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New Families of Codebooks Achieving
the Levenstein Bound

Zhengchun Zhou, Cunsheng Ding, Senior Member, IEEE, and Nian Li

Abstract—In this paper, a construction of codebooks based on
a set of bent functions satisfying certain conditions is introduced.
It includes some earlier constructions of codebooks meeting the
Levenstein bound as special cases. With this construction, two
new families of codebooks achieving the Levenstein bound are
obtained. The codebooks constructed in this paper could have a
very small alphabet size.

Index Terms— Codebook, signal set, packing, Levenstein
bound, bent function.

I. INTRODUCTION

ET C = {cg,...,cn—1}, where each ¢; is a unit norm
1 x K complex vector over an alphabet A. Such a set C is
called an (N, K) codebook (also called signal set). The size of
A is called the alphabet size of C. As a performance measure
of a codebook in practical applications, the maximum cross-
correlation amplitude of an (N, K) codebook C is defined by

Imax (C) = max

0<i<j<N-1

Cicjl‘
where ¢/ stands for the conjugate transpose of the complex
vector ¢. For I, (C), we have the following well known
Welch bound [30].

Lemma 1: For any (N, K) codebook C with N > K,

N —-K
Inax (C) = v/ m (1)

Furthermore, the equality in (1) is achieved if and only if

c-cT‘— N—-K
IV (N =DK

for all pairs (i, j) with i # j.
A codebook achieving the equality in (1) is referred to as
a maximum-Welch-bound-equality (MWBE) codebook [32].

Manuscript received May 15, 2014; revised August 19, 2014; accepted
August 22, 2014. Date of publication September 4, 2014; date of current
version October 16, 2014. Z. Zhou was supported by the Natural Science
Foundation of China under Grant 61201243 and Grant 61373009. C. Ding
was supported by the Research Grants Council, Hong Kong, under Project
600812.

Z. Zhou is with the School of Mathematics, Southwest Jiaotong University,
Chengdu 610031, China, and also with the State Key Laboratory of Network-
ing and Switching Technology, Beijing University of Posts and Telecommu-
nications, Beijing 100876, China (e-mail: zzc@home.swjtu.edu.cn).

C. Ding is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong (e-mail:
cding@ust.hk).

N. Li is with the Department of Mathematics, Hong Kong University of
Science and Technology, Hong Kong (e-mail: nianli.2010@gmail.com).

Communicated by T. Helleseth, Associate Editor for Sequences.

Digital Object Identifier 10.1109/TIT.2014.2353052

The MWBE codebook is also known as an equiangular tight
frame [5]. The construction of MWBE codebooks is equivalent
to line packing in Grassmannian spaces [28]. As pointed out
by Sarwate [27], the construction of an MWBE codebook is
very hard in general. The known MWBE codebooks can be
summarized as follows [8], [15].

1) (N, N) orthogonal MWBE codebooks for any N > 1
[27], [32].

2) (N,N — 1) MWBE codebooks for N > 1 generated
from discrete Fourier transformation matrices [27], [32],
or m-sequences [27].

3) (N, K) MWBE codebooks from conference matrices
(6], [28], where N = 2K =24t or N = 2K = p?+1,
where p is a prime number and d is a positive integer.

4) (N, K) MWBE codebooks from (N, K, A) difference
sets in cyclic groups [32] and abelian groups [7], [8].

5) MWBE codebooks from (2, k, v)-Steiner systems [12].
Besides MWBE codebooks, codebooks nearly meeting
the Welch bound have also received a lot of attention
(see [14], [15], [33], [34], [36], [37], and references therein).

The following lemma shows that the Welch bound cannot
be achieved when N is large.

Lemma 2 ([28]): If N > K(K + 1)/2, no (N,K) real
codebook C can meet the Welch bound of (1); and if N > K2,
no (N, K) codebook C can meet the Welch bound of (1).

When N is large, the following Levenstein bounds are better
than the Welch bound.

Lemma 3 ([17], [20]): For any real-valued codebook C
with N > K(K + 1)/2, we have

3N — K? —2K
Inax (C) = \/m (2)

For any complex-valued codebook C with N > K2, we have

I (€) > 2N —K?-K 3)
T V(K + DN - K)
Constructing codebooks achieving the Levenstein bound
looks very hard in general. The known codebooks meeting
the Levenstein bound are listed as follows.

1) (2% 4 2m 2™M) codebooks generated from Kerdock
codes [2], [31], where m is even. This class of
real-valued codebooks is optimal with respect to the
Levenstein bound of (2) and has alphabet 4.

2) (p*™ + p™, p™) codebooks generated from perfect
nonlinear functions [9], [31], where p is an odd prime.
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This class of codebooks is optimal with respect to the
Levenstein bound of (3) and has alphabet size p + 2.

Codebooks meeting the Welch bound or the Levenstein
bound are preferred in many practical applications, for
example, unitary space-time modulations, multiple descrip-
tion coding over erasure channels, direct spread CDMA
communications, and coding theory [2], [25]. According to
Sarwate [27], it is desirable to employ codebooks with a small
alphabet size in applications.

In this paper, we give a construction of codebooks using a
set of bent functions satisfying certain conditions. It includes
aforementioned constructions of codebooks meeting the
Levenstein bound as special cases. With this construction, two
new families of codebooks achieving the Levenstein bounds
are obtained. The codebooks constructed in this paper could
have a very small alphabet size.

This paper is organized as follows. Section II presents
preliminary notation and results which will be needed in
subsequent sections. Section III presents a construction of
codebooks from sets of bent functions meeting certain
conditions. Section IV introduces two new families of code-
books meeting the Levenstein bound. Section V concludes this
paper and makes some comments.

II. PRELIMINARIES

Throughout this paper, we adopt the following notation
unless otherwise stated:

e p is a prime, m is a positive integer.

e ) is a primitive p-th complex root of unity.

o For any positive integer £|m, Tr}' (x) is the trace function

from GF(p™) to GE(p?).

Let f :
m variables. It is said to be a bent function if |f(/1)| =p
for all 1 € GF(p™), where

f(i)z Z wpf(X)—Tr'l"(M)
xeGF(p™)

GF(p™) — GF(p) be a p-ary function in
m/2

is called the Walsh spectrum of f at the point A.

A binary bent function (i.e., p = 2) is usually called
a Boolean bent function. It is well known that a binary
bent function only exists for even m [26], while for odd p,
p-ary bent functions exist for both even and odd m [19]. Bent
functions have been extensively studied for their numerous
applications in cryptography, coding theory, combinatorics,
and other fields. We refer to [4] and [19] for more information
on bent functions.

Identifying GF(p™) with the m-dimensional GF(p)-vector
space GF(p)™, a function f from GF(p™) to GF(p) can
be regarded as an m-variable polynomial on GF(p). The
former is called a quadratic form over GF(p) if the latter is a
homogeneous polynomial of degree two:

fx,xo, .o, xm) = z aijxix;
I<i<j<m

where a;; € GF(p), and we use a basis {f1, f2, ..., B} of
GF(p™) over GF(p) and identity x = >/" | x;f; with the
vector (x1, X2, ...,%,) € GF(p)™. The rank of the quadratic
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form f(x) is defined as the codimension of the GF(p)-vector
space

V={yeGF(p")| fx+y)— flx)— f(y)=0
for all x € GF(p™)}.

That is |V| = p™~" where r is the rank of f(x). Quadratic
forms over finite fields have been extensively studied. They can
be used to construct bent functions [21], [35], sequences with
low correlation [1], [16], [18], [29], and error-correcting codes
with excellent minimal distance [10], [24]. The interested
reader is referred to [23] for a detailed discussion of the theory
of quadratic forms over finite fields.

Lemma 4 ([23]): Let f(x) be a quadratic form from
GFE(p™) to GF(p) with full rank m. Then

S ) =Tr} (Ax)
Z a’px ne =p"?
xeGF(p™)

for any A € GF(p™).
Lemma 4 tells us that f(x) is a bent function if it is a
quadratic form from GF(p™) to GF(p) with full rank.

III. A CONSTRUCTION OF CODEBOOKS FROM
SETS OF BENT FUNCTIONS

In this section, we shall present a generic construction
of codebooks. With this construction, both known and new
optimal codebooks meeting the Levenstein bound can be
generated.

Throughout this section, we use &, &1, ..., pm_1 to denote
all of the elements of the finite field GF(p™), and use
Epm to denote the set formed by the standard basis of the
p™-dimensional Hilbert space:

(1,0,0,...,0,0),
0,1,0,...,0,0),
(0,0,0,...,0,1).

Theorem 1: Let F be a set of bent functions from GF(p™)
to GF(p) satisfying the following properties:

1. each function in F is bent; and
2. the difference of any two distinct functions in F is
also bent.

Construct a codebook Cr as

er= U s UsUs

feF

“)

where
Tr' (Ado)  Trf' (A<1)

1
0= | G 07T,
3 ,a);l;rl (/uézpmfl)) ‘l c GF(pm)]

and for each f € F,

S I 1 (f(§0)+Tr’1”(i§0) FEDHTE (&)
= @p » @

P >

3

ey

o Cm DT ufpm_.))
P

= GF(pm)].
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Then Cr is a ((|F| + 1) - p™ + p™, p™) codebook with
Imax (CF) = # and alphabet size p + 2.

Proof: The conclusion follows directly from the definition
of Cx, and the properties of bent functions, trace functions,
and an orthogonal basis. ]

The following theorem shows that the codebook Cr in
Theorem 1 could meet the Levenstein bound provided that
the function set F has an appropriate family size.

Theorem 2: Let Cr be the codebook in Theorem 1. Then
we have the following:

1. Cr is an optimal (2*"~1 42" 2™) codebook meeting the

bound of (2) if p=2 and |F| =2""1 —1; and

2. Cr is an optimal (p*™ + p™, p™) codebook meeting the

bound of (3) if p is an odd prime and |F| = p™ — 1.

Proof: When p = 2 and |F| = 2™~! —1, accord-
ing to Theorem 1, Cr is a (22"~ 4+ 2™, 2™) codebook
with Inax(CF) = ——. Note that the alphabet of Cr is

Jam”
{iﬁ,o, 1}. Thus each vector in Cr is real-valued. Take

N =22m=1 4 2m and K = 2™. The Levenstein bound of (2)
then becomes

\/ 3N—K2-2K 1 1
K+DWN-K) VK V2
Therefore the codebook Cr meets the Levenstein bound
of (2) and is thus optimal. Similarly, When p is odd and
|F| = p™ — 1, we can prove that Cx meets the Levenstein
bound of (3) and is thus optimal. [ |

It can be seen from Theorem 2 that the key to the construc-
tion of an optimal codebook is to obtain a set of bent functions
satisfying aforementioned properties with family size 2”1 —1
for p =2 and p™ — 1 for odd p.

We now point out that some earlier optimal constructions
can be viewed as special cases of Theorem 1.

« Let p =2 and m be even. For any a € GF(2"~1)*, define

a function from GF(2™) to GF(2) as

fa(x) = R(ax)) + x2Te ! (axy)

where we identify GF(2™) with GF(2"~!) x GF(2), x =
(x1, x2) with x; € GF(2"~!) and x, € GF(2), and R(x)
is a function from GF(2"~!) to GF(2) given by

(m—2)/2 ,
Rax)= > T 'af™h. 5)
i=1

It turns out (see [24, Th. 18, p. 460]) that each f,(x) is a
bent function, and for each nonzero a # b, the difference
fa(x) — fp(x) is also a bent function. Define

F = {fa(x)la € GF2"H*}.

Note that F has family size 2"~ — 1. The set C is an
optimal (2%~ 4 2™ 2™) codebook. This class of real-
valued codebooks are exactly the ones constructed from
Kerdock codes by Calderbank et al. [2].

o Let p be an odd prime. A function f(x) from GF(p™)
to GF(p™) is referred to as perfect nonlinear if

max max |[{x eGF(p™)|f(x+a)—f(x)=b}|=1.

aeGF(p™)*beGF(p™)
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Let 7 (x) be a perfect nonlinear function from GF(p™)
to itself. It is easily checked that

F = (Tr"(ar (x)) : a € GF(p™)*}

is a set of bent functions from GF(p™) to GF(p), and
the difference of any two distinct functions in F is also
bent. The codebook Cx generated from F is thus an
optimal (p*" + p™, p™) codebook. When 7 (x) = x2, the
codebook Cx was proposed by Wootters and Fields [31].
The codebooks for general perfect nonlinear function
7 (x) were suggested by Ding and Yin in [9].

IV. Two NEw FAMILIES OF CODEBOOKS MEETING THE
LEVENSTEIN BOUNDS

In this section, we present two new families of codebooks

meeting the Levenstein bound by employing the construction
in Theorem 1.

A. The First Family of Optimal Codebooks

In this subsection, we present a family of real-valued
codebooks with alphabet size 4.

Theorem 3: Let p =2, m be even with m — 1 = {e for two
positive integers € and e, and k be any positive integer with
ged(k,m — 1) = 1. Let y be a fixed element in GF(2°) with
y # 1. Define a set of functions from GF(2™) to GF(2) as

F = {fa(x)la € GF2"H*).
Herein,
fa(x) = P(ax1) + Q(yax1) + 2Tt (axy) (©6)

where we identify GF(2™) with GF(2"™') x GF(2), x =
(x1,x2) with x; € GFQ2™ ") and x» € GF(2), P(x1) and
Q(x1) are respectively given by

(m—2)/2
Pap= > TlaH) @
i=1
and
(t-1)/2
oGy = > T, @®)

i=1

Let Cr be the codebook defined in (4). Then Cr is an optimal
real-valued (2°"~1 4+ 2™, 2™) codebook with alphabet size 4.

Remark 1: When k = 1, P(x;) = R(xy), where R(xy) is
defined by (5). Thus, when k = 1 and y = 0, the codebook Cr
in Theorem 3 is exactly the codebook from the Kerdock codes
reported in [2].

In order to prove Theorem 3, we need the following lemmas.

Lemma 5 ([18],[24]): For the functions P(x1) and Q(x;)
defined by (7) and (8), we have

P(x1) + P(z1) + P(x1 +z1) = TP (2 (ey + T (x)
and

Q1) + Q1) + Q(xt +21) = Trj' ™ (@1 (0 + Tl (k).
Lemma 6: Let f,(x) be the function defined by (6). Then
fa(x) is a bent function for any a € GF(2"™~1)*,
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Proof: Note that f,(x) is a quadratic form in m variables
for any nonzero a. Thus it is sufficient to prove that f,(x) has
full rank m. To this end, we need to consider the associated
symplectic form of f,(x) which is given by

Bfa(x» 7) = fa(x) + fa(Z) + fa(x +2)
= P(ax1) + P(az1) + P(a(xi +z1)) + Q(y ax1)
+Q(yazi) + Q(ralxi +21)) + 2T~ (ax1)

+zzTr’1”_1(az1) + (x2 + zz)Tr’I”_l(a(xl +21))
= Tr’l"fl(zl(aTr’I"fl(am) +a*(1 4 7%)x
+ay T Yax)) + axp)) + 2 Tr|'™ Yax1) (9)

where x = (x1,x2) € GF(Z'"*I) x GF(2), z = (z1,22) €
GF(2" ') x GF(2), and the last equality follows from
Lemma 5. By (9), it is clear that By, (x,z) = 0 for all z
if and only if

aTr]'™ Yax))+a*(1+y2)x1+ay T
Try'™ Yax)) =0

"1 (ax))+axy =0,

(10)

which implies that

(14 yHax; + y*Te) " (ax)) + x2 = 0.

It then can be deduced that ax; € GF(2¢) since y € GF(2¢)
and x, € GF(2). Thus Trg”_l(axl) = axlTrZ'_l(l) = ax|
since m — 1 is odd. It then follows from (10) that ax;+x, =0
and thus ax; € GF(2). By the second equation of (10), we
have xo» = ax; = Tr'lnfl(axl) = 0. Thus Equation (10) has
only one solution x = (x1,x2) = 0 in GF(2"). This means
that the quadratic form f,(x) has full rank m and is thus a
bent function. The proof of this lemma is completed. ]
Lemma 7: Let f,(x) be the function defined by (6). Then
fa(x) — fu(x) is a bent function for any a # b € GF(2"~1)*,
Proof: Let g p)(x) = fu(x) — fp(x). Note that g(4 ) (x)
is a quadratic form in m variables for any a # b. We only need
to prove that g, 4)(x) has full rank m for any given a # b.

A routine computation based on (9) together with the the fact
y € GF(2°) shows that

Bgs (X, 2) = By, (x,2) + By, (x, 2)
=Tl 1(zl(aTr'" 1(a)cl)—}-bTrm Y(bx1)
+ay 2Tr1 (axy) + by 2Tr2” Y(bx1)
+ @+ bH (A + yHx1 + (a + b)x2))
+ 22T (ax1 + bx1) (11)
where x = (x,x2) € GFQ" Y x GFQ), z =
(z1,22) € GF(2"1) x GF(2). It then follows from (11) that
Bg(,»(x,2) = 0 for all z € GF(2") if and only if
aTr’I”_1 (ax1) + bTr’I”_1 (bx1) + ay>Tr" 1 (ax))
+ by 2Tem N (bx)) + (@2 +b>) 1+ 2)x1 +(a+b)x2 =0,
Tr'lnf1 (ax) +bx1) =0
(12)
which leads to
(a+b)Tr"™ Yax)) +ay’T " (axy) + bszr’" L(bx1)

+ (a? +b2)(1+y2)x1 + (a4 b)xy = 0. (13)
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Let u = Tré”’l(axl) and v = Tr?’l(bxl). It is clear that
Tr$ () = Tr{(v) due to the second equation in (12). In terms
of u and v, (13) becomes

(@ + b)Tr§ (u) + ayzu + by 20+ (a2 + bz)(l + yz)xl

+@+b)x =0 (14)
which yields
_(a+D)Tr{(u) + ay?u+by%v + (a + b)xs (1)
B (a® +b2)(1+y2) '
Let ¢ = Tr)'~ 1( 5)- We have
Trmil(m) = 1 + c,
1
1= 1<az+,,2> 6
() = 1+ e,
er 1((12+b2) _C+C

Note that u = Trg”_l(axl) and v = Trg”_l(bxl). It then
follows from (15) and the identities in (16) that

p2 @+ 0)e” + (%0 + Te{ () + x2)e = (1 +y P,
y2u+0)e?+(y2u +Tr$ (u)+x2)c =0 +Trf (u) + x2.

If ¢ = 0, it is clear that u = 0, v + xp = 0, and thus
v € GF(2). Recall that Tr{ (1) = Tr{(v) and e is odd, we have
v = Tr{(v) = Tr{(u) = 0 and x = 0. If ¢ # 0, adding the
two equations in (17), we have

A7)

A+ yDHu+o + Trf (u) + x2
" .

y2(u+v) =

(18)

Using the right hand of this equation to substitute y (u + v)
in the first equation of (17), we arrive at

(a+ yz)u + 0 + Trf(u) + x2)c + (y 20+ Tr (1) + x2)c
=1+

which leads to
A+ 9uc+ 1+ y>oec=1+yHu.

Recall that y # 1, thus 1+ y2 % 0. It then follows from (19)
that

19)

(c+ Du+vc=0.
Similarly, using the right hand of (18) to substitute y >(u + v)

in the second equation of (17), one has

cu+(c+1Do=c¢

where € = Tr{(u) + x2 € GF(2). Therefore we obtain the
following system of equations:

(c+Du+co =0,
cu+(c+ 1o =¢e.

If ¢ = 1, we immediately have v = 0,u = ¢ = x». Thus
x2 = u = Tr{(u) = Tr{(v) = 0. On the other hand, for ¢ # 1,
we have

u=ec
v==¢€(c+1).
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Thus v = u+-e. It follows again from the fact Tr{ (1) = Tr{(v)
that € = 0 since € € GF(2). This means that u = v = 0 and
xp =0.

It can be seen from the analysis above that u = v = 0 and
xp = 0 for any ¢ (i.e., for any a # b). By (15), we have x; = 0.
Thus Equation (12) has only one solution x = (x1,x3) = 0
in GF(2™). This means that f, — f; is bent and finishes the
proof of this lemma. ]

Applying Lemmas 6 and 7, and Theorem 2, we immediately
get the conclusion in Theorem 3.

Example 1: Let m = 10, e = 3, £ = 3, k = 1. Then
P(x1) in (7) and Q(x1) in (8) are respectively given by
P(x1) = Tr?(xl3 + xij + x19 + x117) and Q(x1) = Tr?(xlg).
By Theorem 3, for any given element y in GF(2%) with
y # 1, Cr is an optimal (2 + 219, 219) codebook with
Inax (Cr) = % This example is also verified by a computer
program.

B. The Second Family of Optimal Codebooks

The second family of codebooks is complex-valued and is
based on the Helleseth-Gong function [13]. Before introducing
this family of codebooks, we first recall the definition of the
Helleseth-Gong function.

Let p be an odd prime. The Helleseth-Gong (HG) func-
tion H (x) from GF(p™) to GF(p) is defined by

€
H() =T D ugx 04012 (20)
i=0

where m = (2€ + 1)k, 1 < s < 2( is an integer such that
ged(s, 20+ 1) =1, bg = 1, bjy = (—1)" and b; = byry1_;
fori =1,2,...,¢, up = bp/2 = (p + 1)/2, and u; = by;
fori = 1,2,...,¢. Herein, all the indexes of b’s are taken

mod (2¢ + 1). From the HG function H(x), we can get a
set of bent functions with desirable properties. The following
result was proved by Jang et al. [16, p. 1842].

Lemma 8: Let H(x) be the HG function defined by (20).
Then for any a € GF(p™)*, H(ax?) is a bent function.
Furthermore, for any a # b € GF(p™)*, H(ax?) — H (bx?)
is also a bent function.

Theorem 4: Let F be a set of functions from GF(p™) to
GF(p) defined by

F = {H(ax?)|a € GF(p™)*}

where H (x) is the HG function in (20). Then Cx is an opti-
mal complex-valued (p*" + p™, p™) codebook with alphabet
size p + 2.
Proof: The conclusion follows directly from Lemma 8
and Theorem 1. [ ]
Example 2: Let p = 3 and m = 5, and the HG function
in (20) be given by H(x) = 2Tr?(x) + 2Tr?(x5) + Tr?(x‘”).
By Theorem 4, Cr is an optimal (3'° 433, 3%) codebook with
Imax (CF) = ¢%—5 This example is also verified by a computer
program.
Example 3: Let p = 5 and m = 3, and the HG func-
tion in (20) be given by H(x) = 3Tr?(x) + 4Tr%(x13).
By Theorem 4, Cr is an optimal (5° + 5°,53%) codebook
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with Inax (Cr) = % This example is also verified by

53
a Magma program.

V. CONCLUDING REMARKS

In this paper, we proposed a construction of codebooks
with sets of bent functions satisfying certain conditions. The
codebooks generated by the construction can meet the
Levenstein bound provided that the underlying sets of bent
functions have appropriate family size. By introducing two
classes of such sets of bent functions, we obtained two new
families of optimal codebooks. It would be possible to search
for more sets of bent functions leading to more optimal
codebooks. The reader is invited to join the adventure.

Finally, we would mention an application of codebooks
achieving the Levenstein bound in compressed sensing. Com-
pressed sensing is a novel sampling theory, which provides
a fundamentally new approach to data acquisition. A central
problem in compressed sensing is the construction of the sens-
ing matrix. For more information on the theory of compressed
sensing, the reader is referred to Donoho [11] and Candes and
Tao [3]. Very recently, Li and Ge [22] found that codebooks
achieving the Levenstein bound can be used to construct deter-
ministic sensing matrices with smallest coherence. The numer-
ical experiments conducted in [22] showed that the sensing
matrices from some known codebooks meeting the Levenstein
bound have a good performance. It would be interesting to
investigate the application of the new families of codebooks
meeting the Levenstein bound presented in this paper using
the framework developed in [22].
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