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Two Families of LCD BCH Codes

Shuxing Li, Chengju Li, Cunsheng Ding, Senior Member, IEEE, and Hao Liu

Abstract— Historically, LCD cyclic codes were referred to as
reversible cyclic codes, which had applications in data storage.
Due to a newly discovered application in cryptography, there has
been renewed interest in LCD codes. In this paper, we explore
two special families of LCD cyclic codes, which are both BCH
codes. The dimensions and the minimum distances of these LCD
BCH codes are investigated.

Index Terms—BCH codes, LCD codes, linear codes, reversible
BCH codes.

I. INTRODUCTION

ET GF(q) be a finite field of size g. An [n, k, d] linear

code C over GF(q) is a linear subspace of GF(g)" with
dimension k and minimum distance d. A linear code C over
GF(q) is called an LCD code (linear code with complementary
dual) [26] if C N C+ = {0}, where C denotes the dual code
of C and is defined by

L= [ (bo, b1, ...,by—1) € GF(g)" :
S bici =0 VY (co,¢1yesenm1) €C |
An [n,k,d] linear code C is said to be cyclic if

oy Cnfl) eC implies (Cn,1 3 C0OsClyvvey Cnfz) e C.
., cn—1) € GF(q)" with

(co,c1s .-
By identifying each vector (co, c1, . .

co+cix +cax? -4 e x" ! e GE(q)[x)/(x" — 1),

a linear code C of length n over GF(g) corresponds to a
GF(g)-submodule of GF(g)[x]/(x" — 1). C is a cyclic code
if and only if the corresponding submodule is an ideal of
GF(g)[x]/(x"—1). Note that every ideal of GF(¢)[x]/(x"—1)
is principal. Then there is a monic polynomial g(x) of the
smallest degree such that C = (g(x)) and g(x) | (x" — 1).
In addition, g(x) is unique and called the generator poly-
nomial, and h(x) = (x" — 1)/g(x) is referred to as the
parity-check polynomial of C.
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Let f(x) € GF(q)[x] be a monic polynomial with degree /
and f(0) # O, then the reciprocal polynomial of f is
defined to be f(0)~'x!f(x~1). f is called self-reciprocal
if f(x) is equal to its reciprocal. A cyclic code C with
generator polynomial g(x) is called reversible if g(x) is self-
reciprocal. The reversibility implies if (co, c1,...,cn—1) € C,
then (¢,—1,cp—2,...,co) € C. We have the following lemma,
showing that LCD cyclic codes and reversible cyclic codes are
the same thing.

Lemma 1 [32], [21, Th. 4]: Let C be a cyclic code
over GF(q) with generator polynomial g(x). Then the fol-
lowing statements are equivalent.

1) C is an LCD code.
2) g(x) is self-reciprocal, i.e., C is a reversible cyclic codes.

3) B~ Vis a root of g(x) for every root B of g(x).

LCD cyclic codes were first studied by Massey for data
storage applications [25], under the name of reversible codes.
Massey showed that some LCD cyclic codes are BCH codes,
and made a comparison between LCD codes and non-LCD
codes [25]. He also demonstrated that asymptotically good
LCD codes exist [26]. Yang and Massey gave a necessary and
sufficient condition for a cyclic code to have a complementary
dual [32]. Using the hull dimension spectra of linear codes,
Sendrier showed that LCD codes meet the asymptotic
Gilbert-Varshamov bound [30]. Esmaeili and Yari analysed
LCD codes that are quasi-cyclic [17]. Muttoo and Lal
constructed an LCD cyclic code over GF(g) [28].
Tzeng and Hartmann proved that the minimum distance
of a class of LCD cyclic codes is greater than the BCH
bound [31]. Dougherty, Kim, Ozkaya, Sok and Solé developed
a linear programming bound on the largest size of an
LCD code of given length and minimum distance [16].
Carlet and Guilley investigated an application of
LCD codes against side-channel attacks, and presented
several constructions of LCD codes [9]. There are two well
known classes of LCD cyclic codes [24, p. 206], which are
Melas’s double-error correcting binary codes with parameters
[2" —1,2™ —2m — 1,d > 5] and Zetterberg’s double-error
correcting binary codes of length 2¢ 4+ 1. A well-rounded
treatment of LCD cyclic codes was given in [21]. In addition,
Boonniyoma and Jitman gave a study on linear codes with
Hermitian complementary dual [8].

The objective of this paper is to investigate basic
parameters of two families of LCD primitive BCH codes,
including their dimensions and minimum distances.
More specifically, in Theorems 18, 22, 35 and 42,
we determine the dimensions of LCD BCH codes
C(q’njza’%,§+l) and C(an’zdfl’n%lfdﬁ) with ¢ = ug™/?1 41
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if ¢ is odd, and with § = ug™/?1/2 4+ 1 if ¢ is even, where
m >4and 1 < u < g — 1. In Theorems 26 and 45, we
determine the dimensions of LCD BCH codes C(q,n,zg,%_(;_i_l)
and C(q,n,zé_l,%_éﬂ) when it has designed distance g’ — 1,
where 1 < t < [m/2]. In Theorem 49, we determine
the dimensions of LCD BCH codes C(4,5,26,n—6+1), With
2 <6 < g™tD/2 when m is odd, and with 2 < § < 2¢™/?
when m is even. In Theorem 53, we determine the dimensions
of LCD BCH codes C(y,n,26,n—6+1), With g being odd, m > 4,
0 =ug? +1and 1 < u < g — 1. In Theorem 56,
we derive lower and upper bounds on the dimension of
C(q,n,zg,n_(;_;_l), where 0 = qi and % < A1 < m-1
In Theorem 57 and Corollaries 58 and 59, we determine the
minimum distance of C(; n,26,n—s+1) in some special cases.
In Theorems 62, 63 and 64, we determine the parameters of
Cg,n,26,n—s5+1) wWhen ¢ is small. According to the tables of
best known linear codes (referred to as the Database later)
maintained by Markus Grassl at http://www.codetables.de/
and the tables of best cyclic codes documented in [13], some
of the codes presented in this paper are optimal in the sense
that given the length and dimension, the minimum distance
is the largest possible.

II. g-CycLoTtoMmIC COSETS AND BCH CODES

In this section, we introduce g-cyclotomic cosets and their
coset leaders, which will play a crucial role in our analysis of
LCD codes. Moreover, we give a brief review on BCH codes.

A. g-Cyclotomic Cosets

To deal with cyclic codes of length n over GF(g), we need
to study the canonical factorization of x" — 1 over GF(g).
To this end, we are going to introduce g-cyclotomic cosets
modulo n. Note that x” — 1 has no repeated factors over GF(q)
if and only if ged(n, g) = 1. Throughout this paper, we assume
that ged(n, g) = 1.

Let Z, = {0,1,2,---,n — 1} denote the ring of integers
modulo n. For each s € Z,,, the g-cyclotomic coset of s modulo
n is defined by

Cs = {s,59,5¢%, -+ ,5¢" Y mod n C Z,, (1)

where ¢ is the smallest positive integer such that ¢%ss = s
(mod n). Therefore, {5 is the size of the g¢-cyclotomic
coset Cy. We use cl(s) to denote the coset leader of C, which
is the smallest integer belonging to C;. Note that the subscript
of C, is regarded as an integer modulo n. Thus, we have
C_s = Cys.

B. BCH Codes

Let n be a positive integer with ged(n, g) = 1 and let m be

the smallest positive integer such that ¢” = 1 (mod n). Let
q" =

o be a generator of GF(¢™)* and put f = a5 Then pisa
primitive n-th root of unity. For 0 < i < n—1, let m;(x) denote
the minimal polynomial of 8 over GF(g). We use i mod 7 to
denote the unique integer in the set {0, 1,...,n — 1}, which is
congruent to i modulo n. Thus, we have m; (x) := m; mod n (x).
Next, we are going to introduce the BCH codes.
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Definition 2: For an integer 0 > 2, define

g(q,n,é,b)(x) = lcm(mh(-x)’ mp+-1 (-x)’ ) mb+§72(x))’

where lcm denotes the least common multiple of these poly-
nomials. Let C n s be the cyclic code of length n with
generator polynomial g4 n.6.p)(X). Then Cy pns,p) is called a
BCH code with designed distance o.

The famous BCH bound implies that the minimum distance
of Cy,n,5,b) is greater than or equal to the designed distance J.
We call Ciy,n,6,6) @ narrow-sense BCH code if b = 1. When
n=q" —1, Cy,ne,p) is called a primitive BCH code.

So far, we have very limited knowledge of BCH codes,
as the dimension and minimum distance of BCH codes are
in general open. The narrow-sense primitive BCH codes
form the most well-studied subclass of BCH codes, which
have been investigated in a series of papers in the literature,
including [1], [3], [4], [6], [7], [10]-[12], [14], [15], [20], [23],
[24], and [33]. The reader is referred to [15] for a recent survey
on known results of narrow-sense primitive BCH codes and
to [22] for some new results on narrow-sense nonprimitive
BCH codes. As pointed out by Charpin in [11], it is very
difficult to determine the minimum distance of BCH codes.
However, in some special cases, the minimum distance is
known.

Lemma 3 [5, p. 247]: For a narrow-sense BCH code
Cg,n,6,1) over GF(q) of length n with designed distance o,
its minimum distance d = 0 if 0 divides n.

The following corollary is a generalization of Lemma 3 and
will be employed later.

Corollary 4: Let C(y n.5,5) be the BCH code over GF(q) of
length n with designed distance 6. Then its minimum distance
d =0 if 0 divides gcd(n, b — 1).

Proof: Write
x"—1
c(x) = T
Since J | (b—1), we have c(/) = 0 foreachb < j < b+5—2
and J 1 j, where f is a primitive n-th root of unity. It then
follows that c(x) € Cy,n,s,p)- It is clear that the Hamming
weight of c(x) is equal to J. O

= xO0-DF 4. x5 1.

III. Two FAMILIES OF LCD PRIMITIVE BCH CODES

In this section, we introduce two families of LCD primitive
BCH codes, whose parameters will be analyzed subsequently.
From now on, we always assume that n = ¢ — 1, and use n
(respectively, 717) to denote [5] (respectively, [ 1).

For each integer 0 with 2 < ¢ < L"zilj, define

1Cm(x+1, g(q,n,é,%+1)(x)’ g(q,n,é,%f(é‘fl)) (-x))a

if n is even;
g(x) =
lcm(g(q,n,a,%)(x)’ 8 (gm0, —(6-1)) (x))’
if n is odd.
(2)
It can be verified that
. if n i :
. g(q,n,Zé,%f(éfl)) (x), if n is even )
if n is odd.

g(l],n,Zé—l,%_((;_l)) ()C),
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Let C(an’za‘j%,api,l) (resp. C(q,n,Z(Sfl,%f(SJrl)) be the
BCH code of length n with the generator polynomial
g(q,n,Zé,%—(é—l))(x) (resp. g(q,n,za—l,"—g'—(5—1))(x))' Note
that 2 < J < L%J ensures g(x) # x" — 1. Thus,

Clgn20.8-0+1) 7 10band C o5 mit sy 7 {0} Itis easy
to check that g(q,n,Zé,%f(SJrl)(x) and g(q,n,Z(Sfl,%féH»l)(x)

are self-reciprocal. Therefore, it follows from Lemma 1 that
C(q,n,zg,%_(;_i_l) and C(q,n,zé_l,n_;—l_é_'_l) are LCD BCH codes.

For each2 < J < L”THJ, define

8(g.n,26,n—o+1)(xX) = lem(g(g.n,6,1)(%), &(g,n,6,n—6+1)(X)).

Let C~(q,n,2(;,n_(;+1) denote the cyclic code of length n with
generator polynomial g4 n,26,n—6+1)(x). By Lemma 1,
C~(q,n,2(;,n_(;+1) is an LCD cyclic code. For the minimum
distance d of C~(q,n,2(;,n_(;+1), it was shown in [31] that

d=9o if | n,
d >0+ 1 otherwise.

Moreover, if we consider the even-like subcode of
C(g,n,26,n—s+1), namely, the code C(y n,25,n—5+1) With length n
and generator polynomial

8(g.n20,n—5+1)(X) = (x — 1)&(g.n,26,n—6+1)(X),

its minimum distance is at least 26 by the BCH bound.
Hence, a potentially great improvement on the minimum
distance is expected by considering the even-like subcode
of (f(an,ggjn,gﬁ). This intuition motivates us to study the
code C(¢,n,26,n—s+1)» which is an LCD BCH code.

We remark that the two families of codes above are
closely related. In fact, when ¢ is odd, C(an’za‘j%,api,l) and

C(4,n,26,n—6+1) are monomially equivalent [19, p. 24]. Let a be
the primitive element of GF(¢™). Note that C(q,n,zé,%_(;_;’_l)

has generator polynomial g(q w2505 1) (x). The parity-check
SN,20,7%5 —

matrix of C(q’njza’%,§+l) consists of rows with the form

o no n
(1,a2+1,a2(2+l)’a3(2+l)’.“
2j

,a=DG ) a(nfl)(%ﬂ'))
=(1,—al,a¥, =3, .. ., a7 gDy
where —0+1 < j < d—1. Meanwhile, the code C(; n,25,n—5+1)
has generator polynomial g(; »,25,,—s+1)(x). The parity check
matrix of C(y »,25,n—541) consists of rows with the form

(al a2 63, ., a®Di g0=Di)

where —0+ 1 < j < J — 1. Hence, the parity-check matrix of
C(4,n,26,n—5+1) can be obtained from that of C(q,n,z(;,%_(;ﬂ),
by multiplying —1 to some columns. Thus, C(q’njz(g’%,(pr])

and C(y,»,26,n—5+1) are monomially equivalent when g is odd.
Consequently, they have the same parameters, including the
dimension and minimum distance. It is worthwhile to note
that this equivalence does not hold in general for even q.

IV. PARAMETERS OF THE PRIMITIVE NARROW-SENSE
BCH CODES C(q,n,é,l)

In this section, we always assume that u is an integer with
1 <u < g — 1 and use notation as in Equation (1).
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Lemma 5 [1, Lemmas 8 and 9], [12, Th. 3]: Let m > 2.
Then we have the following.
1) When m is odd, for 1 < j < q"*V/2 |C;| = |C_;| =
m. For 1 < j < ¢q™tV/2 j is a coset leader of
a g-cyclotomic coset if and only if q 1 j.

2) Whenm is even, |Cymp 1| = [C_gmp_i| = Fand |Cj| =
|IC_jl = m for 1 < j <2¢™? j # q"?+ 1. For
1 < j <2g™2 jis a coset leader of a q-cyclotomic
coset if and only if q 1 j.

We present the size of each cyclotomic coset C; and
characterize all coset leaders j satisfying 1 < j < ug™ in
the following proposition, where m > 5 is an odd integer.

Proposition 6: Let m > 5 be an odd integer and let j be
an integer with 1 < j <uq™ and q { j, where | <u < q— 1.
Then the following holds.

D ICjl=m,

2) j is a coset leader of the cyclotomic coset Cj except

Jj € J1 U Jr, where

B 1§jl‘;l§u_19
Jnqd™ + j1g 4+ jo: 0 < j1 < jm, 4)
l<jo<g-1

J1 =

Jag™ + ja1g™ "+ o -
1 S jl‘;l S u— 15
I <jac1=<g-—1,
1 <jo=<jmn

3) [TULl=w—u)g-1).

Proof: For each j with 1 < j <ug™, let £ =|C;j|. Since

m is odd, we have 1 < ¢ < %if€<m.Formz9,onecan
check that

S = )

j<ijgt <nforalll<j<ug™,
which means that

jg"=j (mod n)
does not hold for each £ < m. Thus we have |C;| = m if
m>9.

For m € {5,7}, if |C;| < m, then |C;| = 1. Therefore,
gj = j mod n, which means that j = 0 mod qq—__ll. This is
impossible as j < L:II. Hence, |Cj| = m.

Below we characterize all coset leaders j satisfying
1 < j < ug™. To this end, we have to find all integers j
satisfying j € Cj, i.e.,

qu modn =i (6)

for some integer ¢ with 1 < £ < m — 1 and some integer
i < j.Leti and j be two integers with ¢ { i,q { j, and
i <j<uq™. ByLemmas, jisacoset leaderif 1 < j <g"
and g 1 j, so we can further assume that j > ¢™ + 1. Then
we have the two g-adic expansions

i =ing" +in194""" + - +ig +io
and

J=Jjaq™ + ja-1g" 4 jig + Jos
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where 1 <
0<in<jm-
Case 1: When 1 < £ < m — 2, it is easy to check that
i < jq’ <n, so (6) does not hold.
Case 2: When ¢ =m — 1, we have

io,jo < g—1,1 < jp < u—1, and

jqt = jag™ + ja1g" "+ 4 1g™ + jog™ !
i 5 — m+l
by noting that m = "=—. Then
. . m—1 . m+1 . m . m—1 .
Jjg- modn = ja_1qg" "+ 4 joq" "+ j19™ + joq" T + jin-

By (6), we obtain

Jm = o,

J:rhfl.:]'rh72="':]'2 =igo2=ip3=-=1i1 =0, )
J1 = 1lm,

Jo =lm-1.

Thus j = jag™ + j1g + jo.

Notice thati < j. Then i; < jz. We assert that the equality
im = Jm does not hold. Otherwise, it follows from (7) and
i < jthatisn_1 < jm—1 =0 and jo = i;—1 = 0, which is a
contradiction. We then deduce that 0 < j; = i;; < jm <u—1.
Write

_ lfjf;lfu_la
Jnqg" + j1g+ jo: 0 < j1 < jm,
I1<jo<g-—-1

J1 =

Then when £ = m — 1, (6) holds if and only if j € J;.
Case 3: When ¢ = m, we have

t

ja" = jng™ ™ + jao1q™ + -+ g™t

+ jog™.
Then
jg" mod n=jia_2q"™ "+ A 1"+ jog™ + jag + Ja-1.
By (6), we obtain
Jm =1,
Jm—1 =10,
Ji2=-=jo=jl =lg_1=lmz2=-=ir =0,
Jo=1im.

@)

Thus j = jmg™ + ja—14""" + jo.
Case 3.1: If i;;; < jp, it then follows from (8) that (6)
holds if and only if j € J>1, where

) ) Il <ja<u-—1,
Jng™ + ja—1g™  jor 1< a1 <q— 1,
1 <jo < jm

Jo =

Case 3.2: If i;; = jm and jz—1 > 0, it then follows from
(8) that (6) holds if and only if j € J, where

1§jl‘;l§u_19
+jo: 1< jn-1<q-—1,
jOZjﬁzzl

1

Joo = 1 jaq™ + ja-14™"

Case 3.3: If ij; = jm, jm—1 = 0, then ig = jz—1 = 0. This
is a contradiction to the assumption that 1 <ip < g — 1.
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Write

S = UJn
1<jan<u-—1,
+jo: 1< jan—1<q—1,
1§j0§jﬁl
Then when £ = m, (6) holds if and only if j € J;.
Case 4: Whenm +1 <€ <m—1, let { = m + ¢, where
1 <e <m-—2. Then

Jag™ + ja-14™!

ja' =

jﬁzqzﬁl-& + - J—e—19™ + jrﬁ—e—qu_l +- qu’;H—e
and

. L

jg® mod n

= ji—e—2q" "V jog™ T+ g o+ et
Note that jo > 1. Then jq€ mod n > i, which implies that (6)
is impossible in this case.

Combining Cases 1, 2, 3, and 4, we obtain the conclusion on

the characterization of coset leaders. Note that |J;| = |J»| =
u(uz_l) (g —1). Since J1 N J, =@, we have

171U L] = @ —u)(g — D).

O
Employing Proposition 6, we obtain the dimension of cer-
tain narrow-sense primitive BCH code.
Theorem 7: Let m > 5 be an odd integer and 6 =
uc]mT+1 + 1, where 1 < u < q — 1. Then the code C 5,1
has length n, dimension

k=g" —1—(ug"" —u>+u)g - ym,

and minimum distance d > J. Furthermore, the generator
polynomial is given by
[T mw,

m+1
1<j=<uq 2

q1j.j €J1UJ2

8g.n,)(X) =

where J1 and Jo are defined in Proposition 6.
Proof: The desired conclusions follow from Proposition 6
and the BCH bound immediately. d

Example 8: 1) When (q,m,u) = (2,5,1) in the
theorem above, the code Cyns1) has parame-
ters [31, 11, 11]. According to the Database, it is an
optimal code in the sense that the minimum distance of
each binary linear code with length 31 and dimension 11
is no larger than 11.

2) When (g,m,u) = (2,7,1) in the above theorem, the
code Cg ns,1) has parameters [127,71, 19], which are
the best known parameters for linear codes according
to the Database.

The following proposition gives the size of each cyclotomic
coset C; and characterizes all coset leaders j satisfying
1 <j <uqg™, where m > 2 is an even integer.

Proposition 9: Let m > 2 be an even integer and let j be
an integer with 1 < j <uq™ and q { j, where | <u < q— 1.
Then the following holds.
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1) |Cjl = m, except |C,,giny1)| = m, where 1 <v <u—1.
2) j is a coset leader of the cyclotomic coset C; except
j € J, where

J=Ung" +jo:1<jo<ja<u—15 (9
3) |J| — (u—l)z(u—Z).
Proof: Let i and j be two integers with ¢ 1i,¢q t j, and

i < j < uq™. Suppose that j € C;. Then there exists some

integer £ with 1 < ¢ < m — 1 such that
jg‘ modn =i. (10)

By Lemma 5, j is a coset leader if 1 < j < 2¢™ and ¢ 1 j,
so we can further assume that j > 2q’;' + 1. Then we have
the two g-adic expansions
i =ing™ +im1g" "+ +i1g +io
and
J=Jnd" + ja-1a""" -+ g + o,
where 1 <ip,jo<qg—1,2=<jp<u—1,and 0 <ip < jpm.
Case 1: When 1 < ¢ < m — 1, it is easy to check that

i < jgq’ < n, so (10) does not hold.
Case 2: When ¢ = m, we have

ja' = jag™ + jao1g™ " 4+ g™+ g™
Then
ja‘ modn = ja_1g" " -+ j1g™ N+ jog™ + jae
By (10), we obtain
Jin = io,
Jn—1=jin—2=-=j1 =lp-1=Ip—2---=i1 =0, (11)
Jo = -

Thus j = jag™ + jo.
Case 2.1: If ij; < jg, it then follows from (11) that (10)
holds if and only if j € J, where

J={jng™ + jo: 1< jo < jm Su—1},
Case 2.2: If i, = jm, since im—1 = --- = i1 = 0, we have
io < jo. Then
o < jo=1im = jm = io,
which is a contradiction. Thus (10) does not hold.

Case 3: Whenm +1 <€ <m—1, let { = m + ¢, where
1<e<m-—1.Then

quzj’;lqz’;""f_}_. . '+jr71—€qm+jr71—e—16]m_l+' . '+j()q’;l+€.
Then
jgt modn = ja_c1q™ M+ 4 j1g" T+ jog™ e
+iaq€ + ja—1g A+ e

Note that jo > 1. Then jg‘modn > i, which implies
that (10) is impossible in this case.

Summarizing all the discussions in Cases 1, 2, and 3, we
get the desired conclusion of 2). It is easy to see that

jqf mod n > j
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in both Cases l_and 3. In Case 2, we have C; = m if and
only if j = jizg™ + jo and jo = jz. Then we proved 1). It is
clear that |J| = (”—AM This completes the proof. O

Employing Proposition 9, we can obtain the dimension of
certain narrow-sense primitive BCH code.

Theorem 10: Let m > 2 be an even integer and
0=uq? +1, where 1 <u < q — 1. Then the code Cy ns,1)
has length n, dimension

n —1)?
k:qm—l—uqffl(q—l)m—}-(ui)m

>

and minimum distance d > 0. When u = 1, we have d = 6.
Furthermore, the generator polynomial is given by

[T mi.

m

1<j<uq?
ali.j¢J
where J is defined in Proposition 9.

Proof: When u = 1, it is clear that J|n. The desired
conclusions then follow from Lemma 3, Proposition 9 and the
BCH bound. O

Example 11: 1) When (g, m,u) = (2,4, 1) in the above
theorem, the code C(q4 n51) has parameters [15,7,5].
According to the Database, it is an optimal code in
the sense that the minimum distance of each binary
linear code with length 15 and dimension 7 is no larger
than 5.

2) When (g, m,u) = (3,4,1), (3,4,2) in the above theo-
rem, the code C(y ns,1) has parameters [80, 56, 10], and
[80, 34, 20], respectively. The former has the best known
parameters for linear codes according to the Database.

8o n(x) =

V. PARAMETERS OF LCD BCH CODE
Cig.n,26,2—s+1) WHEN g 1s ODD

In this section, we always assume that ¢ is odd and use
notation as in Equation (1). Unless otherwise stated, u is an
integer with 1 < u < g — 1. The following proposition will be
used later.

Proposition 12: Let q be odd and m > 2. Then we have
the following.

D |Ciyil = ICi| = |C-i| = |Cail.

2) |Cigqil = |Citil and |Cii—gi| = |Cii-il.

3) Ci =Cj if and only if Ciyi = Ciyj.

4) C,‘ = Cj lfand only lfCﬁ_,' = C,‘,_j.

Proof: The proofs of 1) and 2) are obvious. Note that g is
odd. It is clear that

% +i= (% + /)¢’ (mod n),

is equivalent to
i=jq" (mod n)

for each ¢ with 0 < ¢ < m — 1. Then the conclusions
of 3) and 4) follow. ]
Let 1 <u <g — 1 be an integer. Define
U Ci—j,

U Givjand Jg, =
1<j<ug™

1<j<ug™

+ _
Ty =
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where g is odd. It can be deduced from Proposition 12 that
Citi # Ciyj and Cj—; # Cj—; if and only if C; # C;. The
following corollary then follows from Propositions 6 and 9
directly.

Corollary 13: Let q be odd and let j be an integer with
I <j<ug™

) If m =5 is odd, then |Cpy | = |Ci—j| =m and

1 i) = igma) = g™ —u” +u)(g — Dm.

2) If m = 2 is even, then |Cyyj| = |Ci—j| = m except
j = l)(qm + 1) with ICr_l—H)(q'h-i-l)' = ICﬁ—D(q’;’+l)| = %,
where v = 1,2,...,u — 1. In this case,

_ - (u —1)2
|J(_‘|l—,">u)| = |J(q,n,u)| = uqm 1(6] —1ym———m

Theorem 14: Let m > 2 be an integer and 6 = uq™ + 1.
1) If m > 5 is odd, then C(q,n,é,%+l) and C(an’dj%,(g,l))
both have length n, dimension

k=g" —1—(ug"T =i +u)(g - m,

and minimum distance d > J. In addition, the generator
polynomials are given by
I mu . j(x)

m+1
I<j<uq 2

qtj.j €J1UJ

8(gn.0,2+1)(X) =

and

H mu_j(x),

. m+1
1<j<uq 2

q1j.j €102

8(g.n,0,8——1)(x) =

where J1 and J» are defined in Proposition 6.
2) If m > 2 is even, then C(an’dj%ﬂ) and C(an’djg,(d,l))
both have length n, dimension

n —1)?
g" —1—uq? (g - Hm+ um

>

and minimum distance d > 6. In addition, the generator
polynomials are given by
I1 mayj(x)

m
1<j=<uq?
ati.j¢d

8o, 2+1)(X) =

and

H mu_j(x),
1<j<ug?
ati.j¢J
where J is defined in Proposition 9.
Proof: The proof follows from Corollary 13 and the BCH
bound, and is omitted here. O
Example 15: 1) When (g, m,u) = (3,5,1),(3,5,2) in
the above theorem, the code C(, 51y has parameters
[242,152,d > 28] and [242, 82,d > 55], respectively.
2) When (q,m,u) = (4,4,1),(4,4,2),4,4,3) in the
above theorem, the code C 51y has parameters
[255,207,d > 17], [242,161,d > 33], and
[242,119,d > 49], respectively.

8(g.n.0.8—@-1)(X) =
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A. Parameters of C(an’za‘j%,(pr]) When m is Odd

The following proposition plays an important role in deter-
mining the dimension of the BCH code C(q,,,,z(;,%_(;ﬂ) when
m=>5isodd and 0 = ug"? + 1, where 1 <u <gq — 1.

Proposition 16: For odd m > 5, we have

+ - _ _ _
J(an’u) N J(an’u) = U (Cn+l U Cnfl),
leJo

where the union is disjoint and

Ling™ + Lin—1g™ 1+ q™ ! —q +1p :
0<l <u-—1,
0<lp-1<q-2,
gq—u=<lp<q-1

Jo =

Moreover,

+ - 2
IJ(q,n,u) N .{(q,n,u)| =2u (q. — Dm. ' o
Proof: We are going to find the integers i and j with
1 <i<ug™and 1 < j <ug™ such that
Ciiyi = Cq—j.
This is equivalent to
ii+i =@ — j)g° (modn)andi+jg=0 (modn) (12)

for some 1 < ¢ <m — 1.
By Proposition 12, we can further assume that ¢ 1 i and
q 1 j. Then we have the g-adic expansions
i =ing" +in-1q" " 4+ ig + o
and
j=ind" + jam1q" "+ jig + o,
where 0 < ip,jm < u—1,1 < ig,jo < g — 1, and
O<ix,jx<g—1forall k withl <k <m—1.
Case 1: When 1 < ¢ < m — 2, it is easy to check that
0 <i+ jq' < n by noticing that j, <u—1<g —1, so
i + jg* =0 (mod n) does not hold.
Case 2: When ¢ = m—1, it can be verified that i + jg’ = A
(mod n), where
A=jaag" "+t 2g™ T+ G+ in)g™
+o +im-1g" " +in2g" 7+ +irg + (o + jin)-
It is clear that 0 < A < 2n. It then follows from (12) that
A = n. Thus

Ji—1=-=Jjo=j1+in=jo+im-1
=igo=--=i1=i0+ja=qg— 1
Then

Y@ -D@" 2+ + 4>+ q) +io,

i =ing™ +in_14™"
where
0<im<u—-1,0<ip1<g—2, andg—u=<ip=<g-—1

Hence, there exists exactly one integer j with 1 < j < ug™,
such that

Citvi = Ci—j,
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if and only if i has the above form. Therefore,
+ —_
Tgmw N ignu 2 U Citi-
leJo
Case 3: When ¢ = m, we have i + jg' = A (mod n),
where
A= jaag" '+ 4 1™+ o +im)g”
+in—19™ 7+ -+ ing® + G+ i0)g + Gia—t + o).
Notice that 0 < A <2n. If A =0 (mod n), then A =n and

Thus
J=Jaq"+ja19"""+q - D@+ + 47+ q) + jo,
where
O<jmn=u—-1,0=<jp1=<qg—2 andg—u=jo=<q-—1

Hence, there exists exactly one integer i with 1 <i < uq’;’,
such that

Civi = Ci—j,
if and only if j has the above form. Therefore,

+ - _
J(q,n,u) n J(q,n,u) 2 U Ci—t-
leJo
Case 4: When m+1 <€ <m —1, write { = m + ¢, where
l<e<m—2 Theni+ jg! = A (mod n), where

A= jﬁl—e—2qm_1 +---+ j()qn_H—E + iﬁlqn_l
ig1g"m N 4 Fieagt?
Flier1+Him)g T 4 G+ Jiam)g + o+ Jae1).

It is easy to see that the coefficient of ¢ in the g-adic
expansion of A is less than ¢ — 1. Thus we have 0 < A < n,
which means that (12) is impossible.

Note that Cases 1, 2, 3, and 4 contain all possible pairs
(i, j),suchthat 1 <i,j < uq”_1 and Cj1; = Cj—j. Thus, we
have J(J(;jn’u) N J(;,n,u) = Ulejo (Ciix1 U Cii_;). Next, we are
going to show that this union is disjoint. By Proposition 6, each
[l € Jo is a coset leader and |Cji+;| = |Cii—;| = m. Hence,
by Proposition 12, we have Cjy; # Cjqy and Ci—; # Cj_y
for distinct [, € Jp. In addition, suppose Ciy; = Ci_y.
If Il € Jo, by the arguments in Case 2, we have

U'=1q"+(@q—1D)@" "+ +q>)+1qg+1,
where
0<lzy<u—-l,g—u<lj<qg—1,1<[j<q—1.

Hence, I ¢ Jo. Similarly, if I’ € [Jp, by the arguments
in Case 3, we must have | ¢ Jp. Therefore, the union
UleJO(CﬁH U Cji—;) is disjoint and |J(Z,n,u)
2m|Jo| = 2u(q — Dm.

Remark 17: Let m > 5 be an odd integer. Let 1 < i,
j < ug™ be two integers with q-adic expansions

(g =

O

i=inq" +in14""" + - +ig +io

5705

and
J=Jjaq™ + ja-1g™ -+ jig + o

The proof of Proposition 16 shows that there exists a unique
1 < j <uq™, such that

i—i—jq[EO (mod n)

for some 1 < € <m — 1, if and only if one of the following
holds:

e i €Jo,jg hULUJo with

Ja-1="--=jp=j1 +im = jo+im-1
:l’;l_2::llzlo+1r'—1:q_l
e i g J1UNLUJp,je Jo with
Ji2=-=Jj1=Jo+in=lz—1="--=102

= jm +i1 = jm—1+io=qg — 1.
We remark that this result does not depend on the parity of q
and n. Namely, the above result is true when q is odd, n is
even or q is even, n is odd.

The following result gives the dimension of the LCD code
C(q’njza’%,§+l) when m > 5 is odd and 6 = uq% + 1, where
l<u<g-1.

Theorem 18: Let m > 5 be an odd integer, q odd, and
0= uqu+I + 1, where 1 < u < q — 1. Then C(q,n,zé,%_(;_;’_l)
has length n, dimension

_ . m _n _ ’"—_'_ 2 _
k=gq 2 —2(uqg 2 2u” +u)(g — Dm,

and minimum distance d > 20. In addition, the generator
polynomial is given by

gx)=(x+1)
m+1
1<l<uq 2

q'fl,l¥]|UJ2UL70

my g (Dmy_(x),  (13)

where Jy, Jo are defined in Proposition 6 and [Jo is defined
in Proposition 16.

Proof: Let1 <i,j < uq be two integers satisfying
C§+i = C%_j. By Remark 17, we must have either i € Jp,
jeE€NhUhUJgorje Jo,i & J1UJUJp. Together
with Theorem 14, we can see that the generator polynomial
is given by (13), and its degree is equal to 1 + 2(uc]mz_1 —
2u® + u)(g — 1)m. Hence, the dimension follows easily. The
minimum distance d > 26 follows from the BCH bound. [

Example 19: When (q,m,u) = (3,7,1),3,7,2) in
the above theorem, the code C(q,n,Zé,%—5+l) has parame-
ters [2186,1457,d > 164], and [2186,841,d > 326],
respectively.

m+1
2

B. Parameters of C(an’za‘j%,(pr]) When m is Even

To investigate the parameters of the LCD BCH code
C(q,n,zé,%_(;_i_l) when m > 2 is even, we will need the

following conclusion.
Proposition 20: Let m > 2 be an even number. Suppose
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Then we have

+ - _
J(qan’u) n J(qan’u) - U Cii—t,
leJE

where the union is disjoint and

7, = [l +a" —a+lo:
O<lp<u—-landgq—u<lp<qg-1|"

Moreover,

+ - _ .2
|J(q,n,.u) N J(q,n,u)l =u m .
Proof: We are going to find all the integers i and j with
1 <i<uqg™and 1 < j <ug™ such that

Civi = Cq—j.
This is equivalent to
i+i=@—j)g° (modn)andi+ jg‘=0 (modn)

for some 1 < ¢ <m —1.
By Proposition 12, we can assume that g { i and ¢ { j.
For i, j < uq"_l, let

i=inqg" +in194""" + - +ig +io

and

j=jnq™ + ja—1q""" + -+ jrg + jo.
where 0 < i, jm < u—1,1 < ipjo < g — 1, and
O<ip,jr<qg—1foralll <k<m-—1.

Case 1: When 1 < ¢ < m — 1, we can easily see that
0<i+jg' <nas jj <u—1<g—1, which implies that
i+ jg* =0 (mod n) does not hold.

Case 2: When ¢ = m, it can be verified that

i+jg‘=A (modn),

where
Yt g™+ Go +im)g™
Fino1gm T o H g + (o + ja).

A= ja-19""

Notice that 0 < A <2n. If A =0 (mod n), then A =n and
Ja1=-=j=jotig=ia_1=--=i1=io+ ja=q — L

Thus

J=ind™ +(@—D@" " +q" T+ +q) + Jjo.
where

O<ja<u—landg—-u=<jo<qg-—1

Hence, there exists exactly one integer i with 1 <i < uq’;’,
such that

Citi = Ci—j,
if and only if j has the above form. Therefore,

+ — _
J(qan,u) n J(qan,u) > U Cii—1.
leJE
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Case 3: Whenm +1 <€ <m—1, let { = m + ¢, where
1 < e < m—1.Then one can check that i+ j¢g’ = A (mod n),
where

A=jic1q" "+ jog" T iag" 4 +iengt!
+(ic + jin)g© + -+ (o + ji—e)-
Note that the coefficient of ¢ in the g-adic expansion of A is

equal to i <u—1 < g —1. Then 0 < A < n, which means
that

(i +jg-)modn=A%£0 (modn).

Note that Cases 1, 2 and 3 contain all possible pairs (i, j),
such that 1 <i,j < uq"_’ and Cj4; = Cj—j. Thus, J(“;,n,u) N
J(;,n,u) = UleJE Cr—;. By Proposition 9, each [ € Jg is a
coset leader and |Cj;—;| = m. In particular, when m = 2, we
needl <u < % to ensure that each [ € Jg is a coset leader
and |Cj—;| = m. Hence, by Proposition 12, we have C;—; #
C;_y for distinct I, I’ € Jg. Therefore, the union UleJE Ci_i

. e . + — _ _ 2
is disjoint and |J(q,n,u) N J(q,n,u)| =m|Jg| = u"m. O

Remark 21: Let m > 2 be an even number. Suppose

Let 1 <i,j <uq™ be two integers with g-adic expansions
i =ing" +in-1q™ " 4o+ ig + o
and
J=iag™+ jn-1a"""+ -+ jig + jo.

The proof of Proposition 20 shows that for 1 < j < ug™,
there exists a unique 1 <i <uq™, such that

i—i—jq[EO (mod n)
for some 1 <€ <m—1, ifand only if i, j € Jg with
Jn—1=+=j1=jotim=in-1=+=i1=io+ ja=9qg — L.

We remark that this result does not depend on the parity of q
and n. Namely, the above result is true when q is odd, n is
even or q is even, n is odd.
Theorem 22: Let q be odd and m > 2 be even. Let 6 =
uq% + 1, where
l<u<%l ifm=2
l<u<g-—1 ifm=>4.

Then C(an’za‘j%,api,l) has length n, dimension
k=q" —2—2uq? (g — Dm + Qu® = 2u + ym,

and minimum distance d > 290. In addition, the generator
polynomial is given by

g =G+ [ mu@ [] mia,
151514(]%l 151514(]%l
qtllgJ gl I€JUTE

where J is defined in Proposition 9 and Jg is defined in
Proposition 20, respectively.
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Proof: By Remark 21, if for 1 < i,j < ud?, Ciy; =
Cii—j, then i, j € Jg. Note that J N Jg = . The dimension
and the generator polynomial follow from Theorem 14 and
Proposition 20. The minimum distance d > 26 follows from
the BCH bound. O

Example 23: When (q,m,u) = (5,2,1) in the above
theorem, the code C(s 24,12,7) has parameters 24,9, 12], which
are the best known parameters for linear codes according to
the Database.

Corollary 24: Let u = 1 and 6 = q% + 1, where ¢ = 3
(mod 4) and m =2 (mod 4). Then the true minimum distance
of the code C(q’njz(g’%,(pr]) presented in Theorem 22 is equal
to 290.

Proof: Note that b = 5 — ¢ + 1. It is easy to check that
25 | ged(n, b — 1) in this case. The conclusion then follows
from Corollary 4. 0

Example 25: When (g, m,u) = (7,2, 1) in the above corol-
lary, the code C(7.48,16,17) has parameters [48, 25, 16], which
are the best known parameters for linear codes according to
the Database.

C. Parameters of C(q,n,Zé,%—5+l) With Designed
Distance q" — 1, Where 1 <t <m
The dimension of the LCD code C(q’njz(g’%,(g +1) is described
in the following theorem when C(q’njz(g’%,(g +1) has designed
distance 26 = g’ — 1 for an integer ¢ with 1 <t < .
Theorem 26: Let q be odd and m > 2. Suppose
C(q’njz(g’%,(pr]) has designed distance 26 = q' — 1, where
1 <t <m. Then C(an’za‘j%,api,l) has length n, dimension

k=q¢"-2—("—q¢" ' —=2m

and minimum distance d > q' — 1.
t
Proof: Setd = q—;l. Recall that the generator polynomial
of the code C(q,n,z(;,rz,z_(;ﬂ) is g(q,n,zg,%_((;_l))(x), we have

deg(8(g.n,26,8—(5-1))(x))

=1t ’(Ulijsé—l Cﬁ“) ﬂ (U1§j56—1 Cﬁ*j)"

It follows from Propositions 16 and 20 that

U gyl U cij)=»

1<j=<d—1 1<j<d—1

(14)

for each integer m with m > 2 and m # 3. Using Remark 17,
it can be checked that (14) also holds for m = 3. It then
follows from Lemma 5 that

deg(8(g.n,25,2~5-1)) (X)) = @ —q'""" = 2)m+1 for 1<t <m.

Thus, the dimension is obtained. Moreover, d > g’ —1 follows

from the BCH bound. [l

Example 27: 1) When (q,m,t) = (3,5,1),(3,5,2),

(3, 5,3) in the above theorem, the code C(q’njz(g’%,(pr])

has parameters [242,241,2], [242,221,8], and

[242, 161, 26], respectively. All of them are the best

known parameters for linear codes according to the
Database.
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2) When (q,m,t) = (3,4,1), (3,4,3) in the above theo-
rem, the code C(q,n,zé,%_(;_;’_l) has parameters [80, 79, 2]
and [80, 63, 8], respectively. Both of them are the best
known parameters for linear codes according to the
Database.

In the above theorem, each triple (g,m,t) satisfying
(g.m) € {(3,2),(3,3),(3,4),(3,5),(5,2),(7,2)} and 1 =
t < m has been tested in numerical experiments and the
experimental results suggest the following conjecture.

Conjecture 28: The code C(q’njz(g’%,(pr]) in Theorem 26 has
true minimum distance q' — 1.

VI. PARAMETERS OF LCD BCH CODE
C(q,n,z(;_l,%l_éﬂ) WHEN ¢ 1S EVEN

In this section, we always assume that ¢ is even and use
notation as in Equation (1). Unless otherwise stated, u is an
integer with 1 < u < g — 1. The following proposition will be
used later.

Proposition 29: Let q be even and m > 2. Then we have
the following.

D) |Ciitil = |Coit1]| and |Ci—i| = |Cai-1].

2) GCriy1 = Caj41 if and only if Ciiyi = Ciyj.

3) Coi—1 = Cyj—1 if and only if Cz—; = Cii—;.

Proof: The proof of 1) is trivial. Since ¢ is even and
ged(2,n) = 1, it is clear that
1 1
n—;— +i= (n; + /)¢’ (mod n),

which is equivalent to
2it1=2j+ g’ (modn)

for each £ with 0 < £ < m — 1. Conclusions 2) and 3) then
follow. O
Let 1 <u <g — 1 be an integer. Define
U Ci—j,

q.n,u U
J( > )
0<_j_<uq /2 1 1<_j_<uq /2

Ciyj and f(;,n,u) =

where ¢ is even.

A. Parameters of C(q,n,z(;_l,nTH_(;H) When m is Odd

In this subsection, we always assume that m > 5 and m is
odd. It can be deduced from Proposition 29 that C4; # Ciiyj
if and only if C2;11 # Czj41 (resp. Ci—; # Cj—j if and only
if Cyi—1 # Czj—1). Let J1 and J, be the sets of integers that
are not coset leaders, which are given by (4) and (5). Note
that 1 < 2j4+1 < ug™—1if 0 < j < ug™/2 — 1 and
1<2j—1<uq™—1if 1 <j <ug™/2. Therefore, we have

-y e B
IJ(q,n,u)| - |J(q,n,u)| =1 U Cil.
lflfuq’;’—l
Todd

By Proposition 6, we have |C;| = m foreach 1 <[ < uq’ﬁ— 1.
When m > 5, by the definition of J; and J, in Proposition 6,
if j € J1UJy, then |C; N (J; U Jp)| = 1. Thus, we have

. e
|J(tmm)' - |J(tmm)' )
=m|{l <1 <uqg™ —1:1is an odd coset leader}|
+m{l<l<ug™—1:1e Ul

is odd and cI(/) is even}|.
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Define
Ai=A1(u,m)=|{1<j<ug™—1:] is an odd coset leader }|
5)
and
Joi=lo(w,m)=1{1<j<ug™—1:jehUh
is odd, cl(j) is even}|. (16)

It then follows that

- _
|J(q,n,u)| = |‘](q,n,u)| = (A1 + A2)m.

Lemma 30: Let q be even and m > 5 be odd. Then the
following holds.

a7)

Y
uq" /2 — W —u)q /4 —u(q — 1)/4,
_ if u is even;
uq™ /2 — W —u)q /4 — W = 1)(g — 1)/4,
if u is odd.
2)

_ (u? —u)g —u?)/4, ifuis even;
@ =g -1)/4, ifuisodd.
Proof: Notice that ¢ is even. It then follows from
Proposition 6 and (15) that

M=uq"2—|{jeJi:jisodd}| —|{j € Jo: j is odd}|.
By (4) and (5), it is easy to see that

I{j € Ji:]is odd}]
_ lfjf;lfu_l,
=|1Jjag" + j1g + jo: 0 < j1 < jm,
1< odd jo<g-1

W?* —u)q/4
and

if u is even;
if u is odd.

w’(q —1)/4,
W —1)(g - 1)/4,

Then we prove the conclusion on 4.
Define

I{j € Jp: ] is odd}| :[

CLi = {cl(j): j € Ji} and CLy = {cl(j) : j € Jo}.
By Proposition 6, we have

1<jan<u-—1,

CL; = { 19" + jog™ " + ja: 0 < ji < jm,
l<jo<g-1
and
_ 1§jl‘;l§u_lﬂ
CLy = {joq" + jag + jm-1: 1 < jm—1 <q—1,

1< jo=<jmn
It then follows from (16) that
Ay = I{f € Ji : jo is odd and jj; is even}|
+|{f € Jo: jo is odd and j;—1 is even}|.
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One can easily check that

_ (w? —u)g —u?)/4, if u is even;

Tl = 1)(g-1)/4, ifuis odd.
This completes the proof. U
The following proposition follows from Lemma 30 and (17)

directly.
Proposition 31: Let m > 5 be odd. Then

(ug™ )2 — ulq/8)m, if u is even;
uq"_’/Z—(uz—u)q/4)m, if uis odd.
Theorel?i 32: Let m > 5 be an odd integer, q even, and
S=ug" 2+ 1.
1) If u is even, then C(q’nja’nT-H) and C(q,n,d,"—'z*'lf(dfl)) both
have length n, dimension

.y -
g =1 g =

q" — 1= (ug"? /2 —ulq/H)m,

and minimum distance d > 0.
2) If u is odd, then 'C(q,n,'(S,"TH) and C(q’nj(s’n%lf(afl)) both
have length n, dimension

k=q¢"—1- (uq%ﬂ— (u* - u)q/4)m,

and minimum distance d > 0.
Proof: The desired conclusions follow from Proposition
31 and the BCH bound directly. O
Example 33: 1) When (g, m,u) = (2,7, 1) in the above
theorem, the code C(an’djn_;—l) (or C(q’nja’nT-Hi(ail))) has
parameters [127,71,19], which are the best known
parameters for linear codes according to the Database.

2) When (q,m,u) = 4,5,1),(4,5,2),(4,5,3) in the

above  theorem, the  code C( g8, 750 (or
C(q,n,é,”T“—(é—l))) has parameters [1023, 863, d > 33],
[1023,723,d > 65], and [1023,573,d > 97],
respectively.

The following conclusion will be employed to determine
the dimension of the code C(q,n,za_l,nT-H_(;_i_l) when m > 5 is
odd.

Proposition 34: For odd m > 5, we have

U Cit-1)2Y Ci—+1),2
leJo

. ~
Ty N gy =

where the union is disjoint and

Lag™ 4+ li—1g" Vg —q 1o
= 0<lp<u-—1,

Jo = 0< evenlyp_1 <q -2,
g—u<oddlp<qg-—1
Moreover,
2
Ge g s e
(g,n,u) (g,n,u) u(u+21)qm lfu is odd.

Proof:  We are going to find the integers i and j with
1 <i<ug™and 1 < j <ug™ such that

Ciiyi = Cq—j.
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This is equivalent to
Qi+1)+Q2j—1)g" =0 (modn)

for some 1 < ¢ < m — 1. Recall that in }_lemark 17, form > 5
being odd, the integers 1 < iy, j1 < uq™ satisfying

i1+ jig =0 (mod n)

have been characterized. Using this result, we can further
characterize the odd integers i1 and j; satisfying i; = 2i + 1,
j1 =2j — 1 such that

Cii+i1-1)2 = Cii—(j1+1)/2-

The remaining part of the proof follows from Remark 17 with

a straightforward calculation. U

Theoreml35: Let m > 5 be an odd integer, q even, and
m+

0 = uq 2 /2 + 1. Then C(qnz(s_1 1) has length n,
dimension

m+l1

k=g™" —1—(uqg 2

— u*q)m,

and minimum distance d > 26 — 1.
Proof: The desired conclusion follows from Theorem 32,
Proposition 34, and the BCH bound. O

Example 36: 1) When (q,m,u) = (2,7,1) in the
above theorem, the code C(2,127,17,56) has parameters
[127, 29, 37].

2) When (q,m,u) = 4,5,1),(4,5,2),(4,5,3) in the
above theorem, the code C(q,n,zé_l,n_;—l_é_'_l) has para-
meters [1023,723,d > 65], [1023,463,d > 129], and
[1023, 243, d > 193], respectively.

B. Parameters of C(q,n,25—1,”7+1—5+1) When m is Even

It has been seen from Proposition 29 that Ciy; # Ciyj if
and only if Cj41 # Caj41 (resp. Ci—; # Ci—; if and only if
Cai—1 # C2j_1). Let J be the set of integers that are not coset
leaders, which are given by (9). Note that 1 < 2j+1 < ug™—1
if 0 < j <ug™/2—1and 1 <2j—1 < ug™ —1if
1 < j < uq™/2. Using the same arguments at the beginning
of previous subsection, we can see that

1 i) = igna) = 01m +0m/2+6sm,  (18)

where

Oy =|{1 < j<ug™—1:j an odd coset leader & |ij|=m}|,
(19)

6 =|{1<j<ug™—1:j an odd coset leader & |C;|=%}|,
(20)

and

O3=1{1<j<ug™—1:jeJisodd cl(j) is even}|. (21)

Lemma 37: Let q be even and m > 2 be even. Then we
have the following.

1)

if u is even;

o _ (w2 =sa,
if u is odd.

| ug™ 2 — @ - 1)/4,
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2)
0 = u/2, if u is even;
2T (u—1)/2, ifuisodd
3)
_ Ju(m—2)/8, ifuiseven;
T W*>—=1)/8, ifuis odd.

Proof: Notice that ¢ is even. It then follows from
Proposition 9, (19), and (20) that
O =uq™/2—6, —|{j € J:]is odd}|.
By (9), it is easy to see that
l{j € J: ] is odd}]
= [{Jmg™ +jo: 1< jo < jm <u—1, jo odd }|

u(u —2)/4,
(u —1)*/4,

if u is even,
if u is odd.

In addition, it follows from Proposition 9 that

u/2, if u even;

_ I . 1l =
Or={o(g" +1): 1< odd v <u 1|—[(u_1)/2, if u odd.

Then we get the conclusions on 81 and 6.
Define
CL = {cl(j): ] e J}.
It follows from Proposition 9 that
CL = {jog" + j : jo+ 1< jam<u—1,1=<jo<u—1).
Then we can deduce from (21) that
05 = Ljog" + ji : 1 < jo < jim <u—1, jo odd, ji even}].

It can be easily verified that

0 — u(u —2)/8, if u is even;

| @?—=1)/8, ifuis odd.
This completes the proof. d
The following results follow from Lemma 37 and (18)

directly.
Proposition 38: Let m > 2 be even. Then

(uq"_l—uz/4) %, if u is even;
(ug™—(u —1)2/4) %, ifu is odd.
Theorem 39: Let m > 2 be an even integer, q even, and
o=uq2/2+1.
1) If u is even, then C(q,n,(;,nT-f—l) and C(q,n,é,n_?_((;_l)) both
have length n, dimension

k=g"—1— (uq% —u2/4)%,

and minimum distance d > 0.
2) If u is odd, then C(q,n,(;,nT-f—l) and C(q,n,é,”T“—(é—l)) both
have lenth n, dimension

k=qg"—1-— (uq% —(u— 1)2/4)%,

and minimum distance d > 0.

=y e _
|J(q,n,u)| - |J(q,n,u)| -
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Proof: The desired conclusions follow from Proposition

38 and the BCH bound directly. U
Example 40: 1) When (g, m,u) = (2,6, 1) in the above
theorem, the code C(q,n,é,%) (or C(q,n,(;,nTH_((;_l))) has

parameters [63, 39, 9], which are the best known para-
meters for linear codes according to the Database and
the best possible cyclic codes according to [13, p. 260].
2) When (q,m,u) = (4,4,1),(4,4,2),(4,4,3), the
code C(q,n,(;,nT-f—l) (or C(q,n,é,”T“—(é—l))) has parame-

ters [255,223,d > 9], [255,193,d = 17]
[255, 161, d > 25], respectively.

The following conclusion will be employed to investigate
the parameters of the code C(q,n,25—1,”7+1—5+1) when m > 2 is
even.

Proposition 41: Let m > 2 be an even integer and q be
even. Suppose

and

l<u<t ifm=2,
l<u<qg-—-1 ifm=>4

Then we have
-y . 3 ]
J(‘I’”au) n J(q,n,u) - U Cn—(l+1)/2,
leJg
where the union is disjoint and

Jng™ + 4" —q+ jo:

Jg=140=< even jj <u-—1,
g—u=< oddjo<qg-—1
Moreover,
=1 ~_ ulm/4, if u is even;
|J(q,n,u) N J(q,n,u)l = 2 : :
(u+ 1D m/4, ifuis odd

Proof: We are going to find all the integers i and j with
1 <i<uqg™and 1 < j <ug™ such that
Civi = Cq—j.
This is equivalent to
Qi+1)+@2j—1)g" =0 (mod n)

for some 1 < ¢ < m — 1. Recall that in R_emark 21, form > 2
being even, the integers 1 < iy, j; < uq™ satisfying

i1+ jigt =0 (mod n)

have been characterized. Using this result, we can further
characterize the odd integers i; and i» satisfying i1 = 2i + 1,
j1 = 2j — 1 such that

Cii+i1-1)2 = Cii—(j1+1)/2-

As a consequence, we have j(;,n,u) N f(;’nlu)
UlejE Ci—(+1),2. By Proposition 9, each I € Jg is a

coset leader and |C;—;| = m. In particular, when m = 2,
weneed 1 <u < % to ensure that each [/ € jE is a coset
leader and |C;—;| = m. The remaining part of the proof
follows from Remark 21 by employing a straightforward
calculation. [l
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Theorem 42: Let m > 2 be an even integer, q even, and
0=uq?/2+ 1. Suppose

l<u<i ifm=2
1<u<qg-—1 ifm=>4

1) If u is even, then C(q,n,z(;_l,nTH_(;H) has length n,
dimension

k=q"—1—(ug? —u*/2)m,

and minimum distance d > 20 — 1.
2) If u is odd, then C(an’2571’n7+175+1) has length n,
dimension

k=q"—1—(ug? — W*+1)/2)m,

and minimum distance d > 20 — 1.
Proof: The desired conclusion follows from Theorem 39,
Proposition 41, and the BCH bound. O
Example 43: 1) When (g, m,u) = (2,4, 1) in the above
theorem, the code C(3,155,6) has parameters [15,3,5],
which are the best possible parameters for cyclic

codes [13, pp. 247].

2) When (q,m,u) = 4,4,1),(4,4,2),(4,4,3) in the
above theorem, the code C(q,n,Zéfl,%fé#»l) has para-

meters [255,195,17], [255,135,d > 33],
[255, 83, d > 49], respectively.

Corollary 44: When u = 1 and 6 = q%/Z + 1, the true
minimum distance of the code C(q,n,zé_l,%_éﬂ) presented
in Theorem 42 is equal to 20 — 1.

Proof: Note that b = % — 0+ 1. It is easy to check that
(20 — 1) | ged(n, b — 1) in this case. The desired result then
follows from Corollary 4. g

and

C. Parameters of C(q,n,z(;_l,nTﬂ_(;H) With Designed
Distance q" — 1, Where 1 <t <m

When ¢ is even, the parameters of the LCD code
C( g.n.25-1,751 —541) are described in the following theorem if
it has designed distance 20 — 1 = ¢’ — 1 for an integer ¢ with
1<t <m.

Theorem 45: Let q be even, m > 2 and m # 3. Suppose
that C(q,n,z(;_l,nTﬂ_(;H) has designed distance 26—1 = q' —1,
where 1 < t < m. Then C(q,n,Z(Sfl,”—'{lféq»l) has length n,
dimension

_ " —1—(q"T —q)m
e -1-@" —2m

ifszisoddandt:mTH,

otherwise,

and minimum distancet d>q' —1.
Proof: Set 0 = %. Recall that the generator polynomial

of the code C( , 551,281 _511) 18 8(gn,20- 1,281 —(5-1))(¥)- BY
Lemma 5, we have

deg(8g.n.20-1, 2t (5-1)) ()

=(g'=2m - ‘(Ulijsé—l C’”f) M (UOsjsa—z C’H) ‘



LI et al.: TWO FAMILIES OF LCD BCH CODES

When m > 5 is odd, the integers 1 < i1, j1 < uq’;’
satisfying

i1+ jig =0 (mod n)

have been characterized in Remark 17. Using this result, we
can show that

U G|

0=<j=<6-2

U ¢

1<j<o-1

_ | Ujer(Cir-np U Cignpp) ifr="3
/] if 1 <r <ot

>

where J' = {jn_1¢"™" ' 4+¢" " 1—1:2 < even js_1 <q—2}.
When m > 2 is even, by Proposition 29, for 1 < < Z,
we have

U Citj ﬂ

0=j<6-2

U Cij| =9.

1<j=<o-1

Therefore, we have

U au)N| U G-

0<j<d-2 1<j<o-1
|G -1D2m ifm>5isodd and t = 2,
0 otherwise.

Thus, the dimension is obtained. Moreover, the minimum
distance d > g’ — 1 follows from the BCH bound. O
We remark that the minimum distance of the code
C(q,n,26—1,”7+'—6+1) given in Theorem 45 may be larger than
q' — 1.
Example 46: 1) When (¢,m,t) = (2,7,2),2,7,3),
(2,7,4) in the above theorem, C(an’2571’n7+176+1)

has parameters [127,113,5], [127,85,11], and
[127,29,37] with designed distance 3, 7, and 15,
respectively.

2) When (q,m,t) = (2,6,2),(2,6,3) in the above
theorem, the code C(q,n,Z(Sfl,%f(SJrl) has parameters

[63,51, 3], and [63,27,7].

VII. PARAMETERS OF LCD BCH CODE C(y,5,26,n—5+1)

In this section, we investigate the parameters of the LCD
BCH code C(y,n,256,n—5+1)- We use notation as in Equation (1).

A. The Dimension of C(y n25n—s5+1) When 9 is Relatively
Small

Every positive integer s with 0 < s < n has a unique
g-adic expansion as s = Z?Zol siqg', where 0 < s; < ¢ — 1.
The g-adic expansion sequence of s = Z;";Ol siq' is denoted
by 5 = (Sm—1,8m—-2,--.,50). Below, we simply call the
g-adic expansion sequence of s as the sequence of s, whenever
this causes no confusion. The weight of 5 is defined to be
the number of nonzero entries among the entries s; of 5 and
denoted by wt(s). Define the support of 5 as

supp(s) = {0 <i <m —1:5; # 0}.
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For the sake of simplicity, we use the notation
s=(,...,0,a,...,a, b, ¢ ,...,c)
J1 J2 j2—=1 ja=2

to represent a sequence 5§ = (Spy—1, Sm—2,...,50) With s; =0
for jij+1<i<m-—1,s; =afor j, <i < ji, s =b for
i = jp—1lands; =cfor0 <i < jp—2. This kind of notation
will be used below and can be interpreted in a similar way.

Lemma 47: Let m > 2. Then the following holds.

1) When m is odd, for 1 <i, j < q™+tV/2 —j e C; if and

only if

;Z(Oa“woaq_la > q 19“)9

m—1 1

2
j=(09--~90,51_1_uaq_1»~--,51_1),
| mT—I m—3

or

i=0,...,0,g—1—u,g—1,...,9—1),
B ;712—1 mT—'i
jZ(O’“-’an 19 --,51_1,’4),

m—1 1

where 0 <u <qg — 1.
2) When m is even and q > 2, for 1 < i,j < 2q
—j € C; if and only if

ITZ(O,“-’Oalaq_la“"q_laq_z)a
7 om

72(09~-~’09’}1’q_19~-~9q_19q_2)’
4y

m/2

or
i=0,...,0,g—1,....g =1, = 2),
]
]:(0’ ’091’q_1’ ’q_]‘)’
L R
or
;:(O’ ’O’l’q 1" ’q 1)’
m_j
_ 2
.]:(05 '905q 15 ~-,q_1»5]—2),
m_| 1
2
or
i=(@,...,0,g—1,...,9—1),

m
m_y

F=00,...,0,g—1,...

5 —1

3) When m is even and q = 2, for 1 < i,j < 200/2D+]
—Jj € C; if and only if

i=(0,...,0, 1 ,....1),

_ 32

]:(05 2 91 ’1)9

or

i=(0,...,0,1,...,1),

_ 2

.]:(09' ’0) 1) ’1)’
L)
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or
i=(0,....0, 1.....1),
- L
J=0,...,0, 1 ...,
m_y
or
;:(0" 505"1150’1’ ’1)9
2
J=00....,0,1,...,1,0,1),
%
or
i=(0,...,0,1,...,1,0, 1),
2
Jj=1(0,...,0,1,0,1,...,1).

l 2
Proof: 1) If —j € C;, then there exists an [ with 0 <[ <
m — 1, such that ¢'i + j =0 (mod n). Hence,

Since m :_wt(qli +j) < wt@) + wt(Z) < m + 1, we have
{wr @), wi ()Y = (251, 251} or {wi @), wr()) = {“F1).
If {wt (@), wr(j)) = {251, ™) then clearly, supp(g'i) N

supp(j) = 0. Otherw1se, if supp(g'i) Nsupp(j) # @, there is

gi+j=@-1,q9—-1,...

at least one entry in q'i + j, which is not ¢ — 1. Hence, E
and j must have the following two forms

q'i=(g-1,...,4-1,0,...,0), f=(0,...,0,¢=1,...,q=1),
m—1 mtl m=1
2 2
or
gli=(qg—1,...,q=1,0,...,0), j=(0,...,0,q—1,...,q=D),
m—1 m-1 m3
2 2
If {wt@),wt(j)} = {mTH}, then clearly, |supp(%) N

supp(7)| > 1. If [supp(q’i) N supp(j)| > 1, then there is

at least one entry in g'i + j, which s 1s not g — 1. Hence,
|supp(q i)Nsupp(j)| = 1. Therefore, ¢/i and j must have the
following 2q — 4 forms

[¢li=(—1,....q
m—1

m—1 m—=3
L 2 2
or
rqll_(q_l’ > q 19 0» ..,O,M),
m—1 m+1 m771
2
72(0 woaq_la"'aq_laq_l_u)a

m—

L 2

where 1 < u < g — 2. Therefore, the conclusion follows.
2) If —j € C;, then there exists an [ with 0 <[ <m — 1,
such that ¢'i + j =0 (mod n). Hence,
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Since m = wt(qli + j) < wt(i) + wt(j) < m + 2, we must
have

{m+1} or
_ L { + 1}, or
{wt (i), wt(j)} = {rs ,7+1}, or
().

If {w (@), wi ()} = {5 + 1}, then [supp(g’i) N supp(j)| = 2.
Hence, qli and j must have the following form

..,0,1),

If {wi (i), wt ()} = {5, 5+1}. then Isupp(g’i)Nsupp(7)| = 1.
Hence, ¢'i and j must have the following two forms

qz—(q—l q—1,q9—-2,0,...,0),

B m—1 'g+1 m

]:(O’ 50»1» _1»"'5q_1)’
7 z-

or
qll_(q_19~ 5q_15 0 > 5091)»
m—1 mo -l

j:(()’ ,O,Cl_l, .. 1»4_2)
Z_1
2

If {wt@),wt(j)} = {# — 1,5 + 1}, then [supp(g'i) N
supp(j)| = 0. Hence, there is at least one entry in q'i +j)
which is not equal to g — 1. If {wt(z) wt(])} = {7}, then
|supp(q i) Nsupp(j)| = 0. Hence, ¢'i and j must have the
following form

i=(@-1,...,9—1,0,...,0),
m—1 z

j=0(,...,0,g—1,....,g —1).
m_y

Therefore, the conclusion follows.
3) The proof is similar to that of 2) and is omitted here. O
As a consequence, we have the following proposition.
Proposition 48: Let m > 2.

1) Suppose m is odd. Then

{(cl@@),cl(j)): —j € Ci, 1 <i,j <1}
0 fl=sl=qmtD2—gq,
= 12h ifl=qmD2 _g4th l<h<gqg-2,
2(g — 1) ifq(m+1)/2 —1<l< q(m+1)/2.

2) Suppose m is even and q > 2. Then
{(cl(), cl())) :

0 ifl<l<qm?-2,
L ifgm?—1<1<2q"?-3,

2 ifl =2¢"?* -2,
4 if2g™? —1<1<2¢m2

—jeC,l=i,j=lj
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3) Suppose m > 4 is even and q = 2. Then

H(cl(@),cl(j)): —j € Ci, 1 =i, j < 1}]

0 ifl<l<2m?_2,

1 if2m/2 —1<i< 2(m/2)+1 — 4,

3 l-fz(m/2)+1 —3<l< 2(m/2)+1 -2,

3 ifz(m/2)+1 —1<l< 2(m/2)+1.

Combining Lemma 5 and Proposition 48, we have the
following theorem.

Theorem 49: Let m > 2. Let 0 be an integer satisfying

2<6<2¢g"™?*+1

2<0<qgmtD2 41 ifm is odd,
if m is even.

Let 6, and 69 be the unique integers such that 6 — 1 = d,q +
oo, where 0 < 6y < q. Then Cy n26,n—s+1) has parameters
[g" — 1,k,d > 20], in which the dimension k is given below.

1) When m is odd,

g™ —2—2m(d4(q — 1) + o)

if& < q(m+1)/2 —q,
g™ —2—2m(q" V2 —1)(g - 1)
if g2 —g+1<5<qmD/2 1.

k:

2) When m is even and q > 2,

q" —2—2m(d4(q — 1) + d)
if6<qm?—1,
q" —2—2m(0(q — 1)+ — 3)
ifq"?* <o <q"?+1,
q" —2—=2m(b;(q—1)+3d—1)
ifq"r+2<6<2¢m? -2,
q" —2—2m(S(q — 1)+ — 3)
if 6=2q""%—1,
g" —2—2m(d(g — 1)+ — 3)
if 2g™/* <6 <2¢™? 4+ 1.

3) When m > 4 is even and q = 2,

2" —2 —2m(d4 + o)

ifo<2™?—1andm > 4,

2M —2 —2m(Sy + do — %)
if2’"/2§5§2’”/2+1 and m > 4,

2m —2 —2m(5y + o — 1)
if2m2 42 <9 <20/t 3 gpd m > 4,

2 2 —2m(Sy + o — 2)
if2m/D+ 2 <5 <20/ _ | and m > 6,

2Mm —2 —2m(5, + do — 3)
if 20/ D+ < 5 < 2m/D+L L 1 and m > 6.

In addition, the minimum distance d of the code satisfies
d > 20.

Proof:  Let g(; m,s5)(x) be the generator polynomial of
C(g,n,26,n—6+1)- For the dimension of the code, we only prove
2) since the proofs of 1) and 3) are similar. By 2) of Lemma 5,
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TABLE I
SOME OPTIMAL BINARY CODE C(2,5,5,n—5+1) WITHd = 26

m H
{5.6,7} {3}
{8.9,10,11,12,13} (3.5}
{14,15,17.17,18,19} | {357}
{20} {3.5.7.9}

the degree of g, .5 (x) equals

14 2m(d4(q — 1) + bo) — em
= H(cl@),cl(j)): —j € Ci,1 =i, j <6—1}m,

where

0 ifo<qg™?+1,
€ =

1 if o> qg™m?+2.

With this conclusion on the degree of the generator polynomial
and Proposition 48, we have

deg (8(g,m,s (x))
1+2m(d,(q — 1) + ) if § < g™?* — 1,
1+ 2m@g(q — 1)+ — Ly if g"? <6 < g™ +1,
= 1142m(5,(q — D+ — 1) if ¢"/>+2<6<2¢"/* -2,
1+2m(d,(q — 1)+ — 3) if d =2¢™* — 1,
1+ 2m(dy(q — D)+do — 3) if 2¢™/% < 5 < 2™ + 1.

Therefore, the conclusion on the dimension in 2) follows.

Moreover, by the BCH bound, C(y,,25,n—s+1) has minimum

distance d > 20. O
Remark 50: For the code C(g n.26.n—o+1), if

1

n i n—k
;(i)(q—l) > ¢k,

then d < 20 by the sphere packing bound. Therefore,
knowledge of the dimension of the code C(y n25n—5+1) may
provide more precise information on the minimum distance
in some cases. As an illustration, we use Theorem 49 and
the inequality (22) to get some binary codes C . 6.n—5+1)
with d = 20, which are listed in Table I. Note that the codes
listed in Table I is optimal in the sense that given the length
and dimension, the minimum distance is the largest possible.
According to Inequality (22), increasing their minimum dis-
tances is impossible due to the sphere packing bound.

Remark 51: Theorem 49 gives the dimension of
Cig,n,26,n—s+1) When o is relatively small, in which 0 is
approximately the square root of the length n. In this
case, the size of each cyclotomic coset containing i, where
—0 < i < 0, follows form Lemma 5. Moreover, Lemma 47
characterizes all 1 < i, j < ¢ satifying —j € C;. For a larger
0, the size of cyclotomic cosets, as well as the cases in which
—Jj € Cj, become much more complicated. Hence, from this
viewpoint, it is difficult to extend the result of Theorem 49 to
a larger 0.

Remark 52: Since when q is odd, C(q’njzg’%,aq,l) and
Cg,n,26,n—s+1) are monomially equivalent, Theorem 49 also
gives the dimension of C(an’za‘j%,api,l) for2 < < gmth/2

(22)
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when m is odd and for 2 < 6 < 2qm/2 + 1 when m is
even. Moreover, Theorem 26 is also a direct consequence of
Theorem 49.

Due to the equivalence between C(q,n,zg,%_(;_i_l) and
C(g,n,26,n—6+1) When ¢ is even, the following theorem follows
immediately from Theorems 18 and 22.

Theorem 53: Let q be odd and 6 = ug™ + 1, where

q—1

l1<u< ifm=2,
l<u<qg-—1 ifm=4
1) When m > 5 is an odd integer, the code C(y n25n—5+1)
has length n, dimension

k=q™"—2— 2(uc]m%1 —2u® +u)(g — Dm,

and minimum distance d > 20.
2) When m > 2 is an even integer, the code C(y n25n—5+1)
has length n, dimension

k=qg" —2— 2uq%7l(q — Dm + u? — 2u + lym,

and minimum distance d > 20.

B. The Dimension of Cg.n,26,n—6+1)
When 6 = q* and 5 < A <m —1

In [23], the dimension of the narrow-sense primitive
BCH code C(;.n..1) With 6 = g* was considered. The author
derived two closed formulas concerning the dimension of
such code. In this subsection, we use the idea in [23] to
give an estimate of the dimension of the LCD BCH code
Cg,n,26,n—6+1) With 6 = q”, where F<Ai<m-—1

Let s and r be two positive integers. Given a sequence of
length s and a fixed integer a with 0 < a < g — 1, we say that
the sequence contains a straight run of length r with respect to
a, if it has r consecutive entries formed by a. If we view the
sequence as a circle where the first and last entry are glued
together, we say that the sequence contains a circular run of
length r with respect to a, if this circle has r consecutive
entries formed by a. When the specific choice of the integer
a does not matter, we simply say that the sequence has a
straight or circular run of length r. Clearly, a straight run is
also a circular run but the converse is not necessarily true.
We use [, (s) to denote the number of sequences of length s,
which contains a straight run of length r. Particularly, we
define [, (0) = 0. The following is a recursive formula of I, (s)
which was presented in [23].

Result 54 [23, p. 155]: Let s and r be two nonnegative
integers. Then

0if0<s <r,

lifs=r,

gl (s=1)+(q=1)(@"" =l (s —=r = 1) if s > r.
Throughout the rest of this section, we always assume that

0 = q*and 5 < A < m — 1. Recall that the narrow-

sense primitive BCH code C(; »,s,1) has generator polynomial

8(g.n,5,1)(x). Set r = m — A. Note that § — 1 corresponds to

following sequence

lr(s) =

0—1=(@,...,0,g—-1,g—1,...,q—1).
A—1
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The key observation in [23] is that for | <i <n — 1, al s
a root of g(;,,6,1)(x) if and only if the sequence of i has a
circular run of length at least » with respect to 0. Similarly,
note that n — J + 1 corresponds to the following sequence

n—o+1l=(@-1,...,q — 1,101,0,...,0).

Therefore, for 1 <i <n—1, ' is a root of 8(g.n,0.n—o+1) (%)

if and only if the sequence of i has a circular run of length

at least r with respect to ¢ — 1. The following proposition

presents the degree of g(;,..6,1)(x) and g(g,n,6,n—6+1)(x).
Result 55 [23, p. 155]: Set r = m — A. Then

deg(g(q,n,d,l)(x)) = deg(g(q,n,d,nfé#l)(x)) =1I.(m)—1

r—2
Hg— 12D —u—D@" = m —r —u—2)).

u=0
We have the following estimation on the dimension of

Clg,n,26,n—5+1)-
Theorem 56: Set v = m — A. Then C4n25n-5+1) has
parameters [q" — 1,k,d > 20], where

k>gq™—2l,(m)+2l,(m—r)

r—2
2g—1° D r—u—=1)(@" " = Lm —r —u —2)),
u=0

and

k<q™—=2l,(m)+ml,(m —r)

r—2
21D —u— D"~ L(m —r —u —2)).

Proof: uSi?lce Ao> %, we have m > 2r. Define
aset N = {1 < i < n-—1 ggnon(a) =
8(g.n.on—o+1)(a') = 0}. Since gg.n20n—+1)(x) = (x —
1)lcm(g(q,n,6,1)(x)a g(q,n,é,n—5+1)(x))» we have

deg(g(q,n,Zd,nfé#l)(x))
= deg(g(g,n,5,1)(x)) + deg(g(g,n.6,n—6+1)(x)) + 1 — |N|.

Since deg(g(qg,n,5,1)(x)) and deg(g(y,n,5,n—5+1)(x)) are known
by Result 55, it suffices to estimate the size of N. N contains
the number 1 < i < n — 1, such that { contains two runs
of length r with respect to 0 and ¢ — 1, where at most one
of them is a circular run. Let N’ be the set of integers 1 <
i <n — 2 such that the first r entries of i is a straight run of
length r with respect to 0 and the last m — r entries contain a
straight run of length » with respect to g — 1. Clearly, we have
IN’'| = I,(m — r). Note that each element of N is a proper
cyclic shift of an element of N’. Moreover, for each i € N/,
we have

2<|{glimodn:0<j<m—1} <m,
which implies
2IN'| < IN| <m|N'|.

Thus, the conclusion follows from a direct computation.
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C. The Minimum Distance of LCD BCH
Codes C(q,n,25,n—5+1)

While it is difficult to determine the dimension of LCD BCH
codes in general, it is more difficult to find out the minimum
distance of LCD BCH codes. For the code C(y,1,25,n—5+1), the
BCH bound d > 24 is usually very tight. But it would be
better if we could determine the minimum distance exactly.
In this section, we determine the minimum distance d of the
code C(g,n,26,n—6+1) in some special cases.

Given a codeword ¢ = (co,c1,...,¢n—1) € C(g,n,5,1), We
say c is reversible if (c,—1,cp—2,...,¢c0) € C(g,n,6,1)- Namely,
¢ € C(g,n,5,1) is reversible if and only if ¢ € C~(q,n,2(;,n_(;+1).
The following theorem says that the reversible codeword in
C(4,n,5,1) provides some information on the minimum distance
on C(q,n,Z(S,nf(SJrl)-

Theorem 57: Let c(x) € C(q,n,5,1) be a reversible codeword
of weight w. If c(1) # 0, then C4 pn26n—6+1) contains a
codeword (x — 1)c(x) whose weight is at most 2w. Therefore
the minimum distance d of C(y n25,n—s+1) satisfies d < 2w.
In particular, if the weight of c(x) is 0, then the minimum
distance d = 20.

Proof: Since c(x) is reversible and c(1) # 0, we have
(x — De(x) € Cg,n,26,n—6+1)- The weight of (x — 1)c(x) is
at most 2w, which implies d < 2w. In particular, if w = 4,
together with the BCH bound, we have d = 26. O

Let c(x) = :’:_01 c;x! be a codeword of a cyclic code C
with length n. We can use the elements of GF(¢”)* to index
the coefficients of ¢(x). Similarly, let C be the extended cyclic
code of C and let c(x) = >}, cix' be a codeword of C with
length ¢™. We can use the elements of GF(¢™) to index the
coefficients of ¢(x). The support of ¢(x) (resp. c(x)) is defined
to be the set of elements in GF(¢™)* (resp. GF(¢™)), which
corresponds to the nonzero coefficients of c(x) (resp. c(x)).

Given a prime power g and an integer 0 < s < ¢ — 1, s
has a unique g-adic expansion s = Zi"z_ol siq'. The g-weight
of s is defined to be wt,(s) = zl'-”:_ol si. Suppose H is a
subset of GF(g)*. Then we use H =D to denote the subset
{(h=':h e H).

The following are two classes of LCD BCH codes whose
minimum distances are known.

Corollary 58: For the LCD BCH code C( n,25n—5+1), We
have d =20 if 6 | n.

Proof: 1Tt suffices to find a codeword c(x) satisfying the
condition in Theorem 57. If 6 | n, by the proof of [31,
Theorem], C(4,1,5,1) contains a reversible codeword c(x) with
weight §, where ¢(x) = ?;é aix's and ¢(1) # 0. The desired
conclusion then follows from Theorem 57. 0

Corollary 59: Let 6 =2" — 1 and V be an m-dimensional
vector space over GF(2). Suppose 1 < r < |’5]. Then we
can choose four r-dimensional subspaces of V, say Hj, 1 <
i <4 ofV, such that Hy N Hy = {0} and H3 N Hy = {0}.
If ((Hy U Hy) \ {0DD = (H3 U Hy) \ {0}, then the LCD
BCH code C2,n,5,n—s+1) has parameters [2™ — 1,2" —2 —
2m(2" 1 —1),24].

Proof: The dimension of C(2 ,,, 5,n—s+1) €asily follows from
Theorem 49. We are going to show that the minimum distance
d = 20. Define Cq,,,51) (resp. Cn,6,n—5+1)) to be the

5715

BCH code with length n = 2™ — 1 and generator polynomial
82,n,5,1)(x) (resp. g@,n.6.n—o+1)(x)). Let a be a primitive
element of GF(2™). We can assume the zeros of Cp ,6,1)
(resp. C(2,n,6,n—o+1)) include the elements {a' : 1 <i <J—1}
(resp. {a™' 11 <i<J—1}).

The BCH code C(2,,,5,1) (resp. C(2,n,6,n—5+1)) contains the
punctured Reed-Muller code RM ™ (m—r, m)* (resp. RM ™ (m —
r,m)*) as a subcode, in which RM™*(m — r, m)* has zeros

(0" :0<i <2 =1, wnG) <r),
and RM™ (m — r, m)* has zeros
{070 <i<2™—1,wn() <r).

Let ¢ = (cg, c1, ..., cp—1) be a codeword of RM ™ (m —r, m)*.
Since RM™*(m — r,m)* is a cyclic code, its coordinates can
be indexed in the following way

-5 Cn—1)s (23)

¢ = (co, 1, -
1 o an—1

where Z’;;(l) cjo/ =0 for each 1 <i < 6 — 1. Similarly,
suppose ¢’ = (cg, ¢}, ...,c,_,) is a codeword of RM™(m —
r,m)*. Then, its coordinates can be indexed in the following
way

El C,/,l,] )5 (24)

a—(m=1)

/ / /
' =(cy Cc}..-
1 g}

where Z;;(l) c;a_ij =0foreach 1 <i <d—1.

By [2, Corollary 5.3.3], RM™ (m —r, m)* contains two mini-
mum weight codewords ¢ (x) and ¢ (x), such that the support
of c¢1(x) and c2(x) are H; \ {0} and H; \ {0} respectively.
Similarly, RM~(m — r, m)* contains two minimum weight
codewords c3(x) and c4(x), such that the support of c¢3(x)
and c4(x) are H3 \ {0} and Hy \ {0} respectively. Moreover,
the coordinates of cy(x) and cy(x) are arranged in the way
of (23) and the coordinates of c3(x) and c4(x) are arranged
in the way of (24). Therefore,

c1(x) + c2(x) € RMT (m — r,m)* C Cia,n,5,1),
and
c3(x) +ca(x) € RM™ (m —r,m)* C C,n,6,n—5+1)-

Since ((H1 U Hy) \ {01 = (H3 U Hy) \ {0}, by the
arrangement of the coordinates of ¢;(x), 1 < i < 4, the two
codewords ¢ (x)+c2(x) and ¢3(x) +c4(x) coincide. Thus, we
have c1(x) + c2(x) € C(z,n,g,n_g_H). Since ¢;(1) + c2(1) =0,
we have a codeword ci(x) + c2(x) € C@n.6,n—6+1) With
weight 20. O

Example 60: Let ¢ = 2, m = 5 and 6 = 3 in the
above corollary. We are going to show that C(231,6,29) has
parameters [31, 20, 6]. Note that the dimension of C(2 31,6,29)
easily follows from Theorem 49, it suffices to prove that the
minimum distance is equal to 6. Let o. be a primitive element
of GF(2%) and the minimal polynomial of a over GF(2) is
x5 + x2 + 1. Then we have the following four 2-dimensional
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subspaces of GF(2°):

H, = {O,a,az,alg},

Hy = {0,0!8,0!12,(118},
H; = {0,0(12,0513,0630},
Hy = {0,a'°, a2, o).

Thus, we have c1(x) and c3(x) as codewords of C231,3,1)
whose supports are Hi \ {0} and H> \ {0}. We have c3(x) and
c4(x) as codewords of C(231,3,29), whose supports are H3\ {0}
and Hy\ {0}. Clearly, (HiU Hy)\ {01 = (H3U Hy) \ {0}.
Therefore, c1(x) + c2(x) coincides with c3(x) + c4(x), whose
weight is six. Consequently, c1(x) + c2(x) € C(2,31,6,29) and
the minimum distance of C(2,31,6,29) equals 6.

Based on our numerical experiment, we have the fol-
lowing conjecture, which can be regarded as an analogy
of [24, Ch. 9, Th. 5].

Conjecture 61: Let 6 = qi — 1, where 1 < 4 < |m/2].
Then the code C(y n25,n—5+1) has minimum distance d = 20.

D. Parameters of C(y n,26,n—s+1) for Small 6

In this section, we determine the parameters of the code
Cg,n,26,n—s+1) for a few small values of d. With the help of
Theorem 49 and Corollary 58, we can achieve this in some
cases.

Recall that the Melas code over GF(gq) is a cyclic code
with length n and generator polynomial m_1(x)m(x) and was
first studied by Melas for the case ¢ = 2 [27]. The weight
distribution of the Melas code has been obtained for g = 2,3
[18], [29]. For é = 2, the code C(y,1,25,n,—5+1) is the even-like
subcode of the Melas code. The following theorem is a direct
consequence of Theorem 49 and Corollary 58.

Theorem 62: Suppose q is odd and m > 2, then C(g p.4,n—1)
has parameters [¢" — 1,q¢™ — 2 — 2m, 4].

When ¢ = 3, we have the following result.

Theorem 63: 1) When g =2 and m > 4, C(y n,6,n—2) has

parameters [2" — 1,2™ —2 —2m, 6].

2) When q¢™ = 1 (mod 3) and m > 4, Cgne6n-2) has

parameters [q™ — 1,q™ — 2 — 4m, 6].

Proof: 1) The dimension follows from Theorem 49.
Applying the BCH and the sphere packing bound, we can
see that the minimum distance is 6.

2) The dimension follows from Theorem 49. Since
g" = 1 (mod3), we have 3 | n. Therefore, by
Corollary 58, the minimum distance is 6. O

Theorem 64: Suppose m > 3, then C(3 p.8,,—3) has parame-
ters [3™ —1,3" — 2 —4m, d), where d = 8 if m is even and
d > 8 ifmis odd.

Proof: Tt follows from Theorem 49 that the dimension of
this code is equal to ¢ — 2 — 4m. By the BCH bound, the
minimum distance of C3 ,8,,—3) is at least 8.

When m is even, 4 divides n. Hence, the minimum distance
of C3,1,8,n—3) is equal to 8 according to Corollary 58. U

We have the following conjecture concerning the
case ¢ = 3.

Conjecture 65: When q = 3, m > 3 is odd and 6 = 4,
Cg,n,26,n—6+1) has minimum distance d = 8.
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Example 66: Let ¢ =3, m = 3 and 6 = 4 in Theorem 64.
Then C326,8.n—3) has parameters [26,13,8]. According
to [13, p. 300, Table A.92], all known ternary linear codes
with length 26 and dimension 13 have minimum distance at
most 8. Hence, C3,,,8,,—3) has the same parameters as the
best known linear code.

VIII. CONCLUDING REMARKS

The main contributions of this paper are the following:

1) In Propositions 6 and 9, the characterization of the coset
leaders of g-cyclotomic cosets C; modulo n = g™ — 1,
where 1 < j < (g — 1)g™. The size of these cyclotomic
cosets was also computed.

2) In Theorems 18, 22, 35 and 42, the determination of the
dimension of the LCD BCH cod_es C(an’za‘j%,api,]) and
C(q,n,Z(Sfl,%f(SJrl) with 6 = ug™ + 1 if ¢ is odd and
with 6 = ug™/2 4+ 1 if g is even, where m > 4 and
l<u<g-1.

3) In Theorems 26 and 45, the determination of the
dimension of the LCD BCH codes C(q,,,,z(;,%_(;ﬂ) and
C(q,n,zé_l,%_éﬂ) when it has designed distance ¢" —1,
where 1 <t <m.

4) In Theorem 49, the determination of the dimension of
the LCD BCH codes C(;.n,25,1—5+1), With 2 < ¢ <
q(m+1)/2 when m is odd and with 2 < ¢ < 2qm/2 when
m is even.

5) In Theorem 53, the determination of the dimension of
the LCD BCH codes C(y,1,26,n—6+1), With g being odd,
m>4,0=uq"+1land 1 <u<gqg-—1.

6) In Theorem 56, the derivation of lower and upper bounds
on the dimension of C; n,25,n—s+1), Where d = g* and
T<A<m-—1L

7) In Theorem 57 and Corollaries 58 and 59, the deter-
mination of the minimum distance of C(y ,26,n—6+1) in
some special cases.

8) In Theorems 62, 63 and 64, the determination of the
parameters of C(y n,26,n—5+1) When J is small.

For the two families of LCD BCH codes considered in this
paper, we were able to determine their dimensions when J
is relatively small, which is approximately the square root of
the length of the code. When J goes larger, it is much more
complicated to compute the size of cyclotomic cosets and to
characterize the coset leaders. Hence, there seems no obvious
way to extend our results to a larger J.
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