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Sets of Frequency Hopping Sequences: Bounds and
Optimal Constructions

Cunsheng Ding, Senior Member, IEEE, Ryoh Fuji-Hara, Yuichiro Fujiwara, Masakazu Jimbo, and
Miwako Mishima

Abstract—Frequency hopping spread spectrum and direct
sequence spread spectrum are two main spread coding technolo-
gies in communication systems. Frequency hopping sequences
are needed in frequency hopping code-division multiple-access
(FH-CDMA) systems. In this paper, four algebraic and a com-
binatorial constructions of optimal sets of frequency hopping
sequences with new parameters are presented, and a number of
bounds on sets of frequency hopping sequences are described.

Index Terms—Cyclotomy, direct sequence spread spectrum(DS-
SS), frequency hopping sequence, frequency hopping spread spec-
trum.

I. INTRODUCTION

T HROUGHOUT this paper, denotes a positive integer.
Let be an abelian group (a set of

available frequencies, also called the alphabet). Let be the set
of all sequences of length over . Any element of is called
a frequency hopping (FH) sequence of length over . For
two frequency hopping sequences , their Hamming
correlation is defined by

(1)

where if , and 0 otherwise, and all operations
among the position indices are performed modulo . For any
distinct , we define the following three measures:
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In 1974, Lempel and Greenberger developed the following
lower bound for [15].

Lemma 1: For every frequency hopping sequence of
length over an alphabet of size , we have

where is the least nonnegative residue of modulo .

Let be a subset of containing sequences. The max-
imum nontrivial Hamming correlation of the sequence set is
defined by

In this paper, we use to denote a set of fre-
quency hopping sequences of length over an alphabet of
size , where .

Peng and Fan described the following bounds on ,
which take into consideration the number of sequences in the
set .

Lemma 2: [20, Corollary 1] Let be a set of se-
quences of length over an alphabet of size . Define

. Then

(2)

(3)

In this paper, we use the following definitions:
1) A sequence is called optimal if the Lempel-Green-

berger bound in Lemma 1 is met.
2) A subset is an optimal set if one of the bounds in

Lemma 2 or Section II-B is met.
Lempel and Greenberger defined optimality for both single

sequences and sets of sequences in other ways. A set of fre-
quency hopping sequences meeting one of the bounds in Lemma
2 must be optimal in the Lempel-Greenberger sense. In commu-
nication systems, frequency hopping spread spectrum and di-
rect sequence spread spectrum are two main spread coding tech-
nologies. Both have advantages and disadvantages. Frequency
hopping sequences are an integral part of spread-spectrum com-
munication systems such as frequency hopping code-division
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TABLE I
KNOWN OPTIMUM SETS OF FREQUENCY HOPPING SEQUENCES

multiple-access (FH-CDMA) systems (for a description of such
systems, see [21]). In multiple access frequency hopping packet
radio networks each transmitter is assigned a unique signature
sequence for controlling the frequencies used by the radios for
consecutive packets within a frame. Assuming frame asynchro-
nism and packet synchronism, whenever two or more radios
transmit their packets simultaneously in the same frequency, the
collided packets are capable of destroying each other. To max-
imize the throughput, we have to minimize the number of such
coincidences between the signature sequences. As the number
of such coincidences is the Hamming correlation, we need to
use a set of signature sequences with good Hamming correla-
tion and large size. Periodic Hamming correlation is considered
in almost all papers, as this allows people to derive theoretical
results, although aperiodic Hamming correlation matters in real
applications.

It is relatively easy to construct single optimal frequency
hopping sequences with respect to the bound of Lemma 1. Both
algebraic and combinatorial constructions of such sequences
were developed (see, for example, [1], [4], [5], [10], [11],
[13]–[15], [25]). However, only a few constructions of op-
timal sets of frequency hopping sequences are known. Table I
describes the parameters of known optimal sets of frequency
hopping sequences. One objective of this paper is to present
four algebraic constructions of optimal sets of frequency hop-
ping sequences with new parameters.

The only bounds on sets of frequency hopping sequences doc-
umented in the literature are those of Lemma 2. Another objec-
tive of this paper is to describe other bounds on sets of frequency
hopping sequences.

II. BOUNDS ON SETS OF FREQUENCY HOPPING SEQUENCES

FROM CODING THEORY

In this section, we first make a connection between sets
of frequency hopping sequences and cyclic error correcting
codes, and then describe several bounds on sets of frequency
hopping sequences. These bounds are different from the bounds
of Lemma 2, and are not stated in the literature on frequency
hopping sequences. The objective of this section is to make the
bounds known to the reader, although they are easily obtained
by modifying bounds on error correcting codes.

A. Some Bounds on Error Correcting Codes

Let be an abelian group of size .
Define

for all

The Hamming weight of a vector in is the total number of
nonzero coordinates in the vector. The Hamming distance be-
tween two vectors in is the total number of coordinate posi-
tions in which they differ.

An code is an -subset of the space with
minimum Hamming distance . An constant
weight code is a code over an abelian group (alphabet) of
elements with length , size and minimum distance such
that the Hamming weight of each codeword is . A code is
called equidistant if the distance between every pair of distinct
codewords is the same. An code is a linear subspace
of GF with dimension such that the minimum Hamming
distance between all pairs of distinct codewords is .

Let denote the largest number of codewords in any
-ary code of length and minimum distance at least . Let

denote the maximum number of codewords
in a constant weight code over an alphabet of size with
length , minimum distance at least , and weight (called
an constant weight code). The first generalized
Johnson bound on constant weight codes is the following:

(4)

The second generalized Johnson bound on constant weight
codes is the following [7]:

(5)

provided that . For nonbi-
nary constant weight codes, we have the following known exact
values of or lower bounds on :

• for [6].
• for [18].
• , if [8].

• [23].

• , if [8].

• for [24].
• for [24].
• for [24].
• , where is a power of odd prime

[7].
• , where is a power

of odd prime [7].
• , where is a prime

[19].

• [7].

• , where is a prime
power [7].
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• , where [7].
• if and .
• [7].
• [19].
The Johnson bound for is described in the following

lemma [12].

Lemma 3: If

(6)

If

(7)

In the next section, we shall use those bounds to derive bounds
on sets of FH sequences.

B. Coding Theory Bounds on Sets of FH Sequences

For any given set of FH sequences with parameters
, where , an

code is obtained by putting all the sequences in and all
their cyclically shifted versions together. Hence bounds on
error correcting codes give automatically bounds on sets of
frequency hopping sequences.

The following bound follows from the Singleton bound on
error correcting codes [16, p. 92].

Theorem 4: (The Singleton bound on FH sequences) For any
set of FH sequences with parameters ; where

and , we have

(8)

In Section VI, we will present sets of FH sequences meeting
this Singleton bound. The following bound follows from the
Plotkin bound on error correcting codes [16, p. 95].

Theorem 5: (The Plotkin bound on FH sequences) For any set
of FH sequences with parameters , where

and , we have

(9)

The following bound follows from the sphere-packing bound
on error correcting codes [16, p. 83].

Theorem 6: (The sphere-packing bound on FH sequences)
For any set of FH sequences with parameters ,
where and , we have

(10)

In Section VII, we will present sets of FH sequences meeting
this sphere-packing bound. The following theorem describes the
Johnson bounds on sets of FH sequences which follow from the
bounds of Lemma 3.

Theorem 7: Let be any set of FH sequences with param-
eters . If , see (11) at the bottom of
the page.

If

(12)

The bounds in Theorem 7 involve and are not
specific. However, plugging the bounds on de-
scribed in Section II-A into the bounds of Theorem 7 yields
various bounds on sets of FH sequences. We leave the details to
the reader. The linear programming bound on error correcting
codes yields similar bound on sets of frequency hopping se-
quences. We will demonstrate in subsequent sections that the
bounds described in this section are useful, as they can be
achieved by certain sets of FH sequences.

III. CYCLOTOMIC CLASSES AND GAUSSIAN PERIODS

Throughout this section, let and , where
is a prime, and are positive integers. Let
for two positive integers and , and let be a

(11)
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fixed generator of GF . Define for
, where denotes the subgroup of GF

generated by . The cosets are called the cyclotomic
classes of order in GF . The cyclotomic numbers of order

are defined by

for all and . The Gaussian
periods are defined by

where is the canonical additive character of GF . In general,
it is hard to determine the values of the Gaussian periods [22].
However, it can be done in certain cases. In the sequel, we will
need the following lemma [17].

Lemma 8: Suppose there exists a positive integer such that
, and let be the least such. Let ,

where . Then the Gaussian periods are given below.
1) If and are all odd, then

and for all .
2) In all other cases,

and for all .

IV. THE FIRST CONSTRUCTION OF OPTIMAL SETS OF

FREQUENCY HOPPING SEQUENCES

In this section, let and , where is a
positive integer. Define and . Let be a
generator of GF . Define . For each ,
we define the following sequence;

(13)

where is the trace function from GF to GF . Each

is a sequence of length over the alphabet GF . We then
define

(14)

Theorem 9: The of (14) is a
set of frequency hopping sequences over the alphabet GF ,
meeting the Peng–Fan bound of (3).

Proof: We first prove that

Note that any GF can be expressed as

for some with . Hence

On the other hand, since , we have

GF

It then follows that . By Lemma
8, we have

Finally, define

for each nonzero . Let
be the additive character on GF . Furthermore,

for any subset of GF , we define

For any , using the results proved above we have
then

if
otherwise.

(15)

For any and ,
by (1) we have

where if and if .
These conditions on and guarantee that . It
then follows from (15) that . This also proved
that the size of is .

It is straightforward to check that the Peng–Fan bound of (3)
is met. This completes the proof.

Example 1: Let and . Let be the generator of
GF defined by , and define

. Then is a generator of GF defined by .
Then the set consists of the following 15 frequency hopping
sequences of length :

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 19, 2009 at 04:22 from IEEE Xplore.  Restrictions apply.



DING et al.: SETS OF FREQUENCY HOPPING SEQUENCES 3301

V. THE SECOND CONSTRUCTION OF OPTIMAL SETS OF

FREQUENCY HOPPING SEQUENCES

In this section, let be an odd prime, and ,
where and are positive integers. Let be a positive divisor
of and . Let be a generator of GF .
Define . For each , we define the
following sequence:

(16)

where is the trace function from GF to GF . Each

is a sequence of length over the alphabet GF . We
then define

(17)

Theorem 10: If is even,
and , the

of (17) is a
set of frequency hopping sequences over the alphabet GF .
Furthermore, if

(18)

the set of FH sequences in (17) is optimal with respect
to the Peng–Fan bound of (3).

Proof: Let denote the number of solutions
GF of the equation . Let ,

and . Then is an additive character of GF .
The following is well known [3]:

(19)

We have then

(20)

The condition that
implies that is even and is odd. Let be the generator
of GF . Since and

, each cyclotomic class contains
exactly elements of GF , and each cyclotomic
class does not contain any element of GF .

Let . It then follows from (20) and (19) that

(21)

Hence, for any GF the Hamming weight of the
vector

is equal to

For any and ,
by (1)

where if and if . These
conditions on and guarantee that . It then
follows from (21) that .
This also proved that the size of is .

It is straightforward to check that the Peng–Fan bound of (3)
is met, if (18) is satisfied.

The following example demonstrates that the construction of
this section does produce optimal sets of FH sequences.

Example 2: Let . We
have then . It is easily checked that
and

Then the of (17) is a set of
frequency hopping sequences over the alphabet GF .
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The condition of (18) is obviously satisfied. Hence this set of
FH sequences is optimal with respect to the Peng–Fan bound
of (3). Note that this set of FH sequences is also optimal with
respect to the Singlton bound of (8).

VI. THE THIRD CONSTRUCTION OF OPTIMAL SETS OF

FREQUENCY HOPPING SEQUENCES

As made clear in Section II-B, any set of FH sequences
with parameters , where gives
automatically an cyclic code . However,
when a cyclic code is given, constructing a set of FH sequences
using this cyclic code is not automatic and it varies from case to
case. In this section, we use a subset of the Reed–Solomon code
to construct a set of FH sequences meeting the Singleton bound
of (8).

We first describe a subset of the Reed–Solomon code. Let
be a prime power, and let be an integer with .
Define

GF GF

(22)

Define and

GF

where is a generator of GF . It is well known that the code
has parameters and is cyclic.

Two codewords of are said to be equivalent if one is the
cyclic shift of the other. The codewords of are now clas-
sified into equivalence classes. There is an equivalence classes

of

. Such equivalence class are said to be trivial. When
is a prime number, it is easily seen that each of the remaining

equivalence classes has exactly codewords.
Taking one and only one codeword from each of the remaining

equivalence classes, we form a set of
FH sequences with parameters

. This is because of the following:
• the code has minimum distance ;
• is a subset of the code ; and
• any two sequences in are not equivalent.

It is straightforward to verify that the set of FH sequences
meets the Singleton bound of (8). This proves the following the-
orem.

Theorem 11: Assume that is a prime power and is a
prime. The set of FH sequences has parameters

and meets the Singleton bound of (8).
If is a prime, it must be of the format , where
is a positive integers. Primes of this format are called

Mersenne primes. For example, is a prime when
and . The largest

known Mersenne primes are and .

VII. THE FOURTH CONSTRUCTION OF OPTIMAL SETS OF

FREQUENCY HOPPING SEQUENCES

In this section, we use a subset of a cyclic code to construct a
set of FH sequences meeting the sphere-packing bound of (10).

We first describe the cyclic linear code. Let be a prime
power, and let be a positive integer such that

. Define . Let be a generator of GF ,
and let . Define a cyclic linear code by

GF and

where GF consists of all polynomials of degree at most
over GF . It is known that is equivalent to the

Hamming code [26, p. 92].
Two codewords of are said to be equivalent if one is

the cyclic shift of the other. The codewords of are now
classified into equivalence classes. There are clearly trivial
equivalence classes of the form . When is a
prime, it is easily seen that each of the remaining
nontrivial equivalence classes has exactly codewords. Taking
one and only one codeword from each of the remaining

equivalence classes, we form a set of
FH sequences with parameters

This is because of the following:
• the linear code had minimum distance and

dimension ;
• is a subset of the linear code ; and
• any two sequences in are not equivalent.

It is straightforward to verify that the set of FH se-
quences meets the sphere-packing bound of (10). This proves
the following theorem.

Theorem 12: If and
is a prime, the set of FH sequences has parameters

and meets the sphere-packing bound
of (10).

The following pairs satisfy the conditions in The-
orem 12:

Regarding the construction of this section, we have the fol-
lowing open problem.

Open Problem 1: If the condition that
is a prime in Theorem 12 is dropped, is it still true that every
nontrivial equivalence class of codewords has size ?

If the answer to this open question is positive, then more op-
timal sets of FH sequences are obtained.

VIII. A COMBINATORIAL CONSTRUCTION OF OPTIMAL SETS

OF FREQUENCY HOPPING SEQUENCES

In this section, we present a combinatorial construction that
produces an optimal set of frequency hopping sequences from
another optimal set having different parameters, which appeared
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in the conference proceedings [9]. The construction can be re-
cursively applied to the resulting optimal set and generates in-
finitely many optimal examples of new parameters.

To this end, we utilize a type of combinatorial matrix. A cyclic
difference matrix CDM is an matrix
such that and for each pair
of two rows and every element of occurs exactly once
among the differences

. A CDM where every element of appears
in every row exactly once is called homogeneous.

For a set of FH sequences, we introduce the following two
parameters:

where and are maximum Hamming auto-correlation and
maximum cross-correlation of the sequences in . By definition,

. In the rest of this section, we will replace
the parameters of a set of FH sequences with the
more refined parameters . We consider the case
that for any sequence with parameters there
exists a frequency such that for and

for every ; that is, there exists a frequency that appears
precisely once in each sequence of at time . Clearly, without
loss of generality, we may assume that and .

For a frequency of a set of sequences over an al-
phabet set , define also as the number of occurrences of
the frequency in the sequence and . We de-
fine .

Theorem 13: Assume that there exists a set of FH se-
quences with parameters such that for any
sequence for every , and
for any pair of and with
for every . Assume also that there exists another set
of FH sequences with parameters . If there
exists a homogeneous cyclic difference matrix CDM ,
then there exists a set of FH sequences with parameters

.
Proof: For and , let be

the support set of in , that is,
. Then is a partition of

for any , and are
mutually disjoint for any . Let be the
homogeneous CDM . For any family of the following

support sets of

construct the following new support sets:

Similarly, for and ,
let be the support set of in , that is,

. Then simi-
larly is a partition of
for any , and are mutually
disjoint for any . Adding the family of sup-
port sets to the family of support sets

, we obtain the support
sets of frequencies of a new FH sequence for
any . It can be readily checked that these

FH sequences form a set of FH sequences with
parameters

.

The following is an important application of Theorem 13.

Corollary 14: For each let be a nonnegative integer
and a prime of the form
with and . There exists an optimal
set of frequency hopping sequences with parameters

meeting the Peng–Fan bound of (2), where
, and

.
Proof: Chu and Colbourn [1] constructed such a set

of frequency hopping sequences with parameters
satisfying the condition of Theorem 14. Then the

conclusion is followed by repeated applications of Theorem 14
to Chu and Colbourn’s result and an easy verification of the
Peng–Fan bound of , where the required homogeneous cyclic
difference matrices in Theorem 13 are easily obtained from the
multiplication tables of the finite fields GF [2, Ch. XX]
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