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Parameters of Several Classes of BCH Codes
Cunsheng Ding, Senior Member, IEEE

Abstract— Because of their efficient encoding and decoding
algorithms, cyclic codes—an interesting class of linear codes—
are widely used in communication systems, storage devices, and
consumer electronics. BCH codes form a special class of cyclic
codes, and are usually among the best cyclic codes. A subclass
of good BCH codes is the narrow-sense primitive BCH codes.
However, the dimension and minimum distance of these codes
are not known in general. The main objective of this paper is
to study the dimension and minimum distances of a subclass
of the narrow-sense primitive BCH codes with design distance
δ = (q − �0)qm−�1−1 − 1 for certain pairs (�0, �1), where
0 ≤ �0 ≤ q − 2 and 0 ≤ �1 ≤ m − 1. The parameters of other
related classes of BCH codes are also investigated, and some open
problems are proposed in this paper.

Index Terms— BCH codes, cyclic codes, linear codes.

I. INTRODUCTION

THROUGHOUT this paper, let q be a power of a prime p.
A linear [n, k, d] code C over GF(q) is a k-dimensional

subspace of GF(q)n with minimum (Hamming) distance d .
A linear [n, k] code C over GF(q) is called cyclic if

(c0, c1, · · · , cn−1) ∈ C implies (cn−1, c0, c1, · · · , cn−2) ∈ C.
By identifying any vector (c0, c1, · · · , cn−1) ∈ GF(q)n with

c0 + c1x + c2x2 + · · · + cn−1xn−1 ∈ GF(q)[x]/(xn − 1),

any code C of length n over GF(q) corresponds to
a subset of the quotient ring GF(q)[x]/(xn − 1).
A linear code C is cyclic if and only if the corresponding
subset in GF(q)[x]/(xn − 1) is an ideal of the ring
GF(q)[x]/(xn − 1).

Note that every ideal of GF(q)[x]/(xn − 1) is principal.
Let C = 〈g(x)〉 be a cyclic code, where g(x) is monic
and has the smallest degree among all the generators of C.
Then g(x) is unique and called the generator polynomial, and
h(x) = (xn − 1)/g(x) is referred to as the parity-check
polynomial of C.

Let m > 1 be a positive integer and let n = qm −1. Let α be
a generator of GF(qm)∗, which is the multiplicative group of
the finite field GF(qm). For any i with 1 ≤ i ≤ qm − 2, let
mi (x) denote the minimal polynomial of αi over GF(q). For
any 2 ≤ δ < n = qm − 1, define

g(q,m,δ)(x) = lcm(m1(x), m2(x), · · · , mδ−1(x)),

where lcm denotes the least common multiple of these min-
imal polynomials mi (x). Let C(q,m,δ) denote the cyclic code
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of length n with generator polynomial g(q,m,δ)(x). This code
C(q,m,δ) is called the narrow-sense primitive BCH code with
design distance δ. By definition, the generator polynomial
g(q,m,δ)(x) of the BCH code C(q,m,δ) has δ − 1 consecutive
roots αi for all 1 ≤ i ≤ δ − 1. Hence, by the BCH bound
[15, Th. 5.1.1], the minimum distance of the code C(q,m,δ)

is at least δ. This is why δ is called the design distance
of the code C(q,m,δ). Binary BCH codes were discovered
around 1960 by Hocquenghem [14] and independently by
Bose and Ray-Chaudhuri [6], [7], and were generalized to all
finite fields by Gorenstein and Zierler [13].

It is well known that the codes C(q,m,δ) and C(q,m,δ′) may be
identical for two different δ and δ′. The largest design distance
of a BCH code is called the Bose distance of the code and is
denoted by dB .

The cyclic codes C(q,m,δ) are treated in most books on
coding theory. However, the following questions about the
codes C(q,m,δ) are still open in general.

1) What is the dimension of C(q,m,δ)?
2) What is the Bose distance (i.e., the maximum design

distance) of C(q,m,δ)?
3) What is the minimum distance d (i.e., the minimum

weight) of C(q,m,δ)?

The dimension of C(q,m,δ) is known when δ is small, and
is open in general. There are lower bounds on the dimension
of C(q,m,δ), which are very bad in many cases. The minimum
distance d of C(q,m,δ) is known only in a few cases. Only
when δ is very small or when C(q,m,δ) is the Reed-Solomon
code, both the dimension and minimum distance of C(q,m,δ) are
known. Hence, we have very limited knowledge of the narrow-
sense primitive BCH codes, not to mention BCH codes in
general. Thus, BCH codes are far from being well understood
and studied.

In the 1990’s, there were a few papers on the narrow-sense
primitive BCH codes [2], [3], [9], [20]. However, in the last
eighteen years, little progress on the study of these codes
has been made. As pointed out by Charpin in [10], it is a
well-known hard problem to determine the minimum distance
of narrow-sense BCH codes.

The major objective of this paper is to determine the
dimension and minimum distance of the codes C(q,m,δ) with
design distance δ = (q − �0)qm−�1−1 − 1 for certain pairs
of (�0, �1), where 0 ≤ �0 ≤ q − 2 and 0 ≤ �1 ≤ m − 1.
The parameters of other related classes of BCH codes will
also be investigated. A number of open problems about the
narrow-sense primitive BCH codes will be proposed.

To investigate the optimality of the BCH codes studied
in this paper, we compare them with the tables of
best linear codes known maintained by Markus Grassl
at http://www.codetables.de, which is called the
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Database subsequently. We will also compare these
BCH codes with the tables of best cyclic codes documented
in the monograph [11].

II. KNOWN RESULTS ABOUT THE CODES C(q,m,δ)

In order to give a well-rounded treatment of the
codes C(q,m,δ), we summarize known results on the dimension
and minimum distance of the codes in this section.

A. Known Results on the Dimension of C(q,m,δ)

In general, for the dimension k of the code C(q,m,δ) we have
the following lower bounds [15, p. 170]:

1) k ≥ qm − 1 − m(δ − 1), and
2) k ≥ qm − 1 − m(δ − 1)/2 if q = 2 and δ is odd.

When δ is getting large, these two bounds are very bad as they
become very small or even negative.

When m = 1, the code C(q,m,δ) is a Reed-Solomon code
and its dimension is known.

When δ is small enough, the dimension k of the
code C(q,m,δ) is given in the following theorem [20].

Theorem 1: Let δq and δ0 be the unique integers such that
δ − 1 = δqq + δ0, where 0 ≤ δ0 < q.

If δ − 1 ≤ q	m/2
, then the dimension k of the code C(q,m,δ)

is given by

k = qm − 1 − m(δq(q − 1) + δ0).

Let T = 2qm/2 −1 for even m. If m is even and qm/2 +1 ≤
δ − 1 ≤ T + 1, then the dimension k of the code C(q,m,δ) is
given by

k = qm − 1 − m(δq(q − 1) + δ0) + m

2
.

In the special case δ = qt , Mann derived the following
result [18].

Theorem 2: The dimension k of the code C(q,m,qt ) is
equal to

qm − 1 −
� m

r+1 �∑

i=1

(−1)i−1 m(q − 1)i

i

(
m − ir − 1

i − 1

)
qm−i(r+1),

(1)

where r = m − t .
A rent result is the following [12].
Theorem 3: Let m ≥ 4. Then the dimension of the BCH

code C(q, m, qm−2+1) is equal to
(

q − 1 − √
q2 + 2q − 3

2

)m

+
(

q − 1 + √
q2 + 2q − 3

2

)m

.

B. Known Results on the Minimum Distance of C(q,m,δ)

According to the BCH bound, the minimum distance d of
the code C(q,m,δ) satisfies

d ≥ dB ≥ δ,

where dB denotes the Bose distance of the code C(q,m,δ).
In some cases the difference d − δ is very small or zero.
In many cases the difference d − δ is very large and in such
cases the design distance does not give much information on

the minimum distance d , but the Bose distance dB may be very
close to the minimum distance. In fact, we have the following
conjecture [10].

Charpin’s Conjecture: The minimum distance d ≤ dB + 4
for the narrow-sense primitive BCH codes.

In view of this conjecture, it is very useful to determine the
Bose distance for the narrow-sense primitive BCH codes.

Given a design distance δ, it is a difficult problem to
determine the Bose distance dB , not to mention the minimum
distance d . However, in some special cases the minimum
distance d is known. Below we summarize known results
regarding the minimum distance of BCH codes.

The first result on the minimum distance is the
following [17, p. 260].

Theorem 4: For any h with 1 ≤ h ≤ m−1, a primitive BCH
code of length n = qm − 1 and design distance δ = qh − 1
has minimum distance d = qh − 1.

The next result is due to Kasami and Lin [16]
Theorem 5: For binary primitive BCH codes of length

n = 2m − 1 and Bose distance dB = 2m−1−s − 2m−1−s−i − 1
with 1 ≤ i ≤ m − s −2 and 0 ≤ s ≤ m −2i , we have d = dB.

The following result was developed by Peterson [19].
Theorem 6: Suppose a narrow-sense primitive BCH code

over GF(q) with Bose distance δ has d = δ, and δ + 1 is
divisible by p, the characteristic of GF(q). Then the narrow-
sense primitive BCH code over GF(q) with Bose distance
dB = (δ + 1)qm−h − 1, where h ≥ δ, has minimum
distance dB.

A proof of the following theorem can be found
in [5, p. 247].

Theorem 7: Let C be a narrow-sense BCH code of length
n with design distance δ over GF(q). If δ divides n, then the
minimum distance d = δ.

The following result is sometimes useful in determining the
minimum distance of the codes C(q,m,δ) [17, p. 259].

Theorem 8: The narrow-sense primitive binary BCH code
C(2,m,δ) with design distance δ = 2t +1 has minimum distance
d = δ, provided that

•
∑t+1

i=0

(2m−1
i

)
> 2mt or

• m > 1 + log2((t + 1)!).
C. Cases When Both the Dimension and Minimum
Distance of C(q,m,δ) Are Known

Both the dimension and minimum distance of the Reed-
Solomon code C(q,1,δ) are known. In addition we have the
following cases.

• When δ = 3 and q = 2, C(q,m,δ) is the binary Hamming
code with parameters [2m − 1, 2m − 1 − m, 3] and
generator polynomial m1(x), where m ≥ 3.

• When δ = 5 and q = 2, C(q,m,δ) has parameters
[2m − 1, 2m − 1 − 2m, 5] and generator polynomial
m1(x)m3(x), where m ≥ 4.

• When δ = 7 and q = 2, the code C(q,m,δ) has parameters
[2m − 1, 2m − 1 − 3m, 7] and generator polynomial
m1(x)m3(x)m5(x), where m ≥ 5.

• When δ = 3 and q = 3, C(q,m,δ) has parameters
[3m − 1, 3m − 1 − 2m, 4] and generator polynomial
m1(x)m2(x), where m ≥ 3.
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In all these cases, the conclusion on the dimension of C(q,m,δ)

follows from Theorem 1 and that on the minimum distance
comes from the BCH bound and Theorem 8. When 1 ≤ δ < 9
and q is odd, it is possible to find out both the dimension and
minimum distance of the code C(q,m,δ). However, it looks hard
to determine both the dimension and minimum distance of the
code when δ ≥ 11.

The following was recently proved in [12].
Theorem 9: Let m ≥ 4, t be any integer with 1 ≤ t ≤ m−2,

and let h be any integer with 0 ≤ h ≤ �(qt − 1)/qm−t� + 1.
The code C(q, m, qt+h) has parameters [qm − 1, k, d], where

d ≥ dB =
⌊

n − 1

qm−t − 1

⌋
+ 1

and the dimension k is given in
• Theorem 1 when t ≤ 	m/2
;
• Theorem 2 when t > 	m/2
; and
• also Theorem 3 when t = m − 2.
If t ≡ 0 (mod m − t), the minimum distance d of the code

C(q, m, qt+h) is given by

d = dB = qm − 1

qm−t − 1
.

If m ≡ 0 (mod 2t), then

d = dB = δ = qt + 1.

III. THE BCH CODES WITH δ = (q − �0)qm−�1−1 − 1,
WHERE 0 ≤ �0 ≤ q − 2 AND 0 ≤ �1 ≤ m − 1

The q-cyclotomic coset modulo n containing i is defined by

Ci = {iq j mod n : 0 ≤ j < � j },
where � j is the smallest positive integer such that q� j i ≡ i
(mod n), and is called the size of Ci . The smallest integer in
Ci is called the coset leader of Ci .

Throughout this section, let

δ = (q − �0)q
m−�1−1 − 1, (2)

where 0 ≤ �0 ≤ q − 2 and 0 ≤ �1 ≤ m − 1. We investigate
the parameters of the code C(q,m,δ) in this section.

A. The Codes C(q,m,δ) in Some General Cases

Theorem 10: The code C(q,m,δ) has length n = qm − 1,
minimum weight d = (q − �0)qm−�1−1 − 1 and dimension

k ≥
�∑

i=0

m∑

j=0

(−1) j
(

m

j

)(
i − jq + m − 1

i − jq

)
, (3)

where � = �1(q − 1) + �0 < q(m − 1).
Proof: In order to prove this theorem, we need to intro-

duce the punctured generalized Reed-Muller codes first. Let q
be a prime power as before. For any integer j = ∑m−1

i=0 jiqi ,
where 0 ≤ ji ≤ q − 1 for all 0 ≤ i ≤ m − 1 and m is a
positive integer, we define

ωq ( j) =
m−1∑

i=0

ji , (4)

where the sum is taken over the ring of integers.

Let � be defined as in this theorem. The �-th order punctured
generalized Reed-Muller code Rq(�, m)∗ over GF(q) is the
cyclic code of length n = qm − 1 with generator polynomial

gR(x) :=
∏

1≤ j≤n−1
ωq ( j)<(q−1)m−�

(x − α j ), (5)

where α is a generator of GF(qm)∗. It is easily seen that gR(x)
is a polynomial over GF(q).

By definition, we have

(q − 1)m − � = (m − �1 − 1)(q − 1) + (q − 1 − �0).

Let h be the smallest integer with ωq(h) = (q −1)m −�. Then

h = (q − 1 − �0)q
m−�1−1 +

m−�1−2∑

i=0

(q − 1)qi

= (q − �0)q
m−�1−1 − 1.

By the construction of the code Rq (�, m)∗, every integer u
with 0 < u < h satisfies ωq(u) < (q − 1)m − �. Hence,
the elements α1, α2, . . . , αh−1 are all roots of the generator
polynomial gR(x) of (5). It then follows from the definition of
the code C(q,m,δ) that C(q,m,δ) contains the punctured general-
ized Reed-Muller code Rq(�, m)∗ as a subcode. By the BCH
bound, the minimum weight d of the code C(q,m,δ) is at least
(q − �0)qm−�1−1 − 1, which is exactly the minimum weight
of the code Rq (�, m)∗ [1, Th. 5.5.2]. The desired conclusion
on the minimum weight of the code C(q,m,δ) then follows.

It was proved in [1, Th. 5.4.1] that the dimension of the
code Rq(�, m)∗ is equal to

�∑

i=0

m∑

j=0

(−1) j
(

m

j

)(
i − jq + m − 1

i − jq

)
. (6)

The lower bound of (3) on the dimension of the code C(q,m,δ)

then follows. This completes the proof of this theorem. �
Example 1: Let (q, m) = (3, 3) and let (�0, �1) = (1, 1).

Let α be a generator of GF(33)∗ with α3 + 2α + 1 = 0. Then
� = 3 and δ = 5. The two codes C(3,3,5) and R3(3, 3)∗ are
identical, and have parameters [26, 17, 5].

Example 2: Let (q, m) = (3, 3) and let (�0, �1) = (0, 1).
Let α be a generator of GF(33)∗ with α3 + 2α + 1 = 0. Then
� = 2 and δ = 8. The two codes C(3,3,8) and R3(2, 3)∗ have
parameters [26, 11, 8] and [26, 10, 8], respectively.

Example 3: Let (q, m) = (3, 4) and let (�0, �1) = (1, 1).
Let α be a generator of GF(34)∗ with α4 +2α3 +2 = 0. Then
� = 3 and δ = 17. The two codes C(3,4,17) and R3(3, 3)∗ have
parameters [80, 38, 17] and [80, 31, 17], respectively.

When (�0, �1) = (1, 0), � = 1. In this special case,
the equality in (3) holds. In general, the dimension k of the
code C(q,m,δ) is more than the lower bound of (3). Thus, the
BCH code C(q,m,δ) is in general much better than the corre-
sponding punctured generalized Reed-Muller code Rq (�, m)∗
whose dimension is equal to the lower bound of (3).

We would like to determine the dimension of C(q,m,δ). This
can be done for certain cases.

Theorem 11: If δ − 1 ≤ q	m/2
, then the code C(q,m,δ) has
length n = qm −1, minimum weight d = (q −�0)qm−�1−1 −1
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and dimension

k =qm − 1 − m
(
(q − 1)

[
(q − �0)q

m−�1−2−1
]
+q − 2

)
.

(7)
Proof: According to (2), we have

δ − 1 = (q − �0)q
m−�1−1 − 2

= [(q − �0)q
m−�1−2 − 1]q + q − 2.

The desired conclusion on the dimension then follows from
Theorem 1. The minimum distance d was already determined
in Theorem 10. �

The following result follows similarly from
Theorems 1 and 10.

Theorem 12: If m is even and

qm/2 + 2 ≤ δ ≤ 2qm/2 + 1,

then the code C(q,m,δ) has length n = qm −1, minimum weight
d = (q − �0)qm−�1−1 − 1 and dimension

qm − 1 − m
(
(q − 1)

[
(q − �0)q

m−�1−2 − 1
]

+ q − 2
)

+ m

2
.

B. The Codes C(q,m,δ) in the Case That � = 1

Recall that � = �1(q − 1) + �0, where 0 ≤ �0 ≤ q − 1.
Hence in this case we have

(�1, �0) =
{
(1, 0) if q = 2,
(0, 1) if q > 2,

and

δ = (q − 1)qm−1 − 1

= (q − 2)qm−1 + (q − 1)

m−2∑

i=0

qi . (8)

Our main result of this subsection is the following.
Theorem 13: The two cyclic codes C(q,m,(q−1)qm−1−1)

and Rq(1, m)∗ are identical, and have parameters
[qm − 1, m + 1, (q − 1)qm−1 − 1].

Proof: It is well known that Rq(1, m)∗ has parameters
[qm − 1, m + 1, (q − 1)qm−1 − 1]. Note that C(q,m,δ) contains
Rq(1, m)∗ as a subcode. We need only to prove that C(q,m,δ)

has dimension m + 1.
Let Ci denote the q-cyclotomic coset modulo n containing

i for any i with 0 ≤ i ≤ n − 1, where n = qm − 1.
We need to prove that the set ∪δ−1

i=1 Ci has exactly n − (m + 1)
elements. Equivalently, we need to prove that the following
three statements are true:

(P1) ∪δ
i=1Ci = {1, 2, 3, . . . , n − 1}.

(P2) |Cδ| = m.
(P3) δ �∈ ∪δ−1

i=1 Ci .

We first prove that Property P1 holds. Note that every
integer i with 1 ≤ i ≤ n − 1 has the following q-adic
expression

i = i0qe0 + i1qe1 + . . . + it q
et (9)

where 0 ≤ e0 < e1 < . . . < et ≤ m − 1, 1 ≤ i j ≤ q − 1, and
t is an integer with 0 ≤ t ≤ m − 1.

Observe that

i = qe0(i0 + i1qe1−e0 + . . . + it q
et−e0).

We know that i and i0+i1qe1−e0 +. . .+it qet−e0 are in the same
q-cyclotomic coset modulo n. Hence we need only to consider
the case that e0 = 0 in the expression of (9). If et ≤ m − 2 or
it < q − 1 then i ≤ δ and i ∈ ∪δ

j=1C j . Therefore, it suffices
to consider only the case that it = q − 1 and et = m − 1 in
the expression of (9).

Now we assume that

i = i0 + i1qe1 + . . . + it−1qet−1 + (q − 1)qm−1, (10)

where 1 ≤ e1 < . . . < et−1 ≤ m − 2 and 1 ≤ i j < q .
We now consider the integer i of (10), and distinguish

between the following two cases.
Case 1: i0 = i1 = . . . = it−1 = q − 1: In this case, we

have

i = (q − 1)(1 + qe1 + . . . + qet−1 + qm−1).

Since i < n, there must exist an integer h such that

i = (q − 1)

⎛

⎝1 + qe1 + . . . + qeh−1 +
m−1∑

j=eh

q j

⎞

⎠,

where eh−1 ≤ eh − 2. We have then

i × qm−eh mod n = ri ,

where

ri = (q − 1)

⎛

⎝
m−eh∑

j=0

q j +
h−1∑

j=1

qm−eh+e j

⎞

⎠.

Since m − eh + eh−1 ≤ m − 2, we obtain ri < δ. Hence
i ∈ ∪δ

j=1C j .
Case 2: At least one of the elements in {i0, i1, . . . , it−1} is

less than q − 1: Note that Case 2 cannot happen if q = 2.
Hence in Case 2, we must have q > 2.

Let h be the largest index such that ih < q − 1. Then we
have

i × qm−eh+1 mod n = ri ,

where

ri = (q − 1)

⎛

⎝
t−1∑

j=h+1

qe j −eh+1 + qm−1−eh+1

⎞

⎠

+ i0qm−eh+1 +
h∑

j=1

i j q
m−eh+1+e j .

Notice that ih ≤ q − 2 and m − eh+1 + eh ≤ m − 1. We have
ri ≤ δ. It then follows that

i ∈ Cri ⊂ ∪δ
j=1C j .

Summarizing the conclusions in the foregoing two cases
proves Property P1.

It is easy to verify that

Cδ = {n − qm−1, n − qm−2, . . . , n − q, n − 1}.
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Hence, Propery P2 holds and δ is the coset leader of Cδ .
Since δ is the coset leader of Cδ , we know Property P3

is true. This completes the proof of the conclusion on the
dimension of the code C(q,m,δ). �

Theorem 13 says that Rq (1, m)∗ is a BCH code. In general,
the punctured generalized Reed-Muller code Rq (�, m)∗ is not
a BCH code.

Example 4: Let (q, m) = (3, 3) and let (�0, �1) = (1, 0).
Let α be a generator of GF(33)∗ with α3 + 2α + 1 = 0. Then
� = 1 and δ = 17. The two codes C(3,3,17) and R3(1, 3)∗ are
the same, and have parameters [26, 4, 17].

It is noticed that the code C(q,m,(q−1)qm−1−1) is optimal, as
its parameters meet the Griesmer bound.

C. The Codes C(q,m,δ) in the Case That � = h(q − 1),
Where 1 ≤ h ≤ m − 1

Recall that � = �1(q −1)+�0, where 0 ≤ �0 ≤ q −1. Hence
in this case we have (�1, �0) = (h, 0) and δ = qm−h − 1.

The parameters of the code C(q,m,δ) in this case can be
determined and are given as follows.

Theorem 14: For any h with 1 ≤ h ≤ m − 1, C(q,m,qm−h−1)

has minimum distance d = qm−h − 1 and dimension

m + qm − 1 −
� m

h+1 �∑

i=1

(−1)i−1 m(q−1)i

i

(
m − ih − 1

i −1

)
qm−i(h+1).

Proof: Recall that δ = qm−h − 1. Obviously, qhδ = n −
(qh − 1). It is then easily verified that

Cδ =
{

n − (qh+i − qi ) : i = 1, 2, . . . , m − h
}

∪
{

qi − q(h+i) mod m : i = m − h + 1, . . . , m
}
.

We now prove that |Cδ| = m. First of all, for any two
distinct i and j in {1, 2, . . . , m − h}, we have

n − (qh+i − qi ) �= n − (qh+ j − q j ).

Secondly, we have
{

qi − q(h+i) mod m : i = m − h + 1, . . . , m
}

=
{
(qm−h − 1)qi : i = 1, 2, . . . , h

}
.

This set has clearly cardinality h.
It is obvious that

n = qm − 1 = (q − 1)(qm−1 + qm−2 + . . . + q + 1)

and

(qh − 1)qi = (q − 1)

h−1∑

�=0

qi+�,

(qm−h − 1)q j = (q − 1)

m−h−1∑

�=0

q j+�.

We then deduce that

n − (qh − 1)qi �= (qm−h − 1)q j

for any 1 ≤ i ≤ m − h and 1 ≤ j ≤ h. Thus, |Cδ| = m.

TABLE I

PARAMETERS OF C(q,m,qm−h−1) AND Rq (h(q − 1), m)∗

Furthermore, one can check that δ is the coset leader of Cδ .
It then follows that δ �∈ ∪δ−1

j=1C j . We then conclude that the
difference between the dimensions of the two codes C(q,m,δ+1)

and C(q,m,δ) is m. The desired conclusion on the dimension
of the code C(q,m,δ) follows from the dimension of the code
C(q,m,δ+1), which was given in Theorem 2. �

The two codes C(q,m,δ) and Rq(�, m)∗ have the same
minimum distance δ, and the former contains the latter as
a subcode. In the case that � = h(q − 1), the dimension of
C(q,m,δ) is given in (11) and that of Rq (�, m)∗ is described
in (6). However, it is hard to compare the two dimensions
as the two dimension formulas look quite complex. In order
to compare the two codes, we computed the parameters of
some examples of the two codes and put them in Table I,
where k1 and k2 are the dimensions of C(q,m,δ) and Rq(�, m)∗,
respectively. In most cases, C(q,m,δ) is much better than
Rq(�, m)∗ as the dimension of the former is much more than
that of the latter. Some of the codes C(q,m,qm−h−1) are optimal,
others are the best cyclic codes and almost optimal according
to the tables in [11].

D. The Codes C(q,m,δ) in the Case That � = 2

The cases that (q, �) = (2, 2) and (q, �) = (3, 2) are
covered by the results in Section III-C. Therefore, we need
to consider only the case that q ≥ 4. In this case, we have
(�0, �1) = (2, 0) and thus

δ = (q − 2)qm−1 − 1.

We have the following conjectured parameters of the code
C(q,m,(q−2)qm−1−1).

Conjecture 1: Let q ≥ 4 and � = 2. Then
C(q,m,(q−2)qm−1−1) has parameters

[
qm − 1, 2m + m, (q − 2)qm−1 − 1

]
.

Example 5: Let (q, m) = (4, 3) and let � = 2. The two
codes C(4,3,31) and R4(2, 3)∗ have parameters [63, 11, 31] and
[63, 10, 31], respectively.

Example 6: Let (q, m) = (3, 4) and let � = 2. The two
codes C(3,4,26) and R3(2, 4)∗ have parameters [80, 20, 26] and
[80, 15, 26], respectively.

Note that the code Rq (2, m)∗ has parameters
[

qm − 1,
(m + 1)(m + 2)

2
, (q − 2)qm−1 − 1

]
.
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If Conjecture 1 is true, one would see a huge
difference between the dimensions of the two codes C(q,m,δ)

and Rq (2, m)∗. The former is exponential in m, while the
latter is polynomial in m. Both dimensions are independent
of q , which is a little amazing.

It can be proved that δ = (q − 2)qm−1 − 1 is a coset leader
and |Cδ| = m. Let

γ = (q − 2)
qm − 1

q − 1
.

Clearly, Cγ = {γ }. Hence, γ is also a coset leader. It can
be proved that every integer i with δ < i < γ cannot be a
coset leader. Hence, the dimension of the code in the following
conjecture is also true if Conjecture 1 is true.

Conjecture 2: Let q ≥ 4. Then the code
C(q,m,(q−2)(qm−1)/(q−1)) has parameters

[
qm − 1, 2m , (q − 2)

qm − 1

q − 1

]
.

Example 7: Let (q, m) = (4, 3). Then γ = 42. The cyclic
code C(4,3,42) has parameters [63, 8, 42]. This code is optimal
according to the Database. The record code in the Database
has the same parameters, but is not cyclic.

Example 8: Let (q, m) = (5, 2) and let α be the generator
of GF(52)∗ with α2 + 4α + 2 = 0. Then γ = 18. The
code C(5,2,18) has parameters [24, 4, 18] and parity-check
polynomial

h(x) = x4 + 3x3 + 3x2 + 4x + 4.

This code is optimal according to the Database, where the
record code is not known to be cyclic.

Example 9: Let (q, m) = (5, 3) and let α be the generator
of GF(53)∗ with α3 + 3α + 3 = 0. Then γ = 93. The
code C(5,3,93) has parameters [124, 8, 93] and parity-check
polynomial

h(x) = x8 + 2x7 + x6 + 2x4 + 4x2 + 4x + 1.

This code is optimal according to the Database, where the
record code is not known to be cyclic.

IV. SOME OTHER CLASSES OF BCH CODES

In this section, we study the parameters of several other
families of BCH codes. Some of them are related to the
BCH codes discussed in the previous sections.

A. The Codes C(q, m, qm−h−2)

Let h be any integer with 1 ≤ h ≤ m − 1, and let
δ = qm−h − 1. The codes C(q,m,δ) were dealt with in
Section III-C. Clearly, C(q,m,δ−1) contains C(q,m,δ) as a sub-
code. Our objective of this section is to obtain parameters of
the code C(q,m,δ−1) with the parameters of the code C(q,m,δ)

developed in Section III-C.
The parameters of the code C(q,m,δ−1) are given as follows.
Theorem 15: For any h with 1 ≤ h ≤ m −1 and q > 2, the

code C(q,m,qm−h−2) has minimum distance d with qm−h − 2 ≤
d ≤ qm−h − 1 and dimension

2m + qm − 1 −
� m

h+1 �∑

i=1

(−1)i−1 m(q−1)i

i

(
m − ih − 1

i −1

)
qm−i(h+1).

Proof: The lower bound on the minimum distance d of the
code C(q,m,δ−1) follows from the BCH bound, and the upper
bound on d comes from the fact that C(q,m,δ) is a subcode
of C(q,m,δ−1).

We now prove the conclusion on the dimension k of the
code C(q,m,δ−1). Let γ = δ − 1 = qm−h − 2. Obviously,
qhγ = n − (2qh − 1). It is then easily verified that

Cγ =
{

n − (2qh+i − qi) : i = 0, 1, . . . , m − h − 1
}

∪
{

qi − 2q(h+i) mod m : i = m − h, . . . , m − 1
}
.

It is now time to prove that |Cγ | = m. First of all, for any
two distinct i and j in {0, 1, . . . , m − h − 1}, we have

n − (2qh+i − qi ) �= n − (2qh+ j − q j ).

Secondly, we have
{

qi − 2q(h+i) mod m : i = m − h, m − h + 1, . . . , m − 1
}

=
{
(qm−h − 2)qi : i = 0, 1, . . . , h − 1

}
,

which has clearly cardinality h, as q > 2.
Notice that q > 2 and 1 ≤ h ≤ m − 1. We then deduce that

n − (2qh − 1)qi �= (qm−h − 2)q j

for any 0 ≤ i ≤ m−h−1 and 0 ≤ j ≤ h−1. Thus, |Cγ | = m.
Furthermore, one can check that γ is the coset leader of Cγ .

We now conclude that the difference between the dimen-
sions of the two codes C(q,m,δ) and C(q,m,δ−1) is m. The
desired conclusion on the dimension of the code C(q,m,δ−1)

then follows from the dimension of the code C(q,m,δ), which
was given in Theorem 14. �

Example 10: Let (q, m, h) = (3, 3, 1). Then the code
C(3,3,7) has parameters [26, 14, 7], which has the same para-
meters as the best linear code in the Database. The upper
bound on the minimum distance of any ternary code with
length 26 and dimension 14 is 8. This code C(3,3,7) is the
best possible cyclic code [11].

Example 11: Let (q, m, h) = (3, 4, 2). Then the code
C(3,4,7) has parameters [80, 64, 7]. The best known ternary
linear code of length 80 and dimension 64 has minimum
distance 8 according to the Database.

In view that the difference between the upper bound and the
lower bound on the minimum distance of the code C(q,m,δ−1)

is only one, it may not be important to determine the exact
minimum distance of the code. Nevertheless, we state the
following conjecture.

Conjecture 3: For the code C(q,m,δ−1) in Theorem 15, we
have d = qm−h − 2.

B. The BCH Codes C(q,m,q(m+1)/2+q+2) and C(q,m,q(m+1)/2+q+3)

Throughout this section, let m ≥ 3 be odd and let q > 2.
Define δ = q(m+1)/2 + q + 2. The parameters of the code
C(q,m,q(m+1)/2+q+2) are described in the following theorem.

Theorem 16: For odd m ≥ 3 and q > 2, C(q,m,q(m+1)/2+q+2)
has parameters [qm − 1, k, d], where

k =
{

q3 − 1 − 3(q − 1)q(m−1)/2 − 1 if m = 3

qm − 1 − m(q − 1)q(m−1)/2 − m if m > 3
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and

d ≥ dB = q(m+1)/2 + q + 2.

Proof: We first determine the Bose distance of the code
C(q,m,q(m+1)/2+q+2). Let δ = q(m+1)/2 + q + 2. We prove that

δ is the coset leader of Cq(m+1)/2+q+2. Note that

δq(m−1)/2 mod n = (q + 2)q(m−1)/2 + 1

and q ≥ 3. It can be verified that

Cδ =
{
((q + 2)q(m−1)/2 + 1)qi : i = 0, 1, . . . ,

m − 3

2

}

∪
{

2qm−1 + q(m−1)/2 + 1
}

∪
{
(2 + q + q(m+1)/2)qi : i = 0, 1, . . . ,

m − 3

2

}
.

It is then easily seen that δ is the smallest integer in Cδ and
|Cδ| = m. Whence, dB = δ = q(m+1)/2 + q + 2.

It is now time to find out the dimension k of the code
C(q,m,q(m+1)/2+q+2). Our idea of settling this problem is to make

use of the dimension of the code C(q,m,q(m+1)/2+1), which is
equal to

qm − 1 − m(q − 1)q(m−1)/2 (11)

according to Theorem 1. To proceed in this direction, we
will prove that all the integers i with q(m+1)/2 + 1 ≤ i ≤
q(m+1)/2 + q cannot be coset leaders.

Let γi = q(m+1)/2 + i for any integer i . We have

γi q
(m−1)/2 mod n = iq(m−1)/2 + 1 ≤ q(m+1)/2 + i = γi

for all i with 1 ≤ i ≤ q . Whence, γi is not a coset leader for
all i with 1 ≤ i ≤ q .

Now we prove that γq+1 is a coset leader. Observing that

γq+1q(m−1)/2 mod n = (q + 1)q(m−1)/2 + 1,

one can verify that

Cγq+1 =
{
((q + 1)q(m−1)/2 + 1)qi : i = 0, 1, . . . ,

m − 3

2

}

∪
{

qm−1 + q(m−1)/2 + 1
}

∪
{
(1 + q + q(m+1)/2)qi : i = 0, 1, . . . ,

m − 3

2

}
.

It can be checked that γq+1 is the smallest integer in Cγq+1 .
In addition, we have

|Cγq+1 | =
{

1 if m = 3,

m if m > 3.

We now deduce that the difference between the dimen-
sion of C(q,m,q(m+1)/2+1) and that of C(q,m,q(m+1)/2+q+2)

is |Cγq+1 |. The desired conclusion on the dimension of
C(q,m,q(m+1)/2+q+2) then follows from the dimension of
C(q,m,q(m+1)/2+1), which was given in (11). �

It is noticed that Theorem 16 is not covered by Theorem 9.
Example 12: Let (q, m) = (4, 3). Then δ = 22. The code

C(4,3,22) has parameters [63, 26, 22]. This code has the same

parameters as the best code in the Database, which is not
cyclic.

Example 13: Let (q, m) = (3, 3) and let α be the generator
of GF(33)∗ with α3 + 2α + 1 = 0. Then δ = 14. The
code C(3,3,14) has parameters [26, 7, 14] and parity-check
polynomial

x7 + x6 + 2x4 + x2 + 1.

This code is optimal according to the Database, while the
optimal code in the Database is not cyclic.

Example 14: Let (q, m) = (5, 3) and let α be the generator
of GF(53)∗ with α3 + 3α + 3 = 0. Then δ = 32. The code
C(5,3,32) has parameters [124, 63, 32]. This code has the same
parameters as the best code in the Database, which is not
cyclic.

Conjecture 4: For the code C(q,m,q(m+1)/2+q+2) in
Theorem 16, we have d = δ = q(m+1)/2 + q + 2.

Theorem 17: For odd m ≥ 7, the binary code
C(2,m,2(m+1)/2+5) has parameters

[2m − 1, 2m − 1 − m(2(m−1)/2 + 1), d],
where

d ≥ dB = 2(m+1)/2 + 5.

Proof: The proof of this theorem is similar to that of
Theorem 16. Note that 2(m+1)/2 + 4 is not a coset leader. The
only additional part in the proof is to prove that 2(m+1)/2 + 5
is a coset leader, which can be done in a similar way. We omit
the details of the proof. �

Example 15: Let (q, m) = (2, 7). Then δ = 21. The
code C(2,7,21) has parameters [127, 64, 21], and has the same
parameters as the best code in the Database.

Theorem 18: For odd m ≥ 3 and q > 3, C(q,m,q(m+1)/2+q+3)
has parameters [qm − 1, k, d], where

k =
{

q3 − 1 − 3(q − 1)q(m−1)/2 − 4 if m = 3

qm − 1 − m(q − 1)q(m−1)/2 − 2m if m > 3

and

d ≥ dB = q(m+1)/2 + q + 3.

Proof: One can similarly prove that q(m+1)/2 + q + 3 is a
coset leader of Cq(m+1)/2+q+3. Then the proof of Theorem 16
can then be extended into a proof of this theorem. The details
are omitted here. �

Below we consider the code C(q,m,δ) for even m.
Theorem 19: For even m ≥ 2, the binary code C(2,m,2m/2+3)

has parameters
[
2m − 1, 2m − 1 − m2(m−2)/2 − m/2, d

]
,

where

d ≥ dB = 2m/2 + 3.

Proof: Since the proof of this theorem is
similar to that of some previous theorems in this
section, we only provide a sketch of the proof here.
Let δ = 2m/2 + 3.
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One can similarly prove the following:

1) 2m/2 + 1 is the coset leader of C2m/2+1 and
|C2m/2+1| = m/2.

2) 2m/2 + 2 is not the coset leader of C2m/2+2.
3) 2m/2 + 3 is the coset leader of C2m/2+3.

We now deduce that dB = δ = 2m/2 + 3 and

dim(C(2,m,2m/2+3)) = dim(C(2,m,2m/2+1)) − m

2
.

By Theorem 1, we have

dim(C(2,m,2m/2+1)) = 2m − 1 − m2(m−2)/2.

The desired conclusion on the dimension of C(2,m,2m/2+3) then
follows. �

Examples of the codes in Theorem 19 are given below.
Example 16: The code C(2,4,7) has parameters [15, 5, 7],

where d = dB = δ = 7, which is optimal. The code C(2,6,11)

has parameters [63, 36, 11], where d = dB = δ = 11, which
is the best possible cyclic code and has the same parameters
as the best known code in the Database. The code C(2,8,19)

has parameters [255, 187, 19], where d = dB = δ = 19,
which has the same parameters as the best known code in the
Database.

Conjecture 5: For the code C(2,m,2m/2+3) in Theorem 19, we
have d = dB = 2m/2 + 3.

Theorem 20: For q > 3 and even m ≥ 2, the code
C(q,m,qm/2+3) has parameters

[
qm − 1, qm − 1 − m(q − 1)q(m−2)/2 − 3m/2, d

]
,

where

d ≥ dB = qm/2 + 3.

Proof: For the same reason, we only provide a sketch of
the proof here. Let δ = qm/2 + 3.

Similarly, one can prove the following statements:

1) qm/2 + 1 is the coset leader of Cqm/2+1 and
|Cqm/2+1| = m/2.

2) qm/2 + 2 is the coset leader of Cqm/2+2 and
|Cqm/2+2| = m.

3) qm/2 + 3 is the coset leader of Cqm/2+3.

We then deduce that dB = δ = qm/2 + 3 and

dim(C(q,m,qm/2+3)) = dim(C(q,m,qm/2+1)) − 3m

2
.

By Theorem 1, we have

dim(C(q,m,qm/2+1)) = qm − 1 − m(q − 1)q(m−2)/2.

The desired conclusion on the dimension of C(q,m,qm/2+3) then
follows. �

Examples of the codes in Theorem 20 are given below.
Example 17: The code C(4,2,7) has parameters [15, 6, 7],

where d = dB = δ = 7, while the best code in the
Database has parameters [15, 6, 8], which is not cyclic. The
code C(4,4,19) has parameters [255, 201, 19], where d = dB =
δ = 19, while the best code in the Database has parameters
[255, 201, 20], which is not cyclic. The code C(5,2,8) has

parameters [24, 13, 8], where d = dB = δ = 8, which has
the same parameters as the best code in the Database.

Conjecture 6: For the code C(q,m,qm/2+3) in Theorem 20, we
have d = dB = qm/2 + 3.

Theorem 21: For even m ≥ 6, the binary code
C(2,m,2(m+2)/2+5) has parameters

[
2m − 1, 2m − 1 − m2m/2 + m/2, d

]
,

where

d ≥ dB = 2(m+2)/2 + 5.

Proof: We only provide a sketch of the proof here. Let
δ = 2(m+2)/2 + 5.

One can similar prove the following:

1) 2(m+2)/2 + i is not the coset leader of C2(m+2)/2+i for all
i with 1 ≤ i ≤ 4.

2) 2(m+2)/2 + 5 is the coset leader of C2(m+2)/2+5.

We now deduce that dB = δ = 2(m+2)/2 + 5 and

dim(C(2,m,2(m+2)/2+5)) = dim(C(2,m,2(m+2)/2+1))

= 2m − 1 − m2m/2 + m/2,

where the last equality follows from Theorem 1. �
Examples of the codes in Theorem 21 are given below.
Example 18: The code C(2,6,21) has parameters

[63, 18, 21], where d = dB = δ = 21, which is the
best possible cyclic code and has the same parameters as
the best known code in the Database. The code C(2,8,37) has
parameters [255, 131, 37], where d = dB = δ = 37, which
has the same parameters as the best known code in the
Database.

Conjecture 7: For the code C(2,m,2(m+2)/2+5) in Theorem 21,
we have d = dB = 2(m+2)/2 + 5.

It is noticed that Theorems 19, 20, and 21 are not coved by
Theorem 9.

Theorem 22: For q > 3 and even m ≥ 2, the code
C(q,m,2qm/2+3) has parameters

[
qm − 1, qm − 1 − 2m(q − 1)q(m−2)/2, d

]
,

where

d ≥ dB = 2qm/2 + 3.

Proof: For the same reason, we only provide a sketch of
the proof here. Let δ = 2qm/2 + 3.

Similarly, one can prove the following statements:

1) 2qm/2 + 1 is not the coset leader of C2qm/2+1.
2) 2qm/2 + 2 is the coset leader of C2qm/2+2 and

|C2qm/2+2| = m/2.
3) 2qm/2 + 3 is the coset leader of C2qm/2+3.

We then deduce that dB = δ = 2qm/2 + 3 and

dim(C(q,m,2qm/2+3)) = dim(C(q,m,2qm/2+1)) − m

2
.

By Theorem 1, we have

dim(C(q,m,2qm/2+1)) = qm − 1 − 2m(q − 1)q(m−2)/2 + m/2.
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TABLE II

BCH CODES C(q,m,δ) DELT WITH IN THIS PAPER

The desired conclusion on the dimension of C(q,m,2qm/2+3) then
follows. �

Examples of the codes in Theorem 22 are given
below.

Example 19: The code C(4,2,11) has parameters [15, 3, 11],
where d = dB = δ = 11, which is optimal. The code C(5,2,13)

has parameters [24, 8, 13], where d = dB = δ = 13, which is
optimal.

V. SUMMARY AND CONCLUDING REMARKS

The contributions of this paper are the determination of
the parameters or lower bounds on the parameters of the
codes C(q,m,δ) documented in Sections III and IV. Table II
is a summary of the narrow-sense primitive BCH codes
treated in this paper. For some of these BCH codes, we
were able to determine both their dimension and minimum
distance. For others BCH codes, we found their dimension
and Bose distance, and conjectured that the Bose distance
is in fact the minimum distance. All the seven conjectures
made in this paper are supported by Magma with a lot
of experimental data. To prove the conjectured minimum
distance, we face the difficulty in finding a specific codeword
in the code having the conjectured minimum weight. The
difficulty in settling the dimension of some BCH codes lies in
the determination of all coset leaders less than δ and the sizes
of their corresponding q-cyclotomic cosets or all coset leaders
larger than δ and the sizes of their corresponding q-cyclotomic
cosets. The reader is cordially invited to attack these
conjectures.

Finally, we would inform the reader that the narrow-sense
primitive BCH codes are among the best linear codes in many
cases. We searched for all the narrow-sense primitive BCH
codes over GF(2) and GF(3) of length up to 127 and 80,
respectively. After comparing them with those in the Database
and the tables in [11], we found that almost all of them
are either optimal or almost optimal. This demonstrates the
theoretical attractiveness of the class of narrow-sense primitive
BCH codes. In addition, some BCH codes such as the
Reed-Solomon codes are widely used in communication
systems, data storage devices, and consumer electronics.
This gives another strong motivation for researching into
BCH codes.
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