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Abstract—In this paper, a coding-theory construction of Carte-
sian authentication codes is presented. The construction is a gen-
eralization of some known constructions. Within the framework
of this generic construction, several classes of authentication codes
using certain classes of error-correcting codes are described. The
authentication codes presented in this paper are better than known
ones with comparable parameters. It is demonstrated that the con-
struction is related to certain combinatorial designs, such as differ-
ence matrices and generalized Hadamard matrices.

Index Terms—Authentication codes, coding theory, cryptog-
raphy.

I. INTRODUCTION

CARTESIAN authentication code or systematic authen-

tication code is a four-tuple (S,7,K,{Fy : k € K}),
where S is the source state space associated with a probability
distribution, 7 is the tag space, K is the key space associated
with a probability distribution, and Ey : S — 7 is called an
encoding rule. A transmitter and a receiver share a key £ for au-
thentication purpose. If the transmitter wants to send a source
state s to the receiver, he computes ¢ = Ej(s) and sends the
message m = (s,t) to the receiver through a public communi-
cation channel. When receiving m’ = (s, ¢'), the receiver will
compute Fy(s’) and checks whether ¢ = Fy(s). If it does, the
receiver will accept it as authentic. Otherwise, the receiver will
reject it.

In the authentication model introduced by Simmons [14], in
addition to a transmitter and a receiver, an opponent is also in-
volved. Within this authentication model, we assume that the
opponent can insert his message into the channel, and can sub-
stitute an observed message m with another message m’. We
consider two kinds of attacks, the impersonation and substitu-
tion attacks. In the impersonation attack, an opponent inserts his
message into the channel and wishes to make the receiver accept
it as authentic. In a substitution attack, the opponent observed
a message sent by the transmitter and replaces it with his mes-
sage m’ # m, hoping that the receiver accepts it as authentic.
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We use Pr and Ps to denote the maximum success probabilities
with respect to the two attacks.

Combinatorial designs have been successfully used to con-
struct certain optimal authentication codes [13], [15]. Certain
algebraic curves give also very good authentication codes [3],
[18], [20].

In this paper, we present a coding theory construction of
Cartesian authentication codes. Our construction is a general-
ization of some known ones. Within this general framework, we
construct several classes of authentication codes using certain
classes of error-correcting codes. Our authentication codes are
better than known ones with comparable parameters. We also
show that our construction is related to certain combinatorial
designs, such as difference matrices and generalized Hadamard
matrices.

The generic construction presented in this paper is promising
for several reasons. First, both linear and nonlinear error cor-
recting codes can be used in the general framework. Second, it
contains the constructions of good authentication codes in [6],
[9], [20] as special cases. Third, by using certain classes of linear
error codes, it gives new authentication codes that are better than
the existing authentication codes with comparable parameters,
as demonstrated in this paper.

II. A GENERAL CONSTRUCTION OF SYSTEMATIC
AUTHENTICATION CODES WITH ERROR-CORRECTING CODES

We use S, K, 7, and £ to denote the source state space,
key space, tag space, and encoding rule space, respectively.
Throughout this paper, we assume that the key space and source
state space have a uniform probability distribution. We shall
also define our encoding rules such that & +— Ej, is a one-to-one
correspondence between the key space and encoding rule space.
Hence, the encoding rule space has also a uniform probability
distribution.

Let C be an (n, M) code over an alphabet B, i.e., C is a subset
of B™ with size M, where (B, +) is an Abelian group with ¢
elements. We use ¢; = (c;0,...,¢Ci,n—1) to denote a codeword
of C,0 < i < M — 1. We define a Cartesian authentication code
by

(8.T,K.€) = (Za,B,Zy x B,{E,: k€ K}) (1)

where forany k = (k1,k2) € Kands € S, Ei(s) = ¢k, +ko.

This construction is very general, and contains several known
constructions as special cases. We shall distinguish between the
linear and nonlinear cases in the sequel.
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III. CONSTRUCTIONS USING LINEAR CODES

In this section, we consider the special case that the code
C used in the construction of (1) is linear. We present several
classes of specific constructions of authentication codes based
on several types of linear error-correcting codes, and show that
our authentication codes are better than some existing ones.

A. The Case of Using Linear Codes

Let C be an [n, k, d] linear code over GF (gq). Define (B, +) =
(GF(q),+). Then M = ¢", and the authentication code of (1)
becomes

(S,T,K,€) = (Zy+,GF (g), Zn x GF (q), {Ey : k € K})
2
where forany k = (k1,k2) € Kands € S, Ei(s) = cs k, +k2.

Theorem 1: For the authentication code of (2), we have

1 N
P; = —and Ps = max max (e, u)

>1-
q 0#ceC ,cGF (9) n

S

where N (¢, u) denotes the number of times u occurs in the code-
word e. Furthermore
IS|=q", [TI=q, [K|=nq.

Proof: In the impersonation attack, the opponent wants to
generate a message m = (s, t) by choosing a source state s and
ak = (ki,k2) € K and computing ¢ = ¢, &, + k2. The k1 and
ko are independent, and the opponent has no information about
the key k. This is the same as selecting the pair (s, ¢) randomly.
The message m is then inserted into the channel. This attack is
successful if and only if ¢ = ¢, , + k2. Note that the keys and
source states are equiprobable. We have

Hk € K:t=csp + ka} 1

Pr = —
e (k€ K} "

In the substitution attack, the opponent observed a message
m = (s,t) and replaces it with another message m’ = (s',t'),
where s # s’. Since the keys and source states are equiprobable,
the maximum probability of success of the substitution attack is

Ps =
erlc : t:CS’kl-f—kQ,t/:CSI?kl—i—kg}
HkeK :t=cqp, +ka}|

max
s,8' €S, t,t' €T ,s'#s

Note that [{k € K : t = csx, + k2}| = n for any fixed
pair (s, t). On the other hand, the difference of any two distinct
codewords is again a nonzero codeword. Therefore

|{k ek:t= Cs,ky T+ kQ,tl =Cs' ky, T+ k2}|
=k €K t=cop +hot —t' = oy — o}
= |{k1 € Zn t—t = Cs,ky — Cs’,k1}|

= the number of times ¢t — ¢’ occurs in ¢, — .
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Note that ¢ is freely chosen and s’ # s is also freely chosen.
Hence

{k cK: i,: Cs.ky + K2, H

= CS/,k‘l + k2
Ps = max max
se€S,teT s'#s,t’ n
N(e,u c,0 d
= max max (’)Zmax (7):1——. O
07eeC 4 eGF (q) n 0#ceC n n

Our construction requires that in every nonzero codeword of
the linear error-correcting code all the elements of the base field
occur more or less equally often. Thus, large minimum distance
does not give any good upper bound on Ps. However, it is nec-
essary that the linear code has good minimum distance because
Ps>1-4

B. Authentication Codes From Irreducible Cyclic Codes

In this subection, we construct Cartesian authentication codes
using irreducible cyclic codes. To this end, we need information
about the structure of the codewords in an irreducible cyclic
code. Let p be an odd prime, and let ¢ = p™*. Let N be a positive
integer N dividing ¢ — 1. Define n = (¢ — 1)/N. Let « be
a primitive element of GF (¢), and let # = o”. For any 3 €
GF (¢), we define a vector

C(/B) = (Trq/p(ﬂ)v Trq/p(ﬂ9)7 cey Trq/p(ﬂen_l))
where Try/, is the trace function of GF (¢)/GF (p). The set

C = {e(B) : § € GF ()}
is called an irreducible cyclic [n,m] code over GF (p).

Lemma 2: [2] Let C be the irreducible cyclic code with N =
2. the distribution of elements from GF (p) in each nonzero
codeword ¢(f3) is given as follows. For m even

_g-1  (0-p0=£q)
= +
2p 2p
_a-1 1+va
2 2p
where N, is the number of times ¢ appears in the codeword.
For m odd, one distribution is

No

N;

, 1=1,...,p—1

-1 1-
Ny ==l 1-p
2p 2p
—1  1+.pg
N, = 1 + pq} a nonzero square of GF (p)
2p 2p
1 1= Jpg
Ny, = q2 + 5 pq7 b nonzero nonsquare of GF (p)
P P

and in the other distribution the values for N, and /N, are inter-
changed.

Theorem 3: Let C be the irreducible cyclic code with N = 2.
Then for the authentication code of (2), we have

1 p—1 . .
P l nd Pe_d? + e if m is even
I — a S = 1 + 1 if is odd
p p T oo if m 1s odd.

Furthermore, |S| = p™, |T| = p, |[K| = (p™ = 1)p/2.
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Proof: By Theorem 1, P; = 1. The conclusion on Ps
follows from Lemma 2 and Theorem 1. O

We now compare a subclass of the codes of Theorem 3 with
a subclass of codes in [3] with the following parameters:

S| =m0 e =02 T =0,
1 2
PI:F’ PS:F 3)

where 7 is a power of a prime p, and s > ¢ are natural numbers.
In order for this subclass of codes to be comparable to the
codes of Theorem 3, we set s = t and 7 = p. Then (3) becomes

1T1= VISl 1€ =ISIT] = |M],
1 2 2
Pr=rre Ps ==

S| =p*,

171~ /8|

For the code of Theorem 3, we consider the case m = 2. For
this subclass of codes, we have

71 = VIs],

1 2 2
PI:_7 PS: = .
7| 71+1  /|S]+1

S| =p, €] = (IS] = DIT]/2 < [M]/2,

In this case, we have |£| < |M|/2. Hence, in our subclass of
codes, the number of keys is less than half of the size of the
message space, while in the subclass of Bierbrauer’s codes, the
number of keys is the same as that of messages. On the other
hand, the Ps for our codes is smaller than that for the subclass
of Bierbrauer’s codes. Therefore, our subclass of codes is better
than the subclass of Bierbrauer’s codes.

Lemma 4: [2] Let C be an [n, m] irreducible cyclic code over
GF(p) with Nn = p™ —1 = ¢ — 1, N > 2. If there exists
a divisor j of m/2 for which p’ = —1(mod N), then there are
only two distributions of elements from GF (p) which occur in
the nonzero codewords of C:

Class s (containing n codewords)

Np Np
o g=1 | IHu(N-1)\q
NL ~— Np +

{No — =1 4 l=ptu(-p)(N-1)vq
Np ’
Class * (containing n(N — 1) codewords)

_g-1 , 1-p—u(l-p)\/q
{NO - qN_p R a—

. __g-1 14+u,/q
Nz — Np + Np

1=1,...,p—1.

Here N; is the number of times ¢ occurs in the codeword,
and v = =£1. For any particular code this sign is determined
uniquely by the requirement that all the N; must be nonnegative
integers.

For our application, we are not interested in the case m = 2
because in this case, N = p + 1, and the irreducible code is
degenerate (i.e., the dimension of the code is less than m). So
we always assume that m > 4 in the sequel.

The following lemma follows from Lemma 4.
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Lemma 5: As for the constant © in Lemma 4, we have u = 1
if (p™ —p)/(p—Dp™? < N -1 < p™/? andu = —1 if
N—-1<(p™—p)/p—1)pm/2

However, the semiprimitive condition implies that N — 1 <
p"/*. Note that

pm/Z_l
p—1

pm/2_1
p—1

P —p
(p—1)pm/2

Under the condition N — 1 < p™/4 4 = —1.

+ L

Theorem 6: Let C be the irreducible cyclic code with N —1 <
p"™/*. Then for the code of (2)

1 1 1- —1)(N = 1)pm/2
p=t pooly p+(p—1)( )p _
P P p(pm —1)
Furthermore, |S| = p™, |T| = p, |K| = (p™ — 1)p/N.

Proof: By Theorem 1, Py = %. By Lemma 5 and the dis-
cussion following it, we know that the constant u = —1. Thus,
all the constants /V; of Lemma 4 are determined. Hence

q—1+1—p+(p—1)(N—1)\/§.

max N(e,u) =

0#ceC Np Np
wEGF (p)
The conclusion on Pg then follows from Theorem 1. O

C. Authentication Codes From the Second Class of Linear
Codes

Let p be an odd prime, and let o be a generating element of
GF (¢"™). For any a,b € GF (p™), define

o= (Fud0): Fan(V)s fan(@)s o Fun(a?" 7).

where fo5(2) = Trpm p(az 4 ba?).
We then define a [p™, 2m] linear code C over GF (p) as

C={cup:a,be GF(p™)}. “4)

The following theorem is a special case of a more general
result in [21].

Theorem 7: If m is even, the code C of (4) has parameters
[p™,2m,d = (p — 1)p™=" = (p — 1)p"/?>~1] and has the fol-
lowing five nonzero weights:

(p—1)(p™ 1 EpT ), (p—Dp™tEpT T (p—1)pmh

If m is odd, the code C of (4) has parameters [p™,2m,d =
(p — 1)p™ ! — p(™~1/2] and has the following three nonzero
weights: (p — 1)p™ =" £ pm=1/2 (p — 1)pm~1.

Theorem 8: Let C be the code of (4). Then for the authenti-
cation code of (2), we have

if m even,

if m odd.

1 p—1
1 =+ e
P]:— and PSZ 117 p /1
p » Ty

Furthermore, we have |S| = p?™, |T| = p, |K| = p™ L.
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Proof: By Theorem 1, P; =
proof, we have

%. By Theorem 7 and its

max max N(e,u)
0#ceC ueGF (p)

_ p™l 4 (p— 1)p™/2=1 if meven
p—l 4 plm=1)/2 if m odd.
The conclusion on Pg then follows from Theorem 1. O
In [9], authentication codes with parameters
S| =gmPPD K = gt T =,
1 1 D-1
PI = PS = - +
q q VI

are constructed using exponential sums, where D is an integer
with 1 < D < /¢™ and p is the characteristic of the finite
field GF (¢™). When D = 1, the codes are optimal and are
constructed using linear functions.

We now consider these codes for the case ¢ = p being odd and
D = 2 with our authentication codes of Theorem 8. In this case,
if p = g > 2, the subclass of codes in [9] has the parameters

| IC| _ pm+1

S| =p*™, = VISIIT],
1 1 1
Pr=—, Ps=—=+

A

71’
Our codes of Theorem 8§ have parameters

|T| =D,

|S|1/4 :

S| =p>", K| =Pmp =VISIITI, |T|=p
B Pl e
P, = L7 Ps = Itzl—l + 1| ‘ 1‘ BEE m even
|T| m + m| | 715 m odd.

So the Ps of our codes of Theorem 8 is smaller. Thus, our codes
of Theorem 8 are better in the case D = 2 and p = ¢ > 2. Note
that our authentication codes exist only for p # 2.

Hence, our authentication codes are better than the subclass
of codes defined by D = 2 in [9]. If D # 2, the authentication
codes in [9] cannot be compared with our codes, because the
parameters are not comparable.

As will be made clear in Section V-A, our coding theory con-
struction of authentication codes is different from the one in
[10]. We now compare a subclass of our codes of Theorem 8
using our coding theory construction with a subclass of codes
in [10].

In [10], authentication codes with parameters

Sl=¢% Kl=¢ |T|=q, Pr=2, Ps="

q q
are constructed by applying the g-twisted construction to the
Reed-Solomon codes. It is proven in [10] that these codes are
weakly optimal. Note that Reed—Solomon codes cannot be used
in our coding theory construction because it gives authentication
codes with Ps = 1.

We now consider a subclass of these codes for the case g = p
being prime and x = 2. This subclass of codes has parameters
P=t ps=2

IS| =p* |K|=p% |T|=p,
p p
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A subclass of the authentication codes of Theorem 8 defined
by m = 1 has parameters

1 2
Pr=-, Ps=2.

SI=p*, |K|= 7| =p, ,
p p

(p—1)p,

So the Ps and P of our codes of Theorem 8 are the same as
those of that subclass of codes in [10]. However, our subclass
of codes uses fewer keys, and thus is better than the subclass of
codes in [10] which is proved to be weakly optimal.

D. Authentication Codes From the Third Class of Linear Codes

Let x be a nontrivial additive character of GF (¢™) and let
a=(a1,...,ar) € GF(¢™)", b € GF(¢™). Then the sum

K(x:a,b)

= Z(zl,...,zr)e(GF(qm)*)* X (Zi=1 a;r; + bxl—l e x;l)

is called the multiple Kloosterman sum.

Lemma 9: If x is a nontrivial additive character of GF (¢™),
a € GF (¢™)" and b € GF (¢™) with (a, b) # (0,0), then

K(x;a,b) < (r+1)g™"/2.
‘We now define a function

fa,b(x)

where Trym /, is the trace function from GF (
x = (z1,...,z,). We define

= Trgm/q (alxl + -4 arz, + bxfl . -a:;l)

¢™) to GF (¢) and

N(a,b;u) = [{ € (GF(¢™)")" : fap(x) = u}|

for any (a,b) € GF(¢™)" x GF(¢™) and u € GF (q).

We now give a lower bound on N(a, b; ) for any (a,b) #
(0,0). Let g = p" for some h, where p is a prime. We use Tt ,,
to denote the trace function from GF (q) to GF (p), and let €
denote a complex p-th root of unity. Then

qN (a,b;u)

= >

z€(GF (¢™)*)" yeGF (q)
=(¢" -1

)

yEGF (¢)* 2€(GF (¢™)*)

Trq/p[y(fa.b(m)fu)]

eTra/p[y(fa s (x)—u)]

=(¢" -1
+ Z ETTQ/P[iyu] Z 6Trq/p[y(fa,b(1'))]
y€eGF (q)* z€(GF (gm)*)"
By Lemma 9
lgN(a,b;u) — (¢™ — 1)

< > S Manlas@)

yEGF (q)* |z€(GF (¢™)*)"
< (r+1)(q—1)g™/2



DING et al.: A GENERIC CONSTRUCTION OF CARTESIAN AUTHENTICATION CODES

Hence

N(a. b; u) > (¢ —1)"—(r+1)(g—1)g™"/?

q
N(a,b;u) < @ =D ++1)@=1g"" )
? b —_— 7 .

For any a,b € GF (¢™), we define a vector

Cap = (Fas(10)s Fan(1)s -+ fas(Vgm-1yr—1))

where 70,71, - - -, Y(gm—1)r—1 are all the elements of GF (¢ )*.
We then define a [(¢" —1)", (r+1)m] linear code C over GF (q)
as

C={cap:a,beGF(¢g™)}. (6)
Lemma 10: If (¢™ — 1) > (r + 1)¢""/?, the code C of (6)
has parameters [(¢™ —1)", (r+ 1)m, d] with minimum distance

45 A= D@ =1 = (4 (g = g™
q

Proof: 1f (g™ — 1)" > (r 4+ 1)g™"/2, by (5) N(a,b;u) <
(¢™ — 1)" for any (a,b) # (0,0) and w. Thus, the ¢("t1)™
codewords are pairwise distinct, and C has dimension (7 + 1)m.
The lower bound on the minimum distance d also follows from

(5). O

Theorem 11: Let C be the [(¢™ — 1)",(r + 1)m] code of
Lemma 10. Then for the authentication code of (2), we have

1 1 1)(q — 1)g™"/2
PI:—andP5§—+(T+ g —1)g™"*
q q q(gm = 1)"

Furthermore, |S| = ¢"+V)™ |T| = q, |K|= (¢" — 1)"q.
Proof: By Theorem 1, Pr = . By (5) we have

max N(e,u) < (" =1)"+(r+1)(¢g— 1)qmr/2.

0#ceC q
u€GF (p)

The conclusion on Ps then follows from Theorem 1. O

Note that our construction here is based on the multiple
Kloosterman sum, which is different from the construction
based on some exponential sums given in [9].

In [9], authentication codes with parameters

S| =qmP-LP/) K= g T = g,
1 1 D-1
P = —, P = -+
I q S q /qm

are constructed using exponential sums, where D is an integer
with 1T < D < /g™ and p is the characteristic of the finite
field GF (¢™). When D = 1, the codes are optimal and are
constructed using linear functions.

We first consider a subclass of the codes defined by D = 3,
m = 1, and p = 2 or 3 with a subclass of our authentication
codes of Theorem 11 defined by m = r = 1 and ¢ being a
power of 2 or 3.
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In the case that D = 3, m = 1, and p = 2 or 3, the subclass
of codes in [9] have the parameters

1 1 2
PI:_-, PS:_+ .
q q Va

In the case m = r = 1 and q being a power of 2 or 3, our
codes of Theorem 11 have parameters

ISl=¢* KI=¢" |T|=uq,

IS|=¢* |Kl=(¢—Dg< S|, |T|=q,
1 1 2
Pr=—-, Ps=-+—.
q qa 4

So the Pr and Pg of the subclass of the codes of Theorem 11
are the same as the subclass of codes in [9] and both subclasses
of codes have the same tag space and source state space. But our
subclass of codes uses fewer keys, and are thus better.

When D = 3, m = 1, and p > 3, the probabilities P; and
Pg are the same for the subclass of codes in [9]. However, the
subclass of codes in [9] has a larger source state space and key
space. In this case, the parameters of the subclass of codes in [9]
cannot be compared with our subclass of codes.

For all the remaining cases, the parameters of our codes are
not comparable with those of the codes in [9]. So we have made
a full comparison of our authentication codes of Theorem 11
with those in [9]. The conclusion is that whenever the parame-
ters are comparable, our codes are better.

E. Special Cases

It can be shown that the construction using exponential sums
by Helleseth and Johansson [9] and the construction using al-
gebraic curves by Xing, Wang, and Lam [20] can be viewed as
special cases of the generic construction of this paper.

IV. CONSTRUCTIONS USING NONLINEAR CODES

The generic coding-theory construction of (1) in Section II
allows the use of both linear and nonlinear codes. In Section III,
we demonstrated that linear codes could give very good authen-
tication codes with this construction. In this section, we will
show that this construction could also produce good and op-
timal authentication codes when certain nonlinear codes are em-
ployed.

Let (A, +) be a group of order q. A (q, k; \) difference matrix
is a k x g\ matrix D = (d;;) with entries from A, so that for
each1 < h < 7 <k, the list

dn1 —dj1,dpa —dja, ... dpgn — djgn
contains every element of A A times, see [7]. A generalized
Hadamard matrix GH (¢, \) is a (g, gA; \) difference matrix.
Hence Hadamard difference matrices are special difference ma-
trices. In particular, a Hadamard matrix H(4n) is a GH (2, 2n)
over the group ({1, —1},).

Let C be an (n,M) code over an alphabet A, where
(A,+) is an Abelian group with ¢ elements. We use ¢; =
(¢i05+++Cin_1) to denote a codeword of C,0 < i < M — L.
Define an M x n matrix C' = [efel ---¢T, 1"
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With a proof similar to that of Theorem 1, we can prove the
following.

Theorem 12: The authentication code of (1) has P; = Ps =
% if and only if C'is a (¢, M; n/q) differenc matrix over A

Clearly, the row vectors of a difference matrix usually form
a nonlinear code, and certain nonlinear codes give difference
matrices. It is known that for any (g, k; A) difference matrix, we
have g\ > k, and the equality here holds if and only if it is
a generalized Hadamard matrix. With our construction of (1),
Hadamard matrices give in fact optimal authentication codes.

Theorem 13: The authentication code of (1) has Py = Pg =
% and is optimal if C is a (¢,n;n/q) generalized Hadamard
matrix over A.

Proof: The optimality of an authentication code with such
parameters is proved in [6] O

Let f be a mapping from a finite Abelian group (A, +) to
another one (B, +). We use ag, a1, ..., a,—1 to denote all the
elements of A. We now define an (n, n) code C over the alphabet
B, with the codewords defined by

¢i = (flao+ ai),..., f(an—1+ ai)) @)

for all # with 0 < 7 < n — 1. If f is nonlinear, the code C is also
nonlinear.

When f has optimal nonlinearity, the authentication codes of
(1) corresponding to the nonlinear codes C of (7) become the au-
thentication codes constructed from highly nonlinear functions
by Chanson, Ding, and Salomaa [6]. The construction using
generalized Hadamard difference matrices is closely related to
the one using perfect nonlinear mappings. In particular, some
generalized Hadamard matrices can be constructed with per-
fect nonlinear mappings [5]. The purpose of this subsection is to
point out that the construction by Chanson, Ding, and Salomaa
is a special case of the general construction presented in this

paper.

V. COMPARISON WITH OTHER RELATED CONSTRUCTIONS

In this section, we review some other related constructions
and point out how they differ from the generic construction of
Section II.

A. The Kabatianskii—Smeets—Johansson Construction

The ¢-twisted construction given in [10] uses an (n, M, d)
code over GF (¢) with some special property to construct an
authentication code with parameters

S|=M/q. |e|=ng. [TI=q. Pr=—, Ps=1-2.
q n
Thus, the maximum probability Ps is completely determined
by the minimum distance of the error-correcting code. Further-
more, the larger the minimum distance of the code, the smaller
the probability Ps of the obtained authentication code.
However, for authentication codes from our construction, the
maximum probability Ps cannot be determined by the min-
imum distance of the error-correcting code. On contrast, a linear

code with very large minimum distance could give a very bad
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authentication code. For example, consider the maximum-dis-
tance separable (MDS) [n, 1, n] linear code generated by the
all-one vector 1 and the authentication code using this linear
code with our construction. The maximum probability Ps = 1,
which shows that the obtained authentication code is the worst.

Furthermore, the coding theory construction of authentication
codes in [10] requires an (n, M, d) code C such that if ¢ € C,
then e+ A1 € C forall A, where 1 is the all-one codeword. While
such a code cannot be used in our construction at all because it
will give an authentication code with Pg = 1.

B. The Composition Construction

This construction has been considered in [3], [4], and [16].
Briefly, its basic idea is equivalent to combining an authentica-
tion code with an error-correcting code to obtain a new authenti-
cation code. This construction is different from the generic con-
struction of Section II.

C. The Wang—Xing—Safavi-Naini Construction

Wang, Xing, and Safavi-Naini introduced a class of authen-
tication codes, called linear authentication codes [18]. An au-
thentication code (S, 7, K, {E), : k € K}) is called linear if

1. K and 7T are finite dimensional spaces over GF (¢);

2. foreach s € S, the function f(k) defined by f(k) = Ex(s)

is a GF (¢)-linear mapping from K to 7.

Wang, Xing, and Safavi-Naini used the rank distance codes to
construct some linear authentication codes [18]. This construc-
tion seems different from the generic construction of Section II
and also other constructions based on error-correcting codes.

VI. CONCLUDING REMARKS

We presented a construction of authentication codes based on
error-correcting codes, and described several classes of authen-
tication codes based on several types of linear error-correcting
codes. We showed that some subclasses of our authentication
codes are better than some subclasses of existing good authenti-
cation codes or the parameters of our codes are not comparable
with them. We remark that the construction of this paper is dif-
ferent from that of [8], although the same set of error-correcting
codes are employed in both constructions. On the other hand, the
parameters of the authentication codes in this paper and those of
the authentication codes in [8] can never be the same.

Note that a Cartesian authentication code has five parameters.
In order to be able to compare two classes of authentication
codes, we need to fix at least three of the five parameters and
then compare the remaining parameters for the two classes. In
many cases this is impossible, and hence it is not possible to
compare two classes of authentication codes. We mention that
we are not able to compare our authentication codes with those
in [20], since the parameters are not comparable.

We showed that the general construction described in this
paper is closely related to difference matrices and generalized
Hadamard matrices. We also demonstrated that our construc-
tion is a generalization of several earlier constructions, and on
the other hand different from several other earlier constructions.

Clearly, with our construction every error-correcting code
gives an authentication code. It is obvious that this construction
gives both good and bad authentication codes. The main task is
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to find classes of error-correcting codes with special properties
that give good authentication codes within the framework of
this construction.

Finally, we invite the reader to check if there is any connection
between the constructions of authentication codes in this paper
and the constructions of error-correcting codes using pseudo-
random graphs in [1].
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