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Abstract—In communication systems, frequency hopping
spread spectrum and direct sequence spread spectrum are two
main spread coding technologies. Frequency hopping sequences
are used in FH-CDMA systems. In this paper, an earlier idea
of constructing optimal sets of frequency hopping sequences
is further investigated. New optimal parameters of sets of fre-
quency hopping sequences are obtained with subcodes of the
Reed–Solomon codes. Optimal sets of frequency hopping se-
quences are constructed with a class of irreducible cyclic codes. As
a byproduct, the weight distribution of a subclass of irreducible
cyclic codes is determined.

Index Terms—Cyclic codes, direct sequence spread spectrum,
frequency hopping sequence, frequency hopping spread spectrum,
irreducible cyclic codes.

I. INTRODUCTION

A. Definitions and Notations

T HROUGHOUT this paper, denotes a positive integer.
Let be an abelian group (a set of

available frequencies, also called the alphabet). Let be the set
of all sequences of length over . Any element of is called
a frequency hopping (FH) sequence of length over . For
two frequency hopping sequences , their Hamming
correlation is defined by

(1)

where if , and 0 otherwise, and all operations
among the position indices are performed modulo .

For any distinct , we define the following three
measures:
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In communication systems, frequency hopping spread spec-
trum and direct sequence spread spectrum are two main spread
coding technologies. Both have advantages and disadvantages.
Frequency hopping sequences are an integral part of spread-
spectrum communication systems such as FH-CDMA systems
(for a description of such systems, see [27]).

In multiple access frequency hopping packet radio networks
each transmitter is assigned a unique signature sequence for
controlling the frequencies used by the radios for consecutive
packets within a frame. Assuming frame asynchronism and
packet synchronism, whenever two or more radios transmit
their packets simultaneously in the same frequency, the collided
packets are capable of destroying each other. To maximize the
throughput, we have to minimize the number of such coin-
cidences between the signature sequences. As the number of
such coincidences is the Hamming correlation, we need to use
a set of signature sequences with good Hamming correlation
and large size. Periodic Hamming correlation is considered in
almost all papers, as this allows people to derive theoretical
results, although aperiodic Hamming correlation matters in real
applications.

B. Peng–Fan Bounds and Optimal Parameters With Respect
to the Bounds

Lempel and Greenberger developed the following lower
bound for [19].

Lemma 1: For every frequency hopping sequence of
length over an alphabet of size , we have

where is the least nonnegative residue of modulo .
Let be a subset of containing sequences. The max-

imum nontrivial Hamming correlation of the sequence set is
defined by

In this paper, we use to denote a set of fre-
quency hopping sequences of length over an alphabet of size
, where .

Peng and Fan described the following bounds on ,
which take into consideration the number of sequences in the
set .
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TABLE I
KNOWN OPTIMAL SETS OF FREQUENCY HOPPING SEQUENCES

Lemma 2: ([26, Corollary 1]) Let be a set of
sequences of length over an alphabet of size . Define

. Then

(2)

(3)

It is relatively easy to construct single optimal frequency hop-
ping sequences with respect to the bound of Lemma 1. Both al-
gebraic and combinatorial constructions of such sequences were
developed (see, for example, [4], [10], [11], [13], [14], [16],
[17], [19], and [29]). Some of the parameters in Table I are op-
timal with respect to the Peng–Fan bounds.

C. Coding-Theory Bounds on Sets of FH Sequences and
Optimal Constructions

Let be an abelian group of size .
Define

The Hamming weight of a vector in is the total number of
nonzero coordinates in the vector. The Hamming distance be-
tween two vectors in is the total number of coordinate posi-
tions in which they differ.

An code is an -subset of the space with
minimum Hamming distance . A code is called equidistant
if the distance between every pair of distinct codewords is the
same. An code is a linear subspace of with di-
mension such that the minimum Hamming distance between
all pairs of distinct codewords is .

For any given set of FH sequences with parameters
, where , an code

is obtained by putting all the sequences in and all their
cyclically left-shifted versions together [8]. Hence bounds on

error correcting codes give automatically bounds on sets of
frequency hopping sequences. This connection between sets of
FH sequences and cyclic linear codes was used to establish the
following bounds on sets of FH sequences in [8].

Theorem 3: (The Singleton bound on FH sequences) For any
set of FH sequences with parameters ; where

and , we have

(4)

Theorem 4: (The Plotkin bound on FH sequences) For any set
of FH sequences with parameters , where

and , we have

(5)

Theorem 5: (The sphere-packing bound on FH sequences)
For any set of FH sequences with parameters ,
where and , we have

(6)

In this paper, we use the following definitions:
1) A sequence is called optimal if the Lempel-Green-

berger bound in Lemma 1 is met.
2) A subset is an optimal set if one of the bounds in

this section or Lemma 2 is met.
Lempel and Greenberger defined optimality for both single

sequences and sets of sequences in other ways. A set of fre-
quency hopping sequences meeting one of the bounds in Lemma
2 must be optimal in the Lempel-Greenberger sense.

Let be an abelian group of size .
As pointed out before, any given set of FH sequences with
parameters gives an cyclic code

automatically.
An cyclic code over may be used to construct

a set of FH sequences in different ways. However, it is open
if the given cyclic code could be used to construct optimal
sets of FH sequences in some way. Even if this is possible, the
way to use a given cyclic code to construct an optimal set of FH
sequences may differ from case to case.

Two codewords of an cyclic code over are
said equivalent if one is a cyclic left shift of the other. Using this
equivalence relation, all the codewords of are classified into
equivalence classes . The number of elements in an equiva-
lent class is called the cycle length of all the codewords in
the equivalence class. If the size of an equivalence class is

, then is called an full-cycle equivalence class. A general
idea of constructing a set of FH sequences is to take one and
only one codeword from each full-cycle equivalence class and
put them together into a set [8]. Whether the set of FH se-
quences is optimal with respect to one of the bounds described
before depends on the underlying cyclic code .



DING et al.: OPTIMAL SETS OF FREQUENCY HOPPING SEQUENCES 3607

This idea was employed to obtain optimal sets of FH se-
quences using a few classes of cyclic linear codes in [8]. The
parameters of the optimal sets of FH sequences obtained in [8]
are included in Table I. The objective of this paper is to further
explore this idea. We will prove that the construction of sets
of FH sequences using the Reed–Solomon codes in [8] gives
much more optimal parameters, and will present a construction
of new optimal sets of FH sequences using a subclass of irre-
ducible cyclic codes. As a byproduct, the weight distribution of
a subclass of irreducible cyclic codes is determined.

II. MORE OPTIMAL SETS OF FH SEQUENCES FROM THE

REED–SOLOMON CODES

In [8], the Reed–Solomon code was employed to construct
a set of FH sequences. It was shown in [8] that the set of FH
sequences meets the Singleton bound of (4) when the length of
the FH sequences is a prime. The objective of this section is to
relax this condition and to obtain optimal sets of FH sequences
with new parameters.

We now introduce the construction of sets of FH sequences
with subcodes of the Reed–Solomon codes [8]. Let be a prime
power, and let be an integer with . Define

(7)

Define and

where is a generator of . It is well known that the code
has parameters and is cyclic.

Two codewords of are said to be equivalent if one is
the cyclic shift of the other. The codewords of are now
classified into equivalence classes. The set

is an equivalence class. Taking one and only one codeword from
each of the remaining equivalence classes and putting them to-
gether, we form a set of FH sequences.

The following result was proved in [8].

Theorem 6: [8] Assume that is a prime power and
is a prime. The set of FH sequences has parameters

and meets the Singleton bound of
(4).

Theorem 6 tells that the set of FH sequences is optimal
when is a Mersene prime of the form for some pos-
itive integer . The following is a generalization of Theorem [8]
which shows that the set of FH sequences is also optimal
in many other cases.

Theorem 7: Let . For
any with , the set of FH sequences

has parameters and meets the
Singleton bound of (4).

Proof: Let . Suppose that . Let

be a sequence in the set , where is a generator of
and

We now prove that all the cyclic left shifts of the sequence
are pairwise distinct if the polynomial is not the zero

polynomial. Suppose on the contrary that the cyclic shift of to
the left for positions is the same as , where .
In this case, is a period of the sequence . The minimum
value of such is called the cycle length or the least period
of the sequence . Here we assume that is the cycle length
of the sequence . Clearly, is also a period of the
sequence . It follows from the minimality of the cycle length
that , i.e., .

It is easily seen that . Otherwise will be a constant
polynomial. Hence we have . By the definition of

Hence

It follows that

This means that the polynomial has
roots , where . Because any nonzero

polynomial of degree at most has at most roots and
, we have

Note that , and .
It follows from that for all with

. Therefore, for all with . This
means that is the zero polynomial. This is a contradiction.

The equivalence classes of the form are called
trivial. In summary, we have proved that every nontrivial equiv-
alence class of codewords has exactly codewords
of the code . Hence, is a set of FH
sequences with parameters .
It is straightforward to verify that the set of FH sequences
meets the Singleton bound of (4). This completes the proof.

Table II lists some of the parameters of the optimal set of
FH sequences given in Theorem 7, where the remark “New”
means that the parameters of the optimal set of FH sequences
are discovered in this paper.
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TABLE II
SOME OPTIMAL PARAMETERS OF THE SETS OF FH SEQUENCES IN THEOREM 7

III. OPTIMAL SETS OF FH SEQUENCES FROM A SUBCLASS OF

IRREDUCIBLE CYCLIC CODES

A. Irreducible Cyclic Codes

Let with a positive integer and let be a positive
integer dividing . Put . Let be a primitive
element of and let . The set

(8)

where , is
called an irreducible cyclic code over , where

is the trace function from onto and di-
vides .

The weight distribution of irreducible cyclic codes is quite
complicated in general [21]. However, in certain special cases
the weight distribution is known. We summarize these cases
here.

1) When for some being a divisor of ,
which is called the semi-primitive case, the codes have
two weights. These codes were studied by Delsarte and
Goethals [5], McEliece [22], and Baumert and McEliece
[1].

2) When , the weight distribution was found by
Baumert and McEliece [1].

3) When and , the weight distribution was
described in [7].

4) When is a prime with and
, the weight distribution was

determined by Baumert and Mykkeltveit [2].
5) When and , the weight

distribution was described in [7].
6) When is even, and

, the weight distribution was described
in [7].

McEliece also generalized some of these results [22] and
showed that the weights of an irreducible cyclic code can be ex-
pressed as a linear combination of Gauss sums via the Fourier
transform [23] (see also McEliece and Rumsey [24], Fitzgerald
and Yucas [12], van der Vlugt [30], and the references therein).

Two-weight codes are a class of interesting codes which are
closely related to combinatorial designs, finite geometry, and
graph theory. Information on them can be found in Baumert
and McEliece [1], Calderbank and Kantor [3], Wolfmann [32],

Delsarte and Goethals [5], Langevin [18], Schmidt and White
[28], Wolfmann [33], [34], and Vega and Wolfmann [31].

B. Subclass of Irreducible Cyclic Codes

Let be a prime, , where ,
and are positive integers. Let be a positive divisor of ,
and so of , and let be a primitive element of

. Throughout this section we always assume .
Define the additive character on by ,
where and is
the absolute trace mapping. Let and

be further trace mappings. Define

(9)

for each with . These are
called the cyclotomic classes of order in .

For any , define the exponential sum

Lemma 8: [25] Assume . Then for any

where

Let , and let be a divisor of .
Define for . We are now ready
to present the construction of the two-weight codes. For each

, define the vector

We then define the code

(10)

It is easily seen that is an irreducible cyclic code
over with dimension being a divisor of . Though
is a divisor of may not divide for
any positive integer . The weight distribution of the irreducible
cyclic code may be hard to determine, as this is not
the semiprimitive case in general. The code may
have only two nonzero weights or much more nonzero weights.
The following examples illustrate this fact.

Example 1: Let , and . In this
case, is a cyclic code over GF(2) with the
weight distribution

Its dual is a cyclic code over GF(2).
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Example 2: Let , and . In this
case, is a cyclic code over GF(7) with
the weight distribution

Its dual is a cyclic code over GF(7).

Example 3: Let , and . In this
case, is a cyclic code over GF(7) with the
weight distribution

Its dual is a cyclic code over GF(7).
The code of (10) is different from the linear code

defined in [9] due to the following:
1) The code of (10) is cyclic, while the one in [9]

is not cyclic.
2) The code of (10) may have more than two

nonzero weights, while the one in [9] is always a two-
weight code.

We now determine the weight distribution of a subclass of the
irreducible cyclic codes, and have the following conclusion.

Theorem 9: Assume that and
. The set of (10) is an

two-weight cyclic linear code over and has the following
weight distribution:

Furthermore, the dual code of is an
linear code with minimum distance .

Proof: Since , we have
that . We first prove that is a
complete set of coset representatives of . Note that

We need to prove that

for each pair of distinct and with and .
It follows from the assumption
that

Hence, is a complete set of coset representa-
tives of .

Clearly, is a linear code over of length
. We now determine the dimension and weight distribution

of . For any , the Hamming weight
of the codeword is given by

where the third equality holds by the transitivity of the trace
(see [20, Th. 2.26]) and the fourth equality holds because

is a complete set of coset representatives of
.

It then follows from Lemma 8 that

Since , we have for all nonzero
. Hence the -linear map is

injective. Then the conclusions about the dimension and weight
distribution of follow.

For the dual code , we only need to prove the
lower bound for the minimum distance . Suppose on the con-
trary that . By the well-known characterization of the
minimum distance of a linear code in terms of a parity-check
matrix (see [20, Lemma 9.14]), there exist a pair of integers

such that the th column and the th column
of a parity-check matrix of (which is the same
as a generator matrix of ) are linearly dependent
over . If form a -basis of , then

form a -basis of . It follows
that there exists such that

This implies

It follows now from [20, Th. 2.24] that

We may assume . Hence , which
is a contradiction to the fact that is a complete
set of coset representatives of . This completes the
proof.

Even if the two conditions (i.e., and
) of Theorem 9 are not satisfied, it
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is still possible that the code has only two nonzero
weights. However, the two nonzero weights may be different
from those of Theorem 9. The following example demonstrates
this.

Example 4: Let , and . In this
case, is a cyclic code over GF(3) with
the weight distribution

Its dual is a cyclic code over GF(3).

Corollary 10: Let . Let .
The set of (10) is an two-weight cyclic
linear code over and has the weight distribution in the
table at the top of this column:

Furthermore, the dual code of is an
linear code with minimum distance .

Proof: Note that

The conclusion then follows from Theorem 9.

Example 5: Let , and . In
this case, we have

So in this case is a cyclic code over
GF(5) with the weight distribution

Its dual is a cyclic code over GF(5).
Finally, we note that the code may be sometimes

optimal. For example, when and
is a

MDS code over .

C. Optimal Sets of FH Sequences From a Subclass of
Irreducible Cyclic Codes

As before, let be a prime, , where
, and are positive integers. Let be a positive divisor of

, and so of .

We are now ready to define a set of FH sequences
using a subset of codewords in the linear code . De-
fine

(11)

where the sequence

Theorem 11: Assume that .
Then the set of FH sequences has parameters

where

(12)

Proof: The codeword is the zero codeword when and
only when . This follows from the fact that the dimension
of the code is (this is due to the condition that

).
For any integer and any ,

by cyclically shifting the codeword to the left for po-
sitions, we obtain another codeword which has the expression

. We now prove that the two codewords are dis-
tinct. The difference

which is another codeword in . Note that
. We have that .

Hence and is not the
zero codeword.

The foregoing discussions also showed that any two se-
quences in cannot be cyclically shifted versions
of each other (inequivalent). This justifies the size of the set

. Finally, note that , where is the minimum
nonzero weight in . The conclusion for follows
from the weights of the code given in the table of
Theorem 9.

The set of FH sequences is not optimal in general,
but is optimal in the following special case.

Corollary 12: When is odd, the set is optimal
with respect to the Peng–Fan bound of (3) if and only if

and . In this case, has
parameters

and also meets the Singleton bound of (4).
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When is even, the set is optimal with respect to the
Peng–Fan bound of (3) if and only if and

, where is a positive integer. In this case,
has parameters

Proof: Applying the Peng–Fan bound of (3) to the FH se-
quence set , we have that

(13)

When is odd, it follows from (13) that is optimal
with respect to the Peng–Fan bound of (3) if and only if

which is equivalent to

That is, , i.e., and .
On the other hand, we have

Hence, if and only if
is odd.

When is odd and , the set has
parameters . It is easily checked that
the Singleton bound of (4) is also met in this case.

For the case that is even, it follows from (13) that
is optimal with respect to the Peng–Fan bound of (3) if and only
if

This equality is equivalent to that

(14)

which implies due to the fact that
. Since is a power of , one has and

, i.e., and since is even. Then
and . Inequality (14) implies that and

then because . Note that

We have that if and only if
. This completes the proof.

For even , the sufficient condition for the optimality of the
set has been obtained in [8]. While the necessary
condition is further derived in Corollary 12. As for odd , the
result of Corollary 12 is new. Clearly, the construction of this
section is a generalization of the one in [8, Sect. V].

Example 6: Let and let . Let be a generator of
defined by and be the generator

of defined by . Then the set
has parameters (5, 16, 1; 9) and consists of the following 16
sequences:

IV. SUMMARY OF CONTRIBUTIONS

In this paper, we released the conditions of the construc-
tion of optimal sets of FH sequences using a subcode of the
Reed–Solomon codes given in [8], and obtained new param-
eters of optimal sets of FH sequences. We described sets of
FH sequences using a class of two-weight irreducible cyclic
codes and proved that the sets of FH sequences are optimal
under certain conditions. As a byproduct, we determined the
weight distribution of a subclass of irreducible cyclic codes.
All the constructions in this paper are either an extension or a
generalization of some of the constructions in [8].
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