view of Theorem 17, it is an interesting problem to con-
struct codes where each nonzero codeword is minimal. Such a
linear code gives a secret sharing scheme with the interesting
access structure described in Theorem 17.

If the weights of a linear code are close enough to each other,
then each nonzero codeword of the code is minimal, as de-
scribed by the following theorem.

Theorem 18: [23], [12] In an code , let and
be the minimum and maximum nonzero weights, respec-

tively. If

then each nonzero codeword of is minimal.

C. Extending a Secret Sharing Scheme With a Small
Secret Space

Given a secret sharing scheme in which the secret space is
small, one could extend it into a secret sharing scheme where
the secret space is for any positive integer . The extension is
very simple and as follows.

For a chosen integer , the new secret space is . Each se-
cret in the new secret space is a sequence of length ,
where each . In the extended scheme we use the original
secret sharing scheme to share this secret component
by component. For each component , a share component cor-
responding to is computed using the original secret sharing
scheme. Hence, each participant will get a sequence of share
components. The secret will be recovered by recov-
ering each one by one using the original secret sharing scheme
when a group of participants meet together with their shares.

The information rate of the extended scheme is the same as
the original secret sharing scheme. Thus, secret sharing schemes
with a small secret space are as useful as those with large secret
spaces. In the secret sharing schemes described in the sequel,
the secret space is GF . Here could be or a power of any
odd prime. Due to the extension given above, such schemes are
all useful. The information rate of all the secret sharing schemes
presented in this paper is , the best possible.

D. Secret Sharing Schemes Based on the Duals of the Linear
Codes From Perfect Nonlinear Functions

Having described the general construction of secret sharing
schemes based on error correcting codes and their extensions,
we now use the duals of these linear codes from perfect non-
linear functions to construct secret sharing schemes and analyze
their access structures.

For the code of Theorem 4, we have the following general
result.



2098 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 6, JUNE 2005

Theorem 19: Let be the code over
GF of Theorem 4, and let denote
a generator matrix of . If , then in the
secret sharing scheme based on , the total number of partici-
pants is , and there are altogether minimal-access
sets.

• When , the access structure is as follows.
If is a multiple of , , then participant

must be in every minimal access set.
If is not a multiple of , , then
participant must be in out of
minimal-access sets.

• When , for any fixed
every group of participants is involved in

out of minimal-access sets.
Proof: As before, let and denote the min-

imum and maximum nonzero weights in , respectively. By
Theorem 4 we have

because . It follows from Theorem 18 that
every codeword in is minimal. The conclusions of this the-
orem then follow from Theorem 17.

This theorem gives the access structure of the secret sharing
scheme based on whose dual is from any perfect non-
linear function under the condition . If this
condition is not satisfied, the covering problem for the code
is still open and so is the access structure of the secret sharing
scheme based on . On the other hand, this condition is de-
rived from the lower and upper bounds on the weights in
given in Theorem 4. If all the weights in can be determined,
it is possible to relax this condition to some extent so that the
access structure can still be determined.

Open Problem 4: Let be the code
over GF of Theorem 4. Determine the access structure of
the secret sharing scheme based on for the case that

.

As seen earlier, it is possible that . In this case, some
participants must be involved in every minimal-access set and
thus, in every access set. This means that these participants must
be involved in order to recover a secret. These participants are
thus called dictatorial participants. When , every partic-
ipant is involved in the same number of minimal-access sets. In
this case, the secret sharing scheme is called democratic. The
minimum distance indicates the extent of democracy of the
secret sharing scheme. To give a better description of the access
structure, we need to determine .

In the following, we shall give a detailed description of the
access structure of the secret sharing schemes based on several
specific classes of codes constructed in Section III.

Theorem 20: Let be the code of Theorem 10. If ,
then in the secret sharing scheme based on , the total number
of participants is and there are altogether min-
imal-access sets.

• When , every participant is involved in
out of minimal-access sets.

• When , for any fixed every group of
participants is involved in out of
minimal-access sets.

Proof: Similar to the proof of Theorem 19, it can be
proved that every codeword of is minimal if . The
conclusions then follow from Theorems 17 and 11.

Open Problem 5: Let be the code of Theorem 10. Deter-
mine the access structure of the secret sharing scheme based on

for .

Theorem 21: Let be the ternary code from
the perfect nonlinear function . If ,
then in the secret sharing scheme based on , the total number
of participants is , and there are altogether min-
imal-access sets. For any fixed , every group of par-
ticipants is involved in out of minimal-ac-
cess sets.

Proof: The conclusions follow from Theorem 13 and its
proof as well as Theorem 19.

The condition in Theorem 21 is necessary for the
access structure of the secret sharing scheme to be democratic.
The following example shows the necessity.

Example 2: Let be the ternary code
from the perfect nonlinear function where

. We now determine the access structure of the
secret sharing scheme based on .

is an with generator matrix

is an code with generator matrix

Both and are optimal and have weight distribution

Not every nonzero codeword of is minimal. The secret
sharing scheme based on involves seven participants. There
are altogether 15 minimal-access sets

The fourth participant is involved in seven of the minimal-access
sets, while each of the remaining participants is involved in eight
of the minimal-access sets. Hence, the secret sharing scheme is
not democratic when the condition is not satisfied.

Theorem 22: Let be the ternary code from
the perfect nonlinear function . If ,
then in the secret sharing scheme based on , the total number
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of participants is , and there are altogether min-
imal-access sets. Each participant is involved in out
of minimal-access sets.

Proof: The conclusions follow from Theorem 14 and its
proof as well as Theorem 19.

Theorem 23: Let , and let be the
code over GF from the perfect nonlinear function

. If , then in the secret sharing scheme
based on , the total number of participants is , and there
are altogether minimal-access sets. In addition, every
participant is involved in out of min-
imal-access sets.

In particular, if , for any fixed every group
of participants is involved in out of
minimal-access sets.

Proof: The conclusions follow from Theorems 19 and 15.

Open Problem 6: Let , and let be the
code over GF from the perfect nonlinear func-

tion . Determine the access structure of the secret
sharing scheme based on for the case .

V. CODES FROM ANOTHER CLASS OF PERFECT NONLINEAR

FUNCTIONS AND THEIR SECRET SHARING SCHEMES

Section III gives a general construction of two types of re-
lated codes using perfect nonlinear mappings from GF to
GF , and Section IV describes the secret sharing schemes
based on their dual codes. In this section, we use a class of per-
fect nonlinear mappings from GF to GF to construct a
class of three-weight codes and describe the access structure of
the secret sharing schemes based on their dual codes.

Let GF , and let denote the trace
function from GF to GF in this section. Define the
function

Let

GF

Then any given set of GF defines the following
vector:

We now define the following linear code:

GF

To determine the weight distribution of the code , we prove
the following lemma.

Lemma 24: Let denote the number of solutions
GF of the equation

GF (25)

Then we have

.
(26)

Proof: When is even, (26) follows from [15,
Theorem 6.32, p. 288].

When is odd, the determinant of the quadratic form
is . By [15, Theorem 6.26, p. 282]

where is the quadratic character of GF , for
GF , and . This completes the proof.

Theorem 25: is a code with weight distri-
bution as follows:

weight frequency

Proof: To determine the weight distribution of , we
discuss the number of solutions of for all

GF . We study the case and the case
separately below.

When , we consider the following subcases.

1. If , is the zero codeword.
2. If , , then . The

number of solutions of is . There
are such cases.

3. If , , then . The
number of solutions of is . There
are such cases.

4. If , , then for all GF , there are
’s such that . So the number

of solutions of is . There are
such cases.

When , let be a basis of GF over
GF . Suppose under this basis the coordinates of and are

GF and GF , respectively.
Let

and

...
...

...

Then

We now prove that is nonsingular when . Sup-
pose the column vectors of are linearly dependent. Then
there exist GF such that, ,

. Then , and since
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, . Thus, for and is
nonsingular.

Since is nonsingular, and range over GF when
and range over GF . This is proved by expressing as

where all GF .
Since is nonsingular, there exist nonsingular matrices

and such that where is the identity matrix. Let
, . As , range over GF , ,

range over GF . Then

Let , . As , range over GF ,
, range over GF . Then

Let , , then

Let be defined as in Lemma 24. Note that and
range over GF when and range over GF , respec-
tively. It follows from Lemma 24 and the preceding discussions
that the weights and frequency of appearance in all the code-
words , , are given by

weight frequency

where and are given in Lemma 24.
is clearly a linear code with length . The preceding

discussions show that has codewords. Hence, is a
code.

In the cases of and , the code has
parameters

among which the first two are optimal, and the last one is the
best code known according to [3]. In the case , the code
has the same weights as the Kasami code [14]. But it is an open
problem whether they are equivalent.

Lemma 26: For , every nonzero codeword of is
minimal.

Proof: By Theorem 25, the inequality

is reduced to

which is true when , because .

Now we discuss the access structure of the secret sharing
scheme based on . To apply Theorem 17, we need the fol-
lowing lemma.

Lemma 27: is a code, where
if , and if .

Proof: For any fixed , the function
cannot be the zero function. Hence,

.
If , then there exist GF and two distinct pairs

GF

such that

for all GF . This is possible if and only if

(27)

for all GF , which is equivalent to

(28)

This is impossible if , because .
When , a sufficient and necessary condition for

is that there exist pairwise distinct
GF such that

for all GF . This is equivalent to

(29)

Let be a primitive element of GF , then

is a solution to (29). So when .
If , (28) is possible only when . In

fact, for any nonzero GF and any GF ,
the following pairs:

or

are solutions of (28). Hence, if .
Now we characterize the access structure of the secret sharing

scheme based on as follows.

Theorem 28: Let . In the secret sharing scheme based
on , the total number of participants is and there are
altogether minimal-access sets.

If , we have the following conclusion.

• When or , there are participants who
must be in every minimal access set. Each of the other

participants is involved in minimal-
access sets.
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• When and , every participant is involved in
minimal-access sets.

If , every participant is involved in
minimal-access sets.

Proof: The conclusion follows from Theorem 17,
Lemma 26, and the proof of Lemma 27.

We can now construct a class of codes which are related
to . Below is the construction of .

Let GF , GF . Define the function

Let

GF

Then any given set of GF and GF defines
the following vector:

We now define the following linear code:

GF GF

Theorem 29: is a code
with the following nonzero weights:

Proof: The proof is a slight modification of that of
Theorem 25 and is omitted.

Theorem 30: is a code, where
if , and if .

Proof: Similar to Theorem 7, we have . has
a codeword of weight if and only if there exist three pairwise
distinct pairs GF and two el-
ements GF such that

(30)

We consider and , respectively.

• : In this case, we must have and (30)
cannot hold. So . On the other hand, is a

code. We have

By the sphere-packing bound, . So we have
if .

• : Let be a primitive element of GF . One can
verify that (30) is satisfied with , ,

, , .
So if .
gives optimal codes when and and .

Thus, the codes and contain optimal codes when .

However, they are not among the best codes known when ,
although they are good codes. We are interested only in for
our secret sharing purpose.

The code is constructed using a class of perfect nonlinear
functions

where , and a class of linear functions

VI. CONCLUDING REMARKS

The main objectives of this paper are to construct good linear
codes and derive secret sharing schemes based on them with
nice access structures. The linear codes presented in this paper
do contain many optimal and almost optimal codes, as shown
in some of the previous sections. If a perfect nonlinear function

from GF to itself satisfies the two simple conditions in
Theorem 6, then the ternary code has parameters

and is thus optimal due to the sphere-packing bound.
We pointed out in Section III-A that when is a power

function, the code is equivalent to the dual of a cyclic code
with two zeros. In this case, the code and its dual are not new.
But our contribution to the study of these codes is the very tight
lower bounds on the minimum distance of and described
in Theorems 4 and 5. As mentioned earlier, some perfect non-
linear functions are not power functions. In this case, the code

is not cyclic and could be new. Note that our constructions
of the codes and are generic. As long as we discover new
perfect nonlinear functions, we will obtain new linear codes.

Here we inform that Ding and Yuan [13] have just discoverd
a new family of perfect nonlinear functions which are discribed
in the following proposition.

Proposition 31: (Ding and Yuan [13]) For any GF
is a perfect nonlinear function from

GF to GF , where is odd.

A -element subset of a finite Abelian group of order
is called a -difference set in provided that the mul-

tiset contains each nonidentity
element of exactly times. A difference set in an additive
group is called a skew difference set (or antisymmetric dif-
ference set) if and only if is the disjoint union of , , and

.
Ding and Yuan [13] have also proved the following.

Proposition 32: (Ding and Yuan [13]) Let be odd, and
GF . The set is a

skew difference set in the Abelian group GF .

The new family of perfect nonlinear functions of Proposi-
tion 31 yields more linear codes within the generic construc-
tion of this paper. In addition, the difference set property given
in Proposition 32 may be used to prove more properties of the
linear codes.

The secret sharing schemes based on the dual codes of the
error-correcting codes from perfect nonlinear functions have
two types of access structures. The first type is democratic, and
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the second type has a few dictatorial participants. Both types
could be useful in applications.

Regarding the linear codes and the secret sharing schemes
we proposed seven open problems. It would be nice if advances
on these open problems could be made. We invite the reader to
attack these open problems.

Finally, we mention functions from GF to GF with
optimal nonlinearity were used to construct binary
codes in [5] and [4], where good and optimal binary codes were
obtained.
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