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Optimal Codebooks From Binary Codes Meeting
the Levenshtein Bound

Can Xiang, Cunsheng Ding, Senior Member, IEEE, and Sihem Mesnager

Abstract— In this paper, a generic construction of codebooks
based on binary codes is introduced. With this generic con-
struction, a few previous constructions of optimal codebooks
are extended, and a new class of codebooks almost meeting the
Levenshtein bound is presented. Exponentially many codebooks
meeting or almost meeting the Levenshtein bound from binary
codes are obtained in this paper. The codebooks constructed in
this paper have alphabet size 4. As a byproduct, three bounds
on the parameters of binary codes are derived.

Index Terms— Codebooks, signal sets, Levenshtein bounds,
codes, bent functions, semi-bent functions.

I. INTRODUCTION

LET B = {b0, . . . , bN−1}, where each b� is a unit norm
1 × n complex vector over an alphabet A. Such a set B

is called an (N, n) codebook (also called a signal set). The
size of A is called the alphabet size of B. As a performance
measure of a codebook in practical applications, the maxi-
mum crosscorrelation amplitude of an (N, n) codebook B is
defined by

Imax(B) = max
0≤i< j≤N−1

∣
∣
∣bi bH

j

∣
∣
∣

where bH stands for the conjugate transpose of the complex
vector b. For Imax(B), we have the following well-known
Welch bound [39].

Lemma 1: For any (N, n) codebook B with N ≥ n,

Imax(B) ≥
√

N − n

(N − 1)n
. (1)

Furthermore, the equality in (1) is achieved if and only if
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√

N − n

(N − 1)n

for all pairs (i, j) with i �= j .
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A codebook achieving the equality in (1) is referred to as
a maximum-Welch-bound-equality (MWBE) codebook [41].
The MWBE codebook is also known as an equiangular tight
frame [7]. The construction of MWBE codebooks is equivalent
to line packing in Grassmannian spaces [38]. The known
MWBE codebooks can be summarized as follows [12], [21].

1) (N, N) orthogonal MWBE codebooks for any
N > 1 [37], [41].

2) (N, N − 1) MWBE codebooks for N > 1 generated
from discrete Fourier transformation matrices [37], [41],
or m-sequences [37].

3) (N, n) MWBE codebooks from conference
matrices [8], [38], where N = 2n = 2d+1 or
N = 2n = pd + 1, where p is a prime number and d
is a positive integer.

4) (N, n) MWBE codebooks from (N, n, λ) difference sets
in cyclic groups [41] and abelian groups [10], [12].

5) MWBE codebooks from (2, k, v)-Steiner systems [16].
Besides MWBE codebooks, codebooks nearly meeting
the Welch bound have also received a lot of attention
(see [19], [21], [42]–[45], and references therein).

The following lemma shows that the Welch bound cannot
be achieved when N is large.

Lemma 2 [38]: If N > n(n + 1)/2, no (N, n) real
codebook B can meet the Welch bound of (1); and if N > n2,
no (N, n) codebook B can meet the Welch bound of (1).

When N is large, the following Levenshtein bounds are
better than the Welch bound.

Lemma 3 [23], [28]: For any real-valued codebook B with
N > n(n + 1)/2, we have

Imax(B) ≥
√

3N − n2 − 2n

(n + 2)(N − n)
. (2)

For any complex-valued codebook B with N > n2, we have

Imax(B) ≥
√

2N − n2 − n

(n + 1)(N − n)
. (3)

It is noticed that a special case of the bounds of (2) and (3)
was already presented in [9] using the language of line-sets.

Constructing codebooks achieving the Levenshtein bounds
looks very hard in general. The known codebooks meeting the
Levenshtein bound are listed as follows.

1) (22m−1 + 2m , 2m) codebooks generated from
Kerdock codes and bent functions [2], [40], [46],
where m is even. These two classes of real-valued
codebooks are optimal with respect to the Levenshtein
bound of (2) and have alphabet size 4.
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2) (p2m + pm, pm) codebooks generated from planar func-
tions [14], [40], and those from a family of p-ary
bent functions [46], where p is an odd prime. These
two classes of codebooks are optimal with respect
to the Levenshtein bound of (3) and has alphabet
size p + 2.

Codebooks meeting the Welch bound or the Levenshtein
bounds are much preferred in many practical applications, for
example, unitary space-time modulations, multiple description
coding over erasure channels, code-division multiple-
access (CDMA) systems, and coding theory [2], [31]. Accord-
ing to Sarwate [37], it is desirable to employ codebooks with
a small alphabet size in applications.

While many constructions of codebooks meeting or almost
meeting the Welch bound are available in the literature, only
a few constructions of codebooks meeting or almost meeting
the Levenshtein bounds are known. The two objectives of
this paper are to extend earlier constructions and present
new constructions of exponentially many codebooks meeting
or almost meeting the Levenshtein bound of (2). All the
constructions of such codebooks in this paper are related
to sets of bent functions and semi-bent functions satisfying
certain conditions. Open problems are also presented in this
paper.

II. BENT FUNCTIONS, SEMI-BENT FUNCTIONS

AND ALMOST BENT FUNCTIONS

Let f be a Boolean function from GF(2m) to GF(2).
The support of f is defined to be

D f = {x ∈ GF(2m) : f (x) = 1} ⊆ GF(2m).

In this paper, we let n f = |D f |, which is called the
(Hamming) weight of f .

The Walsh transform of f is defined by

f̂ (w) =
∑

x∈GF(2m)

(−1) f (x)+Trm
1 (wx) (4)

where w ∈ GF(2m). The Walsh spectrum of f is the following
multiset

{

f̂ (w) : w ∈ GF(2m)
}

.

A function f from GF(2m) to GF(2) is called linear if
f (x + y) = f (x) + f (y) for all (x, y) ∈ GF(2m)2. A func-
tion f from GF(2m) to GF(2) is called affine if f or f − 1
is linear.

A function from GF(2m) to GF(2) is called bent if
| f̂ (w)| = 2m/2 for every w ∈ GF(2m). Bent functions exist
only for even m, and were coined by Rothaus in [36].

A subset D with κ elements of an abelian group (A,+)
of order v is called an (v, κ, λ) difference set in (A,+)
if the multiset {x − y : x ∈ D, y ∈ D} contains every
nonzero element of A exactly λ times. It is well-known that a
function f from GF(2m) to GF(2) is bent if and only if D f is
a Hadamard difference set in (GF(2m), +) with the following
parameters

(2m, 2m−1 ± 2(m−2)/2, 2m−2 ± 2(m−2)/2). (5)

The information about difference sets can be found
in [11].

Let f be bent. Then by definition f̂ (0) = ±2m/2. It then
follows that

n f = |D f | = 2m−1 ± 2(m−2)/2 (6)

There are many constructions of bent functions available in
the literature (see, for example, [5], [32], [33], [35]). However,
for the construction of codebooks meeting the Levenshtein
bound of (2), we need a set of bent functions described in the
following research problem.

Research Problem 1: Let m be even. Construct a set
{ fa(x)} of 2m−1 − 1 bent functions on GF(2m) such that the
difference fa(x) − fb(x) of any two distinct bent functions
fa and fb in the set { fa(x)} is again a bent function.

Let m be odd. Then there is no bent Boolean function on
GF(2m). A function f from GF(2m) to GF(2) is called semi-
bent if f̂ (w) ∈ {0, ±2(m+1)/2} for every w ∈ GF(2m).

Let f be a semi-bent function from GF(2m) to GF(2).
It then follows from the definition of semi-bent functions
that

n f = |D f |

=

⎧

⎪⎪⎨

⎪⎪⎩

2m−1 − 2(m−1)/2 if f̂ (0) = 2(m+1)/2,

2m−1 + 2(m−1)/2 if f̂ (0) = −2(m+1)/2,

2m−1 if f̂ (0) = 0.

(7)

There are many constructions of semi-bent functions
available in the literature (see, for example, [1], [5], [34]).
However, for the construction of codebooks almost meet-
ing the Levenshtein bound of (2), we need a set of
semi-bent functions described in the following research
problem.

Research Problem 2: Let m be odd. Construct a set { fa(x)}
of 2m − 1 semi-bent functions on GF(2m) such that the
difference fa(x) − fb(x) of any two distinct semi-bent func-
tions fa and fb in the set { fa(x)} is again a semi-bent
function.

For any function g from GF(2m) to GF(2m), we
define

λg(a, b) =
∑

x∈GF(2m)

(−1)Trm
1 (ag(x)+bx), a, b ∈ GF(2m).

A function g from GF(2m) to GF(2m) is called almost bent if
λg(a, b) = 0, or ± 2(m+1)/2 for every pair (a, b) with a �= 0.
By definition, almost bent functions over GF(2m) exist only
for odd m.

By definition, any almost bent function g(x) from GF(2m)
to GF(2m) gives a set of 2m − 1 semi-bent functions

{Trm
1 (ag(x)) : a ∈ GF(2m) \ {0}},

meeting the requirements in Research Problem 2. This
is the only known construction of such semi-bent func-
tion families in the literature. In this paper, we will
present another construction and will employ it for the
construction of codebooks almost meeting the Levenshtein
bound.
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III. THE CONSTRUCTION OF CODEBOOKS

FROM BINARY CODES

Throughout this paper, let En denote the set formed by the
standard basis of the n-dimensional Hilbert space:

(1, 0, 0, · · · , 0, 0),

(0, 1, 0, · · · , 0, 0),

...

(0, 0, 0, · · · , 0, 1).

An (n, M) binary code C is a subset of GF(2)n with
cardinality M . An (n, M, d) binary code C is a subset
of GF(2)n with cardinality M and minimum Hamming
distance d between all pairs of distinct codewords in C. Given
any (n, M) binary code C, we define a set

Sn(C) =
{

1√
n
(−1)c : c ∈ C

}

, (8)

where (−1)c denotes the vector ((−1)c0, (−1)c1, . . . ,
(−1)cn−1) for any codeword c = (c0, c1, . . . , cn−1) in C, and
then define a codebook B(C) by

B(C) = En ∪ Sn(C). (9)

The parameters of the codebook B(C) are given in the
following theorem.

Theorem 4: For any (n, M) binary code C, the set B(C)
of (9) is an (M + n, n) codebook with the maximum crosscor-
relation amplitude

Imax(B(C)) = max{n − 2dmin,
√

n, 2dmax − n}
n

, (10)

where dmin and dmax denote the minimum and maximum
Hamming distance of the code C, respectively.

Proof: The length and the size of the codebook follow
from its definition and the parameters of the binary code C.
For any e ∈ En and s ∈ Sn(C), we have

∣
∣
∣e sH

∣
∣
∣ = 1√

n
=

√
n

n
.

For any pair of distinct vectors si = 1√
n
(−1)ci ∈ Sn(C)),

where ci ∈ C, we have

∣
∣
∣s1 sH

2

∣
∣
∣ = 1

n

∣
∣
∣
∣
∣

n−1
∑

i=0

(−1)c1, j −c2, j

∣
∣
∣
∣
∣

= 1

n
|n − 2dist(c1, c2)|,

where dist(c1, c2) denotes the Hamming distance of the two
vectors ci = (ci,0, ci,1, . . . , ci,n−1) in C.

The desired conclusion on Imax(B(C))) then follows. �
We have the following remarks on the construction of the

codebook B(C).
1) The construction is an extension and generalization

of previous constructions from finite geometry, bent
functions, almost bent functions, and planar functions
(see, for example, [2], [14], [46]).

TABLE I

THE WEIGHT DISTRIBUTION OF THE KERDOCK CODE

2) It can be extended to p-ary codes by replacing −1 with
a complex p-th primitive root of unity. However, the
maximum crosscorrelation amplitude Imax(B(C)) does
not have the simple expression of Theorem 4.

3) It will be demonstrated later that the binary code C has
to be chosen properly in order for the codebook B(C)
to have good parameters.

Our main objective of this paper is to construct codebooks
with the best possible parameters from binary codes. As a
byproduct, we employ the Welch bound and Levenshtein
bounds to derive the following new bounds on binary codes.

Theorem 5: Let C be an (n, M) binary code with

A) dmin + dmax ≤ n and

B) dmin ≤ n−√
n

2 ,

where dmin and dmax denote the minimum and maximum
Hamming distance of the code C, respectively. Then

1) dmin ≤
(

n −
√

nM
n+M−1

)

/2, provided that M > n;

2) dmin ≤
(

n −
√

(3M+n−n2)n2

(n+2)M

)

/2, provided that

M > n(n − 1)/2; and

3) dmin ≤
(

n −
√

(2M+n−n2)n2

(n+2)M

)

/2, provided that

M > n2 − n.
Proof: Consider the codebook B(C) defined by C in (9).

It follows from Conditions A) and B) and Theorem 4 that

Imax(B(C))) = n − 2dmin

n
.

The bounds then follow from the Welch bound and the
Levenshtein bounds. �

These bounds on binary codes apply for only a spe-
cial class of binary codes satisfying conditions A) and B).
Though they are derived easily, they are useful. Later, we will
demonstrate that these bounds can be achieved. With these
bounds, we will be able to prove that certain binary codes are
optimal.

IV. OPTIMAL CODEBOOKS FROM SUBCODES

OF THE KERDOCK CODES

Let m ≥ 4 be even. The Kerdock code K(m) is a nonlinear
code with parameters (2m , 22m, 2m−1 − 2(m−2)/2) and the
weight distribution of Table I [25].

Now we give a brief introduction of the Kerdock
code K(m). Let Trm−1

1 (x) denotes the trace function from
GF(2m−1) to GF(2). For any (u, v, a, b) ∈ GF(2) × GF(2) ×
GF(2m−1) × GF(2m−1), we define the following functions
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on GF(2m−1):

Q(x) =
(m−2)/2

∑

j=1

Trm−1
1 (x2 j +1),

f (x) = u + Trm−1
1 (ax) + Q(bx),

g(x) = u + v + Trm−1
1 ((a + b)x) + Q(bx).

Then the Kerdock code K(m) consists of all the codewords

c(u,v,a,b) =
(

f (0), f (1), f (α), . . . , f (α2m−1−2),

g(0), g(1), g(α), . . . , g(α2m−1−2)
)

(11)

where (u, v, a, b) ranges over all the elements in GF(2) ×
GF(2) × GF(2m−1) × GF(2m−1). A detailed analysis of the
Kerdock code K(m) can be found in [30, Cha. 15].

For the Kerdock code K(m), it follows from the description
above that

dmax = 2m and dmin = 2m−1 − 2(m−2)/2.

It then follows from Theorem 4 that

Imax(B(K(m))) = 1.

Hence, the codebook defined by the Kerdock code K(m) has
the worst crosscorrelation magnitude and is thus one of the
worst codebooks. However, the codebook of certain subcodes
of K(m) is optimal with respect to the Levenshtein bound.
Below we describe these subcodes of K(m) and their optimal
codebooks.
K(m) is self-complementary in the sense that the com-

plement 1 + c of c is also a codeword of K(m) if c is a
codeword of K(m), where 1 = (1, 1, . . . , 1). We now partition
the codewords of K(m) into 22m−1 pairs {c, 1 + c}, and then
define a subcode K̃(m) that is composed of one and only one
element from each pair {c, 1 + c} of codewords in K(m). The

total number of such subcodes K̃(m) of K(m) is 222m−1
.

Theorem 6: Let m ≥ 4 be even, and let K̃(m) be one of the
subcodes defined above. Then B(K̃(m)) is an optimal (22m−1+
2m, 2m) codebook with Imax(B(K̃(m))) = 2−m/2.

Proof: In the Kerdock code K(m), the Hamming distance
between any pair of distinct codewords takes on one of the
following values:

2m−1 − 2(m−2)/2, 2m−1, 2m−1 + 2(m−2)/2, 2m .

By the definition of K̃(m), the Hamming distance between
any pair of distinct codewords in K̃(m) takes on one of the
following values:

2m−1 − 2(m−2)/2, 2m−1, 2m−1 + 2(m−2)/2.

It then follows that for the code K̃(m), we have dmin = 2m−1−
2(m−2)/2. Note that dmax ≤ 2m−1 +2(m−2)/2. From Theorem 4,
we then deduce that Imax(B(K̃(m))) = 2−m/2. By definition,
K̃(m) has 22m−1 codewords. One can easily verify that this
codebook meets the Levenshtein bound of (2). This completes
the proof. �

We have the following comments on the codebooks
B(K̃(m)).

• For each Kerdock code K(m), we can select 222m−1

subcodes K̃(m). Each of the subcodes K̃(m) gives an
optimal codebook with alphabet size 4.

• Some of the subcodes K̃(m) were employed to define
extremal Euclidean line-sets (real-valued codebooks in
the language of finite geometry) (see [2], [3], [27]).
Hence, the construction of this section is a substantial
extension of earlier ones.

We inform that all the subcodes K̃(m) of the Kerdock
codes K(m) meet the third bound in Theorem 5. There are
also codes meeting the remaining two bounds in Theorem 5.
Thus, the bounds in Theorem 5 are tight and useful in coding
theory.

V. ASYMPTOTICALLY OPTIMAL CODEBOOKS WITH

RESPECT TO THE LEVENSHTEIN BOUND

The Levenshtein bounds are not tight in certain ranges, and
thus cannot be met. In this section, we extend earlier construc-
tions and present a new construction of codebooks that almost
meet the Levenshtein bound and are asymptotically optimal
with respect to the Levenshtein bound of (2). Throughout this
section, m is odd.

A. A Generic Construction

Our objective of this section is to present a generic con-
struction of exponentially many codebooks almost meeting
the Levenshtein bound of (2) with a binary code having
special parameters. Our construction is given in the following
theorem.

Theorem 7: Let C be a (2m , 22m) binary code such that

dmin = 2m−1 − 2
m−1

2 and dmax = 2m−1 + 2
m−1

2 . (12)

Let C̃ be the set consisting of one and only one of the elements
in {c, 1+ c} for every codeword c in C. Then the set B(C̃) is a
(22m + 2m , 2m) codebook with the maximum crosscorrelation
magnitude

Imax(B(C̃)) =
√

1

2m−1 .

Proof: It follows from the assumptions on the code C that
C̃ is a (2m, 22m) binary code, where the Hamming distances
dist(̃c1, c̃2) between any pair of distinct codewords c̃1 and c̃2

in C̃ satisfies

2m−1 − 2
m−1

2 ≤ dist( c̃1, c̃2) ≤ 2m−1 + 2
m−1

2 ,

and at least one of 2m−1 ± 2
m−1

2 is the Hamming distance
between two codewords in C̃. The desired conclusions on the
codebook B(C̃) are then deduced from Theorem 4. �

For any real-valued (22m + 2m , 2m) codebook B, the
Levenshtein bound of (2) is

Bm =
√

1

2m−1 − 3

(2m + 2)2m
.

Hence, the codebook B(C) of Theorem 8 almost meets the
Levenshtein bound Bm above. In addition, we have

lim
m→∞

Imax(B(C))

Bm
= 1.
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Hence, the codebook B(C) of Theorem 8 is asymptotically
optimal with respect to the Levenshtein bound.

Open Problem 1: Let m be odd. Is there any real-valued
codebook B with parameters (22m + 2m , 2m) and maximum
crosscorrelation magnitude

Imax(B) <

√

1

2m−1 ?

Open Problem 2: Let m be odd. Is there any real-valued
codebook B with parameters (M, 2m) and maximum cross-
correlation magnitude

Imax(B) =
√

1

2m−1

such that M > 22m + 2m?
We have the following remarks about the extended construc-

tion of Theorem 7.

1) The code C required in Theorem 7 may be linear or
nonlinear. In subsequent sections, we will demonstrate
examples of both linear and nonlinear codes with the
required properties.

2) One given binary code C satisfying the conditions of
Theorem 7 yields 222m

binary codes C̃, and thus 222m

codebooks B(C̃), which almost meet the Levenshtein
bound and are asymptotically optimal. So, Theorem 7
is a substantial extension of the construction
in [14].

3) Among the 222m
binary codes C̃ given by a binary

code C, at most one of them is linear.

In the next two subsections, we present examples of
both linear and nonlinear codes meeting the requirements of
Theorem 7. In this way, we will be able to show the usefulness
of Theorem 7.

B. An Extension of an Earlier Construction

Theorem 8: Let m be odd. Let C be a binary linear code
with length 2m and dimension 2m such that the minimum
nonzero Hamming weight and maximum Hamming weight are
given by

wmin = 2m−1 − 2
m−1

2 and wmax = 2m−1 + 2
m−1

2 .

Then the set B(C) is a (22m + 2m, 2m) codebook with the
maximum crosscorrelation magnitude

Imax(B(C)) = 2(m+1)/2

2m
=

√

1

2m−1 . (13)

Proof: The conclusions on the length and the number of
cordewords in B(C) follow from those of the linear code C
and the definition of the codebook. Since C is linear, we have

dmin = wmin and dmax = wmax.

Then the desired conclusion on the maximum crosscorrelation
magnitude follows from Theorem 7. �

We now introduce a construction of binary linear codes
satisfying the conditions of Theorems 7 and 8, which dates
back many years ago.

TABLE II

THE WEIGHT DISTRIBUTION OF THE CODES Cg

For any function g from GF(2m) to GF(2m) with g(0) = 0,
we define the following linear code

Cg = {Trm
1 (ag(x) + bx)x∈GF(2m), a, b ∈ GF(2m)}. (14)

When g is almost bent, by definition ag(x) + bx is semi-bent
for any a �= 0 and b. In this case it follows that the dimension
of the code Cg is 2m and Cg has only the following nonzero
weights:

2m−1 − 2
m−1

2 , 2m−1, 2m−1 + 2
m−1

2 . (15)

The weight distribution of the code Cg is given in Table II [6].
The following is a list of almost bent functions on GF(2m),

where m is odd.

1) g(x) = x2i+1, gcd(i, m) = 1 [17].
2) g(x) = x22i−2i+1, gcd(i, m) = 1 [24].
3) g(x) = x2(m−1)/2+3 [24].

4) g(x) = x2(m−1)/2+2(m−1)/4−1
, m ≡ 1 (mod 4)

[4], [18], [20].

5) g(x) = x2(m−1)/2+2(3m−1)/4−1
, m ≡ 3 (mod 4)

[4], [18], [20].
6) g(x) = x2i+1 + (x2i + x)Trm

1 (x2i+1 + x), m > 3 and
gcd(i, m) = 1 [1].

Hence, we have at least five families of linear codes Cg

satisfying the conditions of Theorems 7 and 8. These code-
books B(Cg)) were already described in [14]. Therefore, the
construction of Theorem 8 is an extension of the one proposed
in [14]. Note that each code Cg defined by an almost bent
function can be plugged into Theorem 7 to obtain 222m

codebooks that are asymptotically optimal with respect to the
Levenshtein bound.

C. A New Class of Codebooks Almost Meeting
the Levenshtein Bound

In [46], sets of bent functions meeting the requirements
in Research Problem 1 were constructed and employed to
construct codebooks meeting the Levenshtein bound of (2).
In this section, we modify the construction of bent func-
tions in [46], and obtain sets of semi-bent functions meet-
ing the requirements in Research problem 2, and will then
employ these sets of semi-bent functions to construct a
number of codebooks almost meeting the Levenshtein bound
of (2).

Let m = e� be odd, where e ≥ 1 and 3 ≤ � ≤ m,
and let k be a positive integer with gcd(k, m) = 1. Let
γ ∈ GF(2e) with γ �= 1. We define the following functions
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over GF(2m):

P(x) =
(m−1)/2

∑

i=1

Trm
1 (x2ki +1),

Q(x) =
(�−1)/2
∑

i=1

Trm
1 (x2eki +1),

fa(x) = P(ax) + Q(γ ax), a ∈ GF(2m).

Lemma 9: For every a ∈ GF(2m)∗, fa(x) is semi-bent.
Proof: Note that fa(x) = f1(ax) and semi-bent property

is preserved under affine transformation. It suffices to prove
that f1(x) is semi-bent. Nevertheless, we prefer to prove the
semi-bent property of fa(x) for every a directly.

The Walsh transform of fa(x) is given by

f̂a(w) =
∑

x∈GF(2m)

(−1) fa(x)+Trm
1 (wx),

where w ∈ GF(2m). We have then
(

f̂a(w)
)2 =

∑

x∈GF(2m)

∑

z∈GF(2m)

(−1) fa(x)+ fa(z)+Trm
1 (w(x+z))

=
∑

y∈GF(2m)

∑

x∈GF(2m)

(−1) fa(x)+ fa(x+y)+Trm
1 (wy)

=
∑

x∈GF(2m)

(−1) fa(x)+Trm
1 (wx)

∑

y∈GF(2m)

(−1)B fa (x,y),

(16)

where B fa (x, y) := fa(x) + fa(y) + fa(x + y). Since
gcd(k, m) = 1, it can be verified that

B fa (x, y)

= fa(x) + fa(y) + fa(x + y)

= P(ax) + Q(γ ax) + P(ay) + Q(γ ay)

+ P(a(x + y)) + Q(γ a(x + y))

= Trm
1

(

y
[

aTrm
1 (ax) + a2(1 + γ 2)x + aγ 2Trm

e (ax)
])

.

(17)

We now prove that the following linear equation

Trm
1 (ax) + a(1 + γ 2)x + γ 2Trm

e (ax) = 0 (18)

has exactly two solutions x ∈ GF(2m). Note that γ ∈ GF(2e)
and 1 + γ 2 �= 0. It then follows from (18) that ax ∈ GF(2e)
and

Trm
e (ax) = axTrm

e (1) = ax . (19)

Combining (18) and (19), we obtain

Trm
1 (ax) + ax = 0.

Hence, ax ∈ GF(2). Therefore, x = 0 and x = a−1 are the
only solutions of (18). It then follows from (16) and (17) that
( f̂a(w))2 ∈ {0, 2m+1}. Therefore, fa is semi-bent. �

Note that the weight of f1(x) can take on any of the three
elements in {2m−1, 2m−1 ±2(m−1)/2}, depending on m and the
choice of γ .

We will need the following auxiliary result whose proof is
given in the Appendix.

TABLE III

THE WALSH SPECTRUM OF f1(x)

TABLE IV

THE WEIGHTS AND MULTIPLICITY OF { f1(x) + Trm
1 (bx) : b ∈ GF(2m)}

Lemma 10: For any pair of distinct elements a and b in
GF(2m)∗, g(a,b)(x) := fa(x) + fb(x) is semi-bent.

We now define a binary code C by

C(e, �, γ, k)

= {( fa(x) + Trm
1 (bx))x∈GF(2m) : a and b ∈ GF(2m)}. (20)

Note that fa(x) depends on the selection of e, �, γ and k, so
does the code C(e, �, γ, k).

Theorem 11: The set C(e, �, γ, k) of (20) is a (2m, 22m)
binary code and the Hamming distance between any pair
of distinct codewords in C(e, �, γ, k) takes on one of the
following three values:

2m−1 − 2
m−1

2 , 2m−1, 2m−1 + 2
m−1

2 .

In addition, the weight distribution of the code C(e, �, γ, k) is
given in Table II.

Proof: By Lemma 9, fa(x)+ Trm
1 (bx) is either semi-bent

or linear. By Lemma 10, ( fa1(x) + Trm
1 (b1x)) − ( fa2(x) +

Trm
1 (b2x)) is either semi-bent or linear. The desired conclu-

sions on the Hamming distance follows from the size of the
support of semi-bent functions and linear functions.

We now prove the conclusion on the weight distribution of
the code C(e, �, γ, k). Note that f1(x) is a quadratic semi-bent
function. Then the Walsh spectrum of the Boolean semi-bent
function f1(x) is given in Table III [30, 441].

Hence, the weights of the following set

{ f1(x) + Trm
1 (bx) : b ∈ GF(2m)}

of Boolean functions and their multiplicities are given in
Table IV. It is easily seen that the Hamming weight of
the Boolean function fa(x) + Trm

1 (bx) is equal to that of
f1(x) + Trm

1 (a−1bx) for each a ∈ GF(2m)∗. The desired
conclusion on the weight distribution then follows. �

It is noticed that the codes C(e, �, γ, k) of (20) are not linear.
Thus, both linear and nonlinear codes meeting the conditions
of Theorem 7 are demonstrated in this paper. It is interesting
to observe that the nonlinear codes C(e, �, γ, k) of (20) have
the same weight distribution as the linear code Cg defined by
any almost bent function g on GF(2m).

The following theorem describes a class of binary nonlinear
codes, which may be viewed as an analogue of the Kerdock
codes for odd m, and derives directly from Theorem 11.
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TABLE V

THE WEIGHT DISTRIBUTION OF THE CODES IN THEOREM 12

Theorem 12: Define

C(e, �, γ, k) = C(e, �, γ, k) ∪ {1 + c : c ∈ C(e, �, γ, k)}.
Then C(e, �, γ, k) is a (2m, 22m+1, 2m−1 −2(m−1)/2) nonlinear
binary code with the weight distribution of Table V.

The following theorem then deduces from
Theorems 11 and 4.

Theorem 13: The set B(C(e, �, γ, k)) of the binary code
C(e, �, γ, k) of (20) is a (22m + 2m, 2m) codebook with the
maximum crosscorrelation magnitude

Imax(B(C(e, �, γ, k))) =
√

1

2m−1 .

We have the following comments on the construction of this
section.

1) Define

F(e,�,γ ,k) = { fa(x) : a ∈ GF(2m)∗}.
Then F(e,�,γ ,k) is a set of 2m − 1 semi-bent functions
such that the difference of any pair of distinct semi-bent
functions is also semi-bent.

2) For any odd m, we can choose (e, �) = (1, m). In this
case, the only choice for γ is γ = 0. This pair (e, �) =
(1, m) yields φ(m) codebooks B(C(e, �, γ, k)). This is
the maximum number of codebooks obtained for every
odd m ≥ 3. If m is a prime, then the total number of
codebooks obtained is at most φ(m), where φ(x) is the
Euler totient function.

3) In general, the total number of codebooks
B(C(e, �, γ, k)) produced by this construction is
at most

φ(m)
∑

�≥3, �|m
(2m/� − 1), (21)

which is a huge number for large m.

We inform the reader that the function
(m−1)/2

∑

i=1

x2ki +1 +
(�−1)/2
∑

i=1

(γ x)2eki +1

is not almost bent, according to our Magma test data. Hence,
the construction of this section is really different from the
construction of codebooks based on almost bent functions
presented in Section V-B.

VI. SUMMARY AND CONCLUDING REMARKS

The contributions of this paper are the following:

1) The binary nonlinear codes in Theorem 12, which can
be viewed as analogues of the Kerdock codes for odd m.

2) The generic construction of codebooks B(C) from binary
codes C described in Theorem 4.

3) The three bounds on binary codes documented in
Theorem 5, which are tight.

4) The extension of the previous construction of codebooks
with certain subcodes of the Kerdock codes. With this
extension the Kerdock code K(m) gives 222m−1

code-
books meeting the Levenshtein bound. Hence, this is an
substantial extension.

5) The generic construction of asymptotically optimal
codebooks from a special type of binary codes described
in Theorem 7. With this extension, a binary code with
required parameters produces 222m

such codebooks.
6) The construction of codebooks with a special type of

linear codes given in Theorem 8, which is an extension
of the construction of codebooks with almost bent func-
tions proposed in [14].

7) A new construction of codebooks that almost meet
the Levenshtein bound, which was documented in
Theorem 13. The number of binary codes and codebooks
produced by this construction is a huge number and is
given in (21).

8) Combining this construction and the extension of
Theorem 7, we obtain a total number of at most

222m
φ(m)

∑

�≥3, �|m
(2m/� − 1)

codebooks with the parameters and the maximum cross-
correlation magnitudes of Theorem 7, which almost
meet the Levenshtein bound of (2) and are asymptot-
ically optimal.

Though a lot of bent and semi-bent functions are available
in the literature, only a few sets of bent functions satisfying the
conditions in Research Problem 1 and a few sets of semi-bent
functions meeting the requirements in Research Problem 2 are
known. It would be interesting to construct more such sets of
bent functions and semi-bent functions.

Certain classes of binary linear codes in the literature may
be plugged into the construction of Theorem 4 to obtain
codebooks with good and new parameters. However, they may
not meet the Welch or Levenshtein bounds, as these bounds are
not tight in certain ranges. Below we present a few examples of
codebooks with new parameters from a few classes of binary
linear codes.

Theorem 14: Let m be even, and let n = (2m − 1)/3. Let
β = α3, where α is a generator of GF(2m)∗. Define

C(3, m) = {(Trm
1 (aβ i ))n−1

i=0 : a ∈ GF(2m)}.
Then the set B(C(3, m)) is a (2m+2 − 1)/3, (2m − 1)/3)
codebook with the maximum crosscorrelation magnitude

Imax(B(C(3, m))) =
{

2(m+2)/2+1
2m−1 if ≡ 0 (mod 4),

2(m+2)/2−1
2m−1 if ≡ 2 (mod 4).

(22)

The information about the linear code C(3, m) can be found
in [13].

Theorem 15: Let m be odd. Let C be a binary linear code
with length 2m−1 − 1 and dimension m such that

wmin = 2m−2 − 2
m−3

2 and wmax = 2m−2 + 2
m−3

2 ,
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where wmin and wmax denote minimum nonzero weight and
maximum weight in C, respectively. Then the set B(C) is
a (3 × 2m−1 − 1, 2m−1 − 1) codebook with the maximum
crosscorrelation magnitude

Imax(B(C)) = 2(m−1)/2 + 1

2m−1 − 1
.

Linear codes in [15] can be plugged into Theorem 15 to
produce codebooks with the parameters in Theorem 15. The
codebooks in Theorems 14 and 15 may have the best possible
parameters. But we need new and tight bounds to prove the
optimality of these codebooks. Hence, an important research
problem is to develop new and tight bounds on codebooks.

APPENDIX

PROOF OF LEMMA 10

Proof: The Walsh transform of the Boolean function
g(a,b)(x) is given by

ĝ(a,b)(w) =
∑

x∈GF(2m)

(−1)g(a,b)(x)+Trm
1 (wx),

where w ∈ GF(2m). We have then
(

ĝ(a,b)(w)
)2

=
∑

x∈GF(2m)

∑

z∈GF(2m)

(−1)g(a,b)(x)+g(a,b)(z)+Trm
1 (w(x+z))

=
∑

y∈GF(2m)

∑

x∈GF(2m)

(−1)g(a,b)(x)+g(a,b)(x+y)+Trm
1 (wy)

=
∑

x∈GF(2m)

(−1)g(a,b)(x)+Trm
1 (wx)

∑

y∈GF(2m)

(−1)
Bg(a,b)

(x,y)
,

(23)

where Bg(a,b)(x, y) := g(a,b)(x) + g(a,b)(y) + g(a,b)(x + y).
Note that

Bg(a,b)(x, y)

= B fa (x, y) + B fb(x, y)

= Trm
1

(

y
[

aTrm
1 (ax) + bTrm

1 (bx) + (a2 + b2)(1 + γ 2)x

+aγ 2Trm
e (ax) + bγ 2Trm

e (bx)
])

. (24)

We now consider the number of solutions x ∈ GF(2m) of
the following linear equation

aTrm
1 (ax) + bTrm

1 (bx) + (a2 + b2)(1 + γ 2)x

+ aγ 2Trm
e (ax) + bγ 2Trm

e (bx) = 0. (25)

Obviously, x = 0 is a solution of (25). If (25) would have no
nonzero solution x in GF(2m), then by (23) we would have

(

ĝ(a,b)(w)
)2 = 2m .

Note that |ĝ(a,b)(w)| is an integer. However, 2m is not a square,
as m is odd. This is a contradiction. Therefore, (25) has at least
one nonzero solution x ∈ GF(2m). Below we assume that x
is a nonzero solution of (25) and prove the uniqueness of x .

Let

u = Trm
e (ax) and v = Trm

e (bx).

Then (25) becomes

aTre
1(u)+bTre

1(v)+(a2 + b2)(1 + γ 2)x +aγ 2u + bγ 2v =0.

(26)

Since a �= b and γ �= 1, we have (a2 + b2)(1 + γ 2) �= 0.
It then follows from (26) that

x = aTre
1(u) + bTre

1(v) + aγ 2u + bγ 2v

(a2 + b2)(1 + γ 2)
. (27)

Put c = Trm
e ( a

a+b ). We have
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Trm
e ( b

a+b ) = 1 + c,

Trm
e ( a2

a2+b2 ) = c2,

Trm
e ( b2

a2+b2 ) = 1 + c2,

Trm
e ( ab

a2+b2 ) = c + c2.

(28)

By (27), we get

u =Trm
e (ax)=Trm

e

[

a2Tre
1(u)+abTre

1(v) + a2γ 2u + abγ 2v

(a2 + b2)(1 + γ 2)

]

,

which gives

u(1 + γ 2)

= Trm
e

[
a2

a2 + b2 Tre
1(u) + ab

a2 + b2 Tre
1(v)

]

+ Trm
e

[
a2

a2 + b2 γ 2u + ab

a2 + b2 γ 2v

]

= c2Tre
1(u) + (c + c2)Tre

1(v) + c2γ 2u + (c + c2)γ 2v

=
[

γ 2(u + v) + Tre
1(u) + Tre

1(v)
]

c2 +
[

Tre
1(v) + γ 2v

]

c.

(29)

Similarly, it follows from (27) and v = Trm
e (bx) that

v + Tre
1(v)

=
[

γ 2(u + v) + Tre
1(u) + Tre

1(v)
]

c2 +
[

Tre
1(u) + γ 2u

]

c.

(30)

If c = 0, then we deduce from (29) and (30) that

u = 0 and v + Tre
1(v) = 0.

Hence,

(u, v) = (0, 0) or (u, v) = (0, 1).

If (u, v) = (0, 0), we would have x = 0, a contradiction to
our assumption that x �= 0. When (u, v) = (0, 1), it follows
from (27) that

x = b

a2 + b2 ,

which is the unique nonzero solution of (25).
We now consider the case that c �= 0. In this case,

combining (29) and (30) yields

γ 2(u + v) + Tre
1(u) + Tre

1(v) = u(1 + γ 2) + v + Tre
1(v)

c
.

(31)
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Plugging the expression of (31) into (29) and (30) gives
{

u = c(u + v),

v + Tre
1(v) = (u + v + Tre

1(u + v))c.
(32)

We now claim that u + v �= 0. Otherwise, by (32) we would
have (u, v) = 0 and thus x = 0, which is contrary to the
assumption that x �= 0. Since u + v �= 0, we deduce from (32)
that

{

u = c(u + v),

(u + v)2 = uTre
1(u) + vTre

1(v).
(33)

Below we continue our discussion by distinguishing the
following four cases.

Case 1: (Tre
1(u), Tre

1(v)) = (0, 0)

If this case would happen, it would follow from (27) that

x = aγ 2u + bγ 2v

(a2 + b2)(1 + γ 2)
. (34)

By (28), we have

u = Trm
e (ax)

= γ 2u

1 + γ 2 Trm
e

(
a2

a2 + b2

)

+ γ 2v

1 + γ 2 Trm
e

(
ab

a2 + b2

)

= γ 2(uc2 + v(c + c2))

1 + γ 2 . (35)

Similarly, we have

v = Trm
e (bx)

= γ 2(u(c + c2) + v(1 + c2))

1 + γ 2 . (36)

Note that (35) and (36) form the following system of equations
{

(1 + γ 2)u = γ 2(uc2 + v(c + c2)),

(1 + γ 2)v = γ 2(u(c + c2) + v(1 + c2)).
(37)

If c = 1, then from (37) we deduce that (u, v) = (0, 0) and
then x = 0, which is a contradiction to our assumption that
x �= 0. Hence, c �= 1. If c + c2 �= 0, we can also assume that
u �= 0 and v �= 0, otherwise x = 0. Under these assumptions,
one can deduce from (37) that γ = 1, which is again a
contradiction to the assumption that γ �= 1.

In summary of the discussions above, we conclude that
Case 1 cannot happen if c �= 0.

Case 2: (Tre
1(u), Tre

1(v)) = (1, 1)

In this case, it follows from (33) that (u, v) = (c, 1 + c).
Plugging this (u, v) into (27) yields

x = a + b + aγ 2 + bγ 2(1 + c)

(a2 + b2)(1 + γ 2)
.

If the value of x above is equal to 0, we have reached a
contradiction. Otherwise, it is the unique nonzero solution we
are looking for.

Case 3: (Tre
1(u), Tre

1(v)) = (1, 0)

In this case, it follows from (33) that (u, v) = (c2, (1+c)c).
Plugging this (u, v) into (27) yields

x = a + aγ 2c2 + bγ 2c(1 + c)

(a2 + b2)(1 + γ 2)
.

If the value of x above is equal to 0, we have reached a
contradiction. Otherwise, it is the unique nonzero solution we
are looking for.

Case 4: (Tre
1(u), Tre

1(v)) = (0, 1)

In this case, it follows from (33) that (u, v) = ((1 + c)c,
1 + c2). Plugging this (u, v) into (27) yields

x = b + aγ 2c(1 + c) + bγ 2(1 + c2)

(a2 + b2)(1 + γ 2)
.

If the value of x above is equal to 0, we have reached a
contradiction. Otherwise, it is the unique nonzero solution we
are looking for.

In summary, (25) has only two solutions x ∈ GF(2m).
It then follows from (23) and (24) that

(

ĝ(a,b)(w)
)2 ∈

{0, 2m+1}. This completes the proof. �
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