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Bent Vectorial Functions, Codes and Designs
Cunsheng Ding , Akihiro Munemasa , and Vladimir D. Tonchev

Abstract— Bent functions, or equivalently, Hadamard
difference sets in the elementary Abelian group (GF(22m),+),
have been employed to construct symmetric and quasi-symmetric
designs having the symmetric difference property. The main
objective of this paper is to use bent vectorial functions for
a construction of a two-parameter family of binary linear
codes that do not satisfy the conditions of the Assmus–Mattson
theorem, but nevertheless hold 2-designs. A new coding-theoretic
characterization of bent vectorial functions is presented.

Index Terms— Bent function, bent vectorial function, linear
code, 2-design.

I. INTRODUCTION, MOTIVATIONS AND OBJECTIVES

WE START with a brief review of combinatorial
t-designs (cf. [1], [3], [22]). Let P be a set of v ≥ 1

elements, called points, and let B be a collection of k-subsets
of P , called blocks, where k is a positive integer, 1 ≤ k ≤ v.
Let t be a non-negative integer, t ≤ k. The pair D = (P , B) is
called a t-(v, k, λ) design, or simply t-design, if every t-subset
of P is contained in exactly λ blocks of B. We usually use
b to denote the number of blocks in B. A t-design is called
simple if B does not contain any repeated blocks. In this paper,
we consider only simple t-designs.

Two designs are isomorphic if there is a bijection between
their point sets that maps every block of the first design to a
block of the second design. An automorphism of a design
is any isomorphism of the design to itself. The set of all
automorphisms of a design D form the (full) automorphism
group of D.

It is clear that t-designs with k = t or k = v always exist.
Such t-designs are called trivial. In this paper, we consider
only t-designs with v > k > t .

The incidence matrix of a design D is a (0, 1)-matrix
A = (ai j ) with rows labeled by the blocks, columns labeled
by the points, where ai, j = 1 if the i th block contains the
j th point, and ai, j = 0 otherwise. If the incidence matrix is
viewed over GF(q), its rows span a linear code of length v over
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GF(q), which is denoted by Cq(D) and is called the code of
the design. Note that a t-design can be employed to construct
linear codes in different ways. The supports of codewords of
a given Hamming weight k in a code C may form a t-design,
which is referred to as a design supported by the code.

A design is called symmetric if v = b. A 2-(v, k, λ) design
is symmetric if and only if every two blocks share exactly λ
points.

A 2-design is quasi-symmetric with intersection numbers x
and y, (x < y) if any two blocks intersect in either x or y
points.

Let D = {P , B} be a 2-(v, k, λ) symmetric design, where
B = {B1, B2, · · · , Bv} and v ≥ 2. Then

• (B1, {B2∩B1, B3∩B1, · · · , Bv∩B1}) is a 2-(k, λ, λ−1)
design, and called the derived design of D with respect
to B1;

• (B1, {B2 ∩ B1, B3 ∩ B1, · · · , Bv ∩ B1}) is a 2-(v − k,
k − λ, λ) design, called the residual design of D with
respect to B1, where B1 = P \ B1.

If a symmetric design D has parameters

2 − (22m, 22m−1 − 2m−1, 22m−2 − 2m−1), (1)

its derived designs have parameters

2 − (22m−1 − 2m−1, 22m−2 − 2m−1, 22m−2 − 2m−1 − 1),

and its residual designs have parameters

2 − (22m−1 + 2m−1, 22m−2, 22m−2 − 2m−1).

A symmetric 2-design is said to have the symmetric dif-
ference property, or to be a symmetric SDP design (Kantor
[14], [15]), if the symmetric difference of any three blocks is
either a block or the complement of a block. Any derived or
residual design of a symmetric SDP design is quasi-symmetric,
and has the property that the symmetric difference of every
two blocks is either a block or the complement of a block. The
derived and residual designs of a symmetric SDP design are
called quasi-symmetric SDP designs [12]. The binary codes
of quasi-symmetric SDP designs give rise to an exponentially
growing number of inequivalent linear codes that meet the
Grey-Rankin bound [11]. It was proved in [21] that any quasi-
symmetric SDP design can be embedded as a derived or a
residual design in exactly one (up to isomorphism) symmetric
SDP design.

A coding-theoretical characterization of symmetric SDP
designs was given by Dillon and Schatz [8], who proved that
any symmetric SDP design with parameters (1) is supported
by the codewords of minimum weight in a binary linear code
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C of length 22m , dimension 2m + 2 and weight enumerator
given by

1+22mz22m−1−2m−1 +(22m+1−2)z22m−1 +22mz22m−1+2m−1 +z2m,

(2)

where C is spanned by the first order Reed-Muller code
RM2(1, 2m) and a vector u being the truth table (introduced in
Section III) of a bent function in 2m variables, or equivalently,
u is the incidence vector of a Hadamard difference set in the
additive group of GF(2)2m with parameters

(22m, 22m−1 ± 2m−1, 22m−2 ± 2m−1). (3)

One of the objectives of this paper is to give a
coding-theoretical characterization of bent vectorial functions
(Theorem 5), which generalizes the Dillon and Schatz char-
acterization of single bent functions [8]. Another objective is
to present in Theorem 11 a two-parameter family of binary
linear codes with parameters

[22m, 2m + 1 + �, 22m−1 − 2m−1], m ≥ 2, 1 ≤ � ≤ m,

that are based on bent vectorial functions and support
2-designs, despite that these codes do not satisfy the conditions
of the Assmus-Mattson theorem (see Theorem 1). The subclass
of codes with � = 1 consists of codes introduced by Dillon
and Schatz [8] that are based on bent functions and support
symmetric SDP designs. Examples of codes with � = m
are given that are optimal in the sence that they have the
maximum possible minimum distance for the given length and
dimension, or have the largest known minimum distance for
the given length and dimension (see Note 6 in Section IV, and
the examples thereafter).

II. THE CLASSICAL CONSTRUCTIONS OF

t -DESIGNS FROM CODES

A simple sufficient condition for the supports of codewords
of any given weight in a linear code to support a t-design
is that the code admits a t-transitive or t-homogeneous
automorphism group. All codes considered in this paper are
of even length n of the form n = 22m . It is known that any
2-homogeneous group of even degree is necessarily
2-transitive (Kantor [13], [16]).

Another sufficient condition is given by the
Assmus-Mattson theorem. Let C be a [v, κ, d] linear
code over GF(q), and let Ai = Ai (C) be the number of
codewords of Hamming weight i in C (0 ≤ i ≤ v). For
each k with Ak �= 0, let Bk denote the set of the supports of
all codewords of Hamming weight k in C , where the code
coordinates are indexed by 1, 2, . . . , v. Let P = {1, 2, . . . , v}.
The following theorem, proved by Assumus and Mattson,
provides sufficient conditions for the pair (P , Bk) to be a
t-design.

Theorem 1 (The Assmus-Mattson Theorem [2]). Let C be
a binary [v, κ, d] code, and let d⊥ be the minimum weight
of the dual code C⊥. Suppose that Ai = Ai (C) and A⊥

i =
Ai (C⊥), 0 ≤ i ≤ v, are the weight distributions of C and C⊥,
respectively. Fix a positive integer t with t < d, and let s be

the number of i with A⊥
i �= 0 for 0 < i ≤ v − t . If s ≤ d − t ,

then
• the codewords of weight i in C hold a t-design provided

that Ai �= 0 and d ≤ i ≤ v, and
• the codewords of weight i in the code C⊥ hold a t-design

provided that A⊥
i �= 0 and d⊥ ≤ i ≤ v − t .

The parameter λ of a t-(v,w, λ) design supported by the
codewords of weight w in a binary code C is determined by

Aw = λ

�
v

t

�
/

�
w

t

�
.

III. BENT FUNCTIONS AND BENT VECTORIAL FUNCTIONS

Let f = f (x) be a Boolean function from GF(2n) to GF(2).
The support S f of f is defined as

S f = {x ∈ GF(2n) : f (x) = 1} ⊆ GF(2n).

The (0, 1) incidence vector of S f , having its coordinates
labeled by the elements of GF(2n), is called the truth table
of f .

The Walsh transform of f is defined by

f̂ (w) =
�

x∈GF(2n)

(−1) f (x)+Trn/1(wx)

where w ∈ GF(2n) and Trn/n	(x) denotes the trace function
from GF(2n) to GF(2n	

).
Two Boolean functions f and g from GF(2n) to GF(2)

are called weakly affinely equivalent or EA-equivalent if there
are an automorphism A of (GF(2n),+), a homomorphism L
from (GF(2n),+) to (GF(2),+), an element a ∈ GF(2n) and
an element b ∈ GF(2) such that

g(x) = f (A(x) + a) + L(x) + b

for all x ∈ GF(2n).
A Boolean function f from GF(22m) to GF(2) is called a

bent function if | f̂ (w)| = 2m for every w ∈ GF(22m). It is
well known that a function f from GF(22m) to GF(2) is bent
if and only if S f is a difference set in (GF(22m), +) with
parameters (3) [19].

A Boolean function f from GF(22m) to GF(2) is a bent
function if and only if its truth table is at Hamming dis-
tance 22m−1 ± 2m−1 from every codeword of the first order
Read-Muller code RM2(1, 2m) [18, Theorem 6, page 426]. It
follows that

|S f | = 22m−1 ± 2m−1.

There are many constructions of bent functions. The reader
is referred to [6] and [19] for detailed information about bent
functions.

Let � be a positive integer, and let f1(x), · · · , f�(x) be
Boolean functions from GF(22m) to GF(2). The function
F(x) = ( f1(x), · · · , f�(x)) from GF(22m) to GF(2)� is called
a (2m, �) vectorial Boolean function.

A (2m, �) vectorial Boolean function F(x) =
( f1(x), · · · , f�(x)) is called a bent vectorial function
if

��
j=1 a j f j (x) is a bent function for each nonzero

(a1, · · · , a�) ∈ GF(2)�.
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For another equivalent definition of bent vectorial functions,
see [7] or [19, Chapter 12].

Bent vectorial functions exist only when � ≤ m (cf.
[19, Chapter 12]). There are a number of known constructions
of bent vectorial functions. The reader is referred to [7] and
[19, Chapter 12] for detailed information. Below we present
a specific construction of bent vectorial functions from [7].

Example 2. [7]. Let m ≥ 1 be an odd integer, β1, β2, · · · , βm

be a basis of GF(2m) over GF(2), and let u ∈ GF(22m) \
GF(2m). Let i be a positive integer with gcd(2m, i) = 1. Then�

Tr2m/1(β1ux2i+1),Tr2m/1(β2ux2i+1), · · ·,Tr2m/1(βmux2i+1)
�

is a (2m, m) bent vectorial function.

Under a basis of GF(2�) over GF(2), (GF(2�),+) and
(GF(2)�,+) are isomorphic. Hence, any vectorial function
F(x) = ( f1(x), · · · , f�(x)) from GF(22m) to GF(2)� can be
viewed as a function from GF(22m) to GF(2�).

It is well known that a function F from GF(22m) to GF(2�)
is bent if and only if Tr�/1(a F(x)) is a bent Boolean function
for all a ∈ GF(2�)∗. Any such vectorial function F can be
expressed as Tr2m/�( f (x)), where f is a univariate polyno-
mial. This presentation of bent vectorial functions is more
compact. We give two examples of bent vectorial functions
in this form.

Example 3. (cf. [19, Chapter 12]). Let m > 1 and
i ≥ 1 be integers such that 2m/ gcd(i, 2m) is even. Then
Tr2m/m(ax2i+1) is bent if and only if gcd(2i + 1, 2m + 1) �= 1
and a ∈ GF(22m)∗ \ �αgcd(2i+1,2m+1)�, where α is a generator
of GF(22m)∗.

Example 4. (cf. [19, Chapter 12]). Let m > 1 and i ≥ 1 be
integers such that gcd(i, 2m) = 1. Let d = 22i − 2i + 1.
Let m be odd. Then Tr2m/m(axd) is bent if and only if
a ∈ GF(22m)∗ \ �α3�, where α is a generator of GF(22m)∗.

IV. A CONSTRUCTION OF CODES FROM

BENT VECTORIAL FUNCTIONS

Let q = 22m , let GF(q) = {u1, u2, · · · , uq}, and let w
be a generator of GF(q)∗. For the purposes of what follows,
it is convenient to use the following generator matrix of
the binary [22m, 2m + 1, 22m−1] first-order Reed-Muller code
RM2(1, 2m):

G0 =

⎡
⎢⎢⎢⎣

1 · · · 1
Tr2m/1(w

0u1) · · · Tr2m/1(w
0uq)

...
. . .

...
Tr2m/1(w

2m−1u1) · · · Tr2m/1(w
2m−1uq)

⎤
⎥⎥⎥⎦ .

The weight enumerator of RM2(1, 2m) is

1 + (22m+1 − 2)z22m−1 + z22m
. (4)

Two binary linear codes are equivalent if there is a permutation
of coordinates that sends the first code to the second. Up
to equivalence, RM2(1, 2m) is the unique linear binary code
with parameters [22m, 2m + 1, 22m−1] [8]. Its dual code is the
[22m, 22m − 1 − 2m, 4] Reed-Muller code of order 2m − 2.

Both codes hold 3-designs since they are invariant under a
3-transitive affine group. Note that RM2(1, 2m)⊥ is the unique,
up to equivalence, binary linear code for the given parameters,
hence it is equivalent to the extended binary linear Hamming
code.

Let F(x) = ( f1(x), f2(x), · · · , f�(x)) be a (2m, �) vector-
ial function from GF(22m) to GF(2)�. For each i , 1 ≤ i ≤ �,
we define a binary vector

Fi = ( fi (u1), fi (u2), · · · , fi (uq)) ∈ GF(2)22m
,

which is the truth table of the Boolean function fi (x) intro-
duced in Section III.

Let � be an integer in the range 1 ≤ � ≤ m. We now define
a (2m + 1 + �) × 22m matrix

G = G( f1, · · · , f�) =

⎡
⎢⎢⎢⎣

G0
F1
...

F�

⎤
⎥⎥⎥⎦ , (5)

where G0 is the generator matrix of RM2(1, 2m). Let
C( f1, · · · , f�) denote the binary code of length 22m with
generator matrix G( f1, · · · , f�) given by (5). The dimension
of the code has the following lower and upper bounds:

2m + 1 ≤ dim(C( f1, · · · , f�)) ≤ 2m + 1 + �.

The following theorem gives a coding-theoretical character-
ization of bent vectorial functions.

Theorem 5. A (2m, �) vectorial function F(x) =
( f1(x), f2(x), · · · , f�(x)) from GF(22m) to GF(2)� is a bent
vectorial function if and only if the code C( f1, · · · , f�) with
generator matrix G given by (5) has weight enumerator

1 + (2� − 1)22mz22m−1−2m−1 + 2(22m − 1)z22m−1 +
(2� − 1)22mz22m−1+2m−1 + z22m

. (6)

Proof. By the definition of G, the code C( f1, · · · , f�)
contains the first-order Reed-Muller code RM2(1, 2m) as a
subcode, having weight enumerator (4).

It follows from (5) that every codeword of C( f1, · · · , f�)
must be the truth table of a Boolean function of the form

f(u,v,h)(x) =
��

i=1

ui fi (x) +
2m−1�

j=0

v j Tr2m/1(w
j x) + h,

where ui , v j , h ∈ GF(2), x ∈ GF(22m).
Suppose that F(x) = ( f1(x), f2(x), · · · , f�(x)) is a (2m, �)

bent vectorial function. When (u1, · · · , u�) = (0, · · · , 0),
(v0, v1, · · · , v2m−1) runs over GF(2)2m and h runs over
GF(2), the truth tables of the functions f(u,v,h)(x) form
the code RM2(1, 2m). Whenever (u1, · · · , u�) �= (0, · · · , 0),
it follows from (5) that f(u,v,h)(x) is a bent function, and the
corresponding codeword has Hamming weight 22m−1 ± 2m−1.
Since the all-one vector belongs to RM2(1, 2m), the code
C( f1, · · · , f�) is self-complementary, and the desired weight
enumerator of C( f1, · · · , f�) follows.

Suppose that C( f1, · · · , f�) has weight enumerator given
by (6). Then C( f1, · · · , f�) has dimension 2m + 1 + �.
Consequently,

��
i=1 ui fi (x) is the zero function if and only if
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(u1, · · · , u�) = (0, · · · , 0). It then follows that the codewords
corresponding to f(u,v,h)(x) must have Hamming weight
22m−1 ± 2m−1 for all u = (u1, · · · , u�) �= (0, · · · , 0) and
all (v0, v1, · · · , v2m−1) ∈ GF(2)2m . Notice that

2m−1�
j=0

v j Tr2m/1(w
j x)

ranges over all linear functions from GF(2m) to GF(2) when
(v0, v1, · · · , v2m−1) runs over GF(2)2m . Consequently, F(x)
is a bent vectorial function.

Note 6. Let F(x) = ( f1(x), f2(x), · · · , fm(x)) be a bent
vectorial function from GF(22m) to GF(2)m . Then the code
C( f1, · · · , fm ) has parameters

[22m, 3m + 1, 22m−1 − 2m−1].
In particular, if m = 2, any code C( f1, f2) based on a bent
vectorial function from GF(24) to GF(2)2 has parameters
[16, 7, 6] and is optimal (cf. [10]). An [n, k, d] code is optimal
if d is the maximum possible minimum distance for the
given n and k. If m = 3, any code C( f1, f2, f3) based
on a bent vectorial function from GF(26) to GF(2)3 has
parameters [64, 10, 28] and is optimal [10]. If m = 4, any
code C( f1, · · · , f6) based on a bent vectorial function from
GF(28) to GF(2)4 has parameters [256, 13, 120] and has the
largest known minimum distance for the given code length
and dimension [10].

Theorem 7. Up to equivalence, there is exactly one [16, 7, 6]
code that can be obtained from a (4, 2) bent vectorial function.

Proof. The weight enumerator of the second order
Reed-Muller code RM2(2, 4) is given by

1 + 140z4 + 448z6 + 870z8 + 448z10 + 140z12 + z16.

The truth table of a bent function f from GF(24) to GF(2)
is a codeword c f of RM2(2, 4) of weight 6. The linear code
C( f ) spanned by c f and RM2(1, 4) is a subcode of RM2(2, 4)
of dimension 6, having weight enumerator

1 + 16z6 + 30z8 + 16z10 + z16.

The codewords of C( f ) of weight 6 form a symmetric
2-(16, 6, 2) SDP design, whose blocks correspond to the
supports of 16 bent functions.

Now, let ( f1, f2) be a (4, 2) bent vectorial function. Then,
the intersection of the codes C( f1), C( f2) consists of the first
order Reed-Muller code RM2(1, 4). It follows that the set
of 448 codewords of weight 6 in RM2(2, 4) is a union U
of 28 pairwise disjoint subsets of size 16, corresponding to
the incidence matrices of symmetric 2-(16, 6, 2) SDP designs
associated with 28 different [16, 6] codes defined by single
bent functions.

If C( f1, f2) is a [16, 7] code defined by a bent vectorial
function ( f1, f2), its weight enumerator is given by

1 + 48z6 + 30z8 + 48z10 + z16. (7)

The set of 48 codewords of weight 6 of C( f1, f2) is a union
of the incidence matrices of three SDP designs from U with

pairwise disjoint sets of blocks. A quick check shows that there
are exactly 56 such collections of 48 codewords that generate
a code having weight enumerator (7). Therefore, the number
of distinct [16, 7, 6] subcodes of RM2(1, 4) based on (4, 2)
bent vectorial functions is 56. The 7 × 16 generator matrix G
of one such [16, 7, 6] code is listed below:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The first five rows of G form a generator matrix of RM2(1, 4),
while the last two rows are codewords of weight 6 in
RM2(2, 4). The full automorphism group of the [16, 7, 6] code
generated by G is of order 5760. Since the order of the
automorphism group of RM2(1, 4) is 322560, and

322560/5760 = 56,

it follows that all 56 [16, 7, 6] codes based on (4, 2) bent
vectorial functions are pairwise equivalent.

The next two examples illustrate that there are at least three
inequivalent optimal [64, 10, 28] codes that are obtainable
from bent vectorial functions from GF(26) to GF(2)3. The
parameters [64, 10, 28] correspond to m = 3 in Note 6.

Example 8. The binary cyclic [63, 10] code C with parity
check polynomial h(x) = (x +1)(x3 + x2 +1)(x6 + x5 + x4 +
x + 1) has weight enumerator

1 + 196z27 + 252z28 + 63z31 + 63z32 + 252z35 + 196z36 + z63.

The [63, 7] subcode C 	 of C having check polynomial
h	(x) = (x + 1)(x6 + x5 + x4 + x + 1) has weight enumerator

1 + 63z31 + 63z32 + z63.

The extended [64, 7] code (C 	)∗ of C 	 has weight enumerator

1 + 126z32 + z64,

hence, (C 	)∗ is equivalent to the first order Reed-Muller code
RM2(1, 6). The extended [64, 10] code C∗ of C has weight
enumerator given by

1 + 448z28 + 126z32 + 448z36 + z64. (8)

Since C∗ contains a copy of the first order Reed-Muller code
RM2(1, 6) as a subcode, it follows from Theorem 5 that C∗
can be obtained from a (6, 3) bent vectorial function from
GF(26) to GF(23). The full automorphism group of C∗ is of
order

677, 376 = 29 · 33 · 72.

Magma was used for these computations.

Example 9. Let M be the 7 by 64 (0, 1)-matrix with the fol-
lowing structure: the i th column of the 6 by 64 submatrix M 	
of M consisting of its first six rows is the binary presentation
of the number i (i = 0, 1, . . . 63), while the last row of M is
the all-one row. Clearly, M is a generator matrix of a binary
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linear [64, 7] code equivalent to the first order Reed-Muller
code RM2(1, 6).

The first six rows of M can be viewed as the truth tables of
the single Boolean variables x1, x2, . . . x6, while the seventh
row of M is the truth table of the constant 1.

We consider the Boolean bent functions given by

f1(x1, . . . , x6) = x1x6 + x2x5 + x3x4,

f2(x1, . . . , x6) = x1x5 + x2x4 + x3x5 + x3x6,

f3(x1, . . . , x6) = x1x4 + x2x5 + x2x6 + x3x4 + x3x5 + x5x6,

f4(x1, . . . , x6) = x1x4 + x2x3 + x3x6 + x5x6.

The vectorial functions F1 = ( f1, f2, f3), F2 = ( f1, f2, f4)
give via Theorem 5 binary linear codes C1, C2 with parameters
[64, 10, 28], having weight enumerator given by (8).

The automorphism groups of the codes C1, C2 were com-
puted using the computer-algebra package Magma [5].

The code C1 has full automorphism group of order

10, 752 = 29 · 3 · 7.

The code C2 has full automorphism group of order

4, 032 = 26 · 32 · 7.

Thus, C1, C2 and the extended cyclic code C∗ from Example 8
are pairwise inequivalent.

We note that the code C1 cannot be equivalent to any
extended cyclic code because its group order is not divisible
by 63.

Note 10. The full automorphism group of C1 from Example 9
cannot be 2-transitive because its order is not divisible by
63. Thus, the code C1 does not satisfy the classical sufficient
condition to support 2-designs based on the 2-transitivity of
its automorphism group (recall that according to [13], any
2-homogeneous group of degree 64 is necessarily 2-transitive).

In addition, the minimum distance of its dual code C1
⊥ is 4,

thus the Assmus-Mattson theorem guarantees only 1-designs
to be supported by C1.

We will prove in the next section that all codes obtained
from bent vectorial functions support 2-designs.

V. A CONSTRUCTION OF 2-DESIGNS FROM

BENT VECTORIAL FUNCTIONS

The following theorem establishes that the binary codes
based on bent vectorial functions support 2-designs, despite
that these codes do not meet the conditions of the
Assmus-Mattson theorem for 2-designs.

Theorem 11. Let F(x) = ( f1(x), f2(x), · · · , f�(x)) be a bent
vectorial function from GF(22m) to GF(2)�, where m ≥ 2 and
1 ≤ � ≤ m. Let C = C( f1, · · · , f�) be the binary linear code
with parameters [22m, 2m + 1 + �, 22m−1 − 2m−1] defined in
Theorem 5.

(a) The codewords of C of minimum weight hold a 2-design
D with parameters

2 − (22m, 22m−1 − 2m−1, (2� − 1)(22m−2 − 2m−1)). (9)

(b) The codewords of C of weight 22m−1 + 2m−1 hold a
2-design D with parameters

2 − (22m, 22m−1 + 2m−1, (2� − 1)(22m−2 + 2m−1)). (10)

Proof. Since C contains RM2(1, 2m), and the minimum
distance of RM2(1, 2m)⊥ is 4, the minimum distance d⊥ of
C⊥ is at least 4. Applying the MacWilliams transform (see, for
example [23, p. 41]) to the weight enumerator (6) of C shows
that d⊥ = 4. It follows from the Assmus-Mattson theorem
(Theorem 1) that the codewords of any given nonzero weight
w < 22m in C hold a 1-design.

However, we will prove that C actually holds 2-designs,
despite that the Assmus-Mattson theorem guarantees only
1-designs to be supported by C .

Since the subcode RM2(1, 2m) of C contains all codewords
of C of weight 22m−1, the codewords of this weight hold a
3-design A with parameters 3-(22m, 22m−1, 22m−2 − 1). We
note that A is a 2-design with

λ2 = 22m − 2

22m−1 − 2
· (22m−2 − 1) = 22m−1 − 1. (11)

Let D be the 1-design supported by codewords of weight
22m−1 − 2m−1. Since the number of codewords of weight
22m−1 − 2m−1 is equal to (2� − 1)22m , D is a 1-design with
parameters 1-(22m, 22m−1 − 2m−1, (2� − 1)(22m−1 − 2m−1)).

Every codeword of C of weight 22m−1 + 2m−1 is the sum
of a codeword of weight 22m−1 −2m−1 and the all-one vector.
Thus, the codewords of weight 22m−1 + 2m−1 hold a 1-design
D having parameters 1-(22m, 22m−1 + 2m−1, (2� − 1)(22m−1 +
2m−1)). Clearly, D is the complementary design of D, that is,
every block of D is the complement of some block of D.

Let M be the 22m+1+� × 22m (0, 1)-matrix having as rows
the codewords of C . Since d⊥ = 4, M is an orthogonal array
of strength 3, that is, for every integer i , 1 ≤ i ≤ 3, and
for every set of i distinct columns of M , every binary vector
with i components appears exactly 22m+1+�−i times among
the rows of the 22m+1+� × i submatrix of M formed by the
chosen i columns. In particular, any 22m+1+� × 2 submatrix
consisting of two distinct columns of M contains the binary
vector (1, 1) exactly 22m+�−1 times as a row. Among these
22m+�−1 rows, one corresponds to the all-one codeword of C ,
22m−1 −1 rows correspond to codewords of weight 22m−1 (by
equation (11)), and the remaining

22m+�−1 − 1 − (22m−1 − 1) = (2� − 1)22m−1 (12)

rows are labeled by codewords of weight 22m−1 ± 2m−1,
corresponding to blocks of D and D.

Let now 1 ≤ c1 < c2 ≤ 22m be two distinct columns of M .
These two columns label two distinct points of D (resp. D).
Let λ denote the number of blocks of D that are incident with
c1 and c2. Then the pair {c1, c2} is incident with

(2� − 1)22m − 2(2� − 1)(22m−1 − 2m−1) + λ = (2� − 1)2m + λ
(13)

blocks of the complementary design D. It follows from (13)
and (12) that

(2� − 1)2m + 2λ = (2� − 1)22m−1,
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whence

λ = (2� − 1)(22m−2 − 2m−1),

and the statements (a) and (b) of the theorem follow.
The special case � = 1 in Theorem 11 implies as a corollary

the following result of Dillon and Schatz [8].

Theorem 12. Let f (x) be a bent function from GF(22m) to
GF(2). Then the code C( f ) has parameters [22m, 2m + 2,
22m−1 − 2m−1] and weight enumerator (2). The minimum
weight codewords form a symmetric SDP design with para-
meters (1).

Proof. The weight enumerator (2) is obtained by substitu-
tion � = 1 in (6). Since the number of minimum weight vectors
is equal to the code length 22m , the 2-design D supported by
the codewords of minimum weight is symmetric. Since every
two blocks B1, B2 of D intersect in λ = 22m−2 −2m−1 points,
the sum of the two codewords supporting B1, B2 is a codeword
c1,2 of weight 22m−1 that belongs to the subcode RM2(1, 2m).

Let B3 be a block distinct from B1 and B2, and let c3
be the codeword associated with B3. Since c3 is the truth
table of a bent function, the sum c1,2 + c3 is a codeword
of weight 22m−1 ± 2m−1, thus its support is either a block
or the complement of a block of D. Therefore, D is an SDP
design.

Theorem 13. The code C = C( f1, · · · , f�) from Theorem 11
is spanned by the set of codewords of minimum weight.

Proof. All we need to prove is that the copy of RM2(1, 2m)
which is a subcode of C , is spanned by some minimum weight
codewords of C .

It is known that the 2-rank (that is, the rank over GF(2))
of the incidence matrix of any symmetric SDP design D

with 22m points is equal to 2m + 2 (for a proof, see [12]).
This implies that the binary code spanned by D contains the
first order Reed-Muller code RM2(1, 2m). Consequently the
minimum weight vectors of the subcode C f1 = C( f1) of
C = C( f1, . . . , f�) span the subcode of C being equivalent
to RM(1, 2m).

Corollary 14. The two codes C f = C( f1, · · · , fs) and
Cg = C(g1, · · · , gs) obtained from bent vectorial functions
F( f1, · · · , fs) and F(g1, · · · , gs) are equivalent if and only
if the designs supported by their minimum weight vectors are
isomorphic.

Example 15. Let m = 5. Let w be a generator of GF(210)∗
with w10 + w6 + w5 + w3 + w2 + w + 1 = 0. Let β = w25+1.
Then β is a generator of GF(25)∗. Define β j = β j for 1 ≤ j ≤
5. Then {β1, β2, β3, β4, β5} is a basis of GF(25) over GF(2).
Now consider the bent vectorial function ( f1, f2, f3, f4, f5)
in Example 2 and the code C( f1, f2, f3).

When i = 1 and i = 7, the two codes C( f1, f2, f3) have
parameters [1024, 14, 496] and weight enumerator

1 + 7168z496 + 2046z512 + 7168z528 + z1024.

The two codes are not equivalent according to Magma.
It follows from Corollary 14 that the two designs with

parameters 2-(1024, 496, 1680) supported by these codes are
not isomorphic.

Note 16. Examples 8 and 9 give three inequivalent [64, 10, 28]
codes, and Example 15 lists two inequivalent codes with para-
meters [1024, 14, 496], obtained from bent vectorial functions.
As we pointed out in Note 10, the code C1 from Example 9,
does not have a 2-transitive group.

These examples, as well as further evidence provided by
Theorem 18 below, suggest the following plausible statement
that we formulate as a conjecture.

Conjecture 17. For any given � in the range 1 ≤ � ≤ m,
the number of inequivalent codes with parameters [22m, 2m +
1 + �, 22m−1 − 2m−1] obtained from (2m, �) bent vectorial
functions via Theorem 5, grows exponentially with linear
growth of m, and most of these codes do not admit a 2-
transitive automorphism group.

As it is customary, by “most” we mean that the limit of
the ratio of the number of 2-transitive codes divided by the
total number of codes approaches zero when m grows to
infinity.

The next theorem proves Conjecture 17 in the case � = 1.

Theorem 18. (i) The number of inequivalent [22m, 2m +
2, 22m−1 − 2m−1] codes obtained from single bent functions
from G F(22m) to G F(2) grows exponentially with linear
growth of m.

(ii) For every given m ≥ 2, there is exactly one (up to
equivalence) code with parameters [22m, 2m + 2, 22m−1 −
2m−1] obtained from a bent function from G F(22m) to G F(2),
that admits a 2-transitive automorphism group.

Proof. (i) By the Dillon-Schatz Theorem 12, the min-
imum weight codewords of a code C( f ) with parameters
[22m, 2m + 2, 22m−1 − 2m−1] obtained from a bent func-
tion f form a symmetric SDP design D( f ) with para-
meters (1). It follows from Theorem 13 that two codes
C( f1), C( f2) obtained from bent functions f1, f2 are equiva-
lent if and only if the corresponding designs D( f1), D( f2)
are isomorphic. Since the number of nonisomorphic SDP
designs with parameters (1) grows exponentially when m
grows to infinity (Kantor [15]), the proof of part (i) is
complete.

(ii) It follows from Theorem 13 that the automor-
phism group of a code C( f ) obtained from a bent func-
tion f coincides with the automorphism group of the
design D( f ) supported by the codewords of minimum
weight. The design D( f ) is a symmetric 2-design with
parameters (1). It was proved by Kantor [17] that for
every m ≥ 2, there is exactly one (up to isomor-
phism) symmetric design with parameters (1) that admits a
2-transitive automorphism group. This completes the proof of
part (ii).

By Theorem 12, the codes based on single bent functions
support symmetric 2-designs. The next theorem determines
the block intersection numbers of the design D( f1, · · · , f�)
supported by the minimum weight vectors in the code
C( f1, · · · , f�) from Theorem 11.
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Theorem 19. Let D = D( f1, . . . , f�), (1 ≤ � ≤ m), be a
2-design with parameters

2 − (22m, 22m−1 − 2m−1, (2� − 1)(22m−2 − 2m−1))

supported by the minimum weight codewords of a code
C = C( f1, . . . , f�) defined as in Theorem 11.

(a) If � = 1, D is a symmetric SDP design, with block
intersection number λ = 22m−2 − 2m−1.

(b) If 2 ≤ � ≤ m, D has the following three block
intersection numbers:

s1 = 22m−2 − 2m−2, s2 = 22m−2 − 2m−1,

s3 = 22m−2 − 3 · 2m−2. (14)

For every block of D, these intersection numbers occur with
multiplicities

n1 = 2m(2m + 1)(2�−1 − 1),

n2 = 22m − 1,

n3 = 2m(2m − 1)(2�−1 − 1).

(15)

Proof. Case (a) follows from Theorem 12.
(b) Assume that 2 ≤ � ≤ m. Let w1, w2 be two distinct

codewords of weight 22m−1 − 2m−1. The Hamming distance
d(w1, w2) between w1 and w2 is equal to

2(22m−1 − 2m−1) − 2s,

where s is the size of the intersection of the supports of w1 and
w2. Since the distance between w1 and w2 is either 22m−1 −
2m−1, or 22m−1, or 22m−1+2m−1, the size s of the intersection
of the two blocks of D supported by w1, w2 can take only the
values si , 1 ≤ i ≤ 3, given by (14).

Let B be a block of D supported by a codeword of weight
22m−1 − 2m−1, and let ni , (1 ≤ i ≤ 3), denote the number
of blocks of D that intersect B in si points. Let r = (2� − 1)
(22m−1 − 2m−1) denote the number of blocks of D containing
a single point, and let b = (2�−1)22m denote the total number
of blocks of D. Finally, let k = 22m−1 − 2m−1 denote the size
of a block, and let λ = (2� − 1)(22m−2 − 2m−1) denote the
number of blocks containing two points. We have

n1 + n2 + n3 = b − 1,

s1n1 + s2n2 + s3n3 = k(r − 1),

s1(s1−1)n1+s2(s2 − 1)n2 + s3(s3 − 1)n3 = k(k − 1)(λ − 1).

The second and the third equation count in two ways the
appearances of single points and ordered pairs of points of
B in other blocks of D. The unique solution of this system of
equations for n1, n2, n3 is given by (15).

Note 20. A bent set is a set S of bent functions such that the
sum of every two functions from S is also a bent function [4].
Since every (2m, �) bent vectorial function gives rise to a bent
set consisting of 2� functions [4, Proposition 1], it follows
from [4, Theorem 1] that the set of blocks of the design D

is a union of 2� − 1 linked system of symmetric 2-(22m,
22m−1−2m−1, 22m−2−2m−1) designs. This gives an alternative
proof of Theorem 11 and Theorem 19(b).

Note 21. For every m ≥ 2, any code C( f1, f2, . . . , fm)
based on a bent vectorial function F(x) = ( f1(x),

f2(x), · · · , fm(x)) from GF(22m) to GF(2)m , contains 2m −1
subcodes C 	 = C 	( f j1, . . . , f js ), j1 < · · · < js ≤ m, such that

RM2(1, 2m) ⊂ C 	 ⊆ C( f1, . . . , fm).

Each subcode C 	 holds 2-designs. This may be the only known
chain of linear codes, included in each other, other than the
chain of the Reed-Muller codes,

RM2(1, 2m) ⊂ RM2(2, 2m) ⊂ · · · ⊂ RM2(m − 2, 2m).

such that all codes in the chain support nontrivial 2-designs.

Note 22. We would demonstrate that the characterization of
bent vectorial functions in Theorem 5 can be used to construct
bent vectorial functions. To this end, consider the extended
binary narrow-sense primitive BCH code of length 22m −1 and
designed distance 22m−1 − 1 − 2m−1, which is affine-invariant
and holds 2-designs [9]. This code has the desired weight
enumerator of (6) for � = m [9]. It can be proved with the
Delsarte theorem that the trace representation of this code is
equivalent to the following code:��

fa,b,h(x)
�

x∈GF(22m)
: a ∈GF(2m), b∈GF(22m), h ∈GF(2)

�
,

where

fa,b,h(x) = Trm/1

�
aTr2m/m

�
x1+2m−1

��
+ Tr2m/1(bx) + h.

It then follows from Theorem 5 that Tr2m/m(x1+2m−1
) is a bent

vectorial function from GF(22m) to GF(2m). Note that this
bent vectorial function may not be new. But our purpose here
is to show that bent vectorial functions could be constructed
from special linear codes.

Conversely, we could say that the extended narrow-sense
BCH code of length 22m − 1 and designed distance 22m−1 −
1 − 2m−1 is in fact generated from the bent vectorial function
Tr2m/m(x1+2m−1

) from GF(22m) to GF(2m) using the construc-
tion of Note 26.

Example 8 gives a demonstration of that. Thus, all known
binary codes with the weight enumerator (6) for some
1 ≤ � ≤ m and arbitrary m ≥ 2 are obtained from the bent
vectorial function construction. As shown in Example 7, all
[16, 7, 6] codes obtained from (4, 2) bent vectorial functions
are equivalent. Example 9 shows that there are at least
three inequivalent [64, 10, 28] binary codes from bent vectorial
functions, one of these codes being an extended BCH code.

Note 23. It is known that two designs D( f ) and D(g) from
two single bent Boolean functions f and g on GF(22m) are iso-
morphic if and only if f and g are weakly affinely equivalent
[8]. Although the classification of bent Boolean functions into
weakly affinely equivalent classes is open, the results from
[15] and [8] imply that the number of nonisomorphic SDP
designs and inequivalent bent functions in 2m variables grows
exponentially with linear growth of m.

Note 24. Two (n, �) vectorial Boolean functions
( f1(x), · · · , f�(x)) and (g1(x), · · · , g�(x)) from GF(2n)
to GF(2)� are said to be EA-equivalent if there are an
automorphism of (GF(2n),+), a homomorphism L from
(GF(2n),+) to (GF(2)�,+), an �×� invertible matrix M over
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GF(2), an element a ∈ GF(2n), and an element b ∈ GF(2)�

such that

(g1(x), · · · , g�(x))

= ( f1(A(x) + a), · · · , f�(A(x) + a))M + L(x) + b

for all x ∈ GF(2n).
Let ( f1(x), · · · , f�(x)) and (g1(x), · · · , g�(x)) be two bent

vectorial functions from GF(22m) to GF(2)�. We conjecture
that the designs D( f1, · · · , f�) and D(g1, · · · , g�) are isomor-
phic if and only if ( f1(x), · · · , f�(x)) and (g1(x), · · · , g�(x))
are EA-equivalent. The reader is invited to attack this open
problem.

Suppose that D is a 2-design with parameters (9)
obtained from a bent vectorial function F(x) = ( f1(x),
f2(x), · · · , f�(x)), (1 ≤ � ≤ m), via the construction from
Theorem 11. Let B be the block set of D. If B is a block
of D, we consider the collection of new blocks Bde consisting
of intersections B ∩ B 	 such that B 	 ∈ B and |B ∩ B 	| =
22m−2 − 2m−1.

Theorem 25. For each B ∈ D, the incidence structure
(B, Bde) is a quasi-symmetric design with parameters

2 − (22m−1 − 2m−1, 22m−2 − 2m−1, 22m−2 − 2m−1 − 1)

and intersection numbers 22m−3 − 2m−2 and 22m−3 − 2m−1.

Proof. By Theorem 19, there are exactly 22m − 1 blocks
that intersect B in 22m−2 − 2m−1 points. Together with B ,
these blocks form a symmetric SDP design D with parameters
2-(22m, 22m−1 − 2m−1, 22m−2 − 2m−1). The incidence struc-
ture (B, B)de is a derived design of D. It was proved
in [12] that each derived design of a symmetric SDP 2-(22m,
22m−1−2m−1, 22m−2−2m−1) design is quasi-symmetric design
with intersection numbers 22m−3 − 2m−2 and 22m−3 − 2m−1,
and having the additional property that the symmetric differ-
ence of every two blocks is either a block or the complement
of a block.

Note 26. Let m > 1 be an integer. Let F be a bent vectorial
function from GF(22m) to GF(2m). Let A be a subgroup of
order 2s of (GF(2m),+). Define a binary code by

CA :=
�
(Trm/1(a F(x)) + Tr2m/1(bx) + c)x∈GF(22m) :

a ∈ A, b ∈ GF(22m), c ∈ GF(2)

�
.

It can be shown that CA can be viewed as a code
C( fi1 , · · · , fis ) obtained from a bent vectorial function
( fi1 , · · · , fis ).

VI. SUMMARY AND CONCLUDING REMARKS

The contributions of this paper are the following.

• A coding-theoretic characterization of bent vectorial
functions (Theorem 5).

• A construction of a two-parameter family of four-weight
binary linear codes with parameters [22m, 2m + 1 + �,
22m−1 − 2m−1] for all 1 ≤ � ≤ m and all
m ≥ 2, obtained from (2m, �) bent vectorial functions
(Theorem 11). The parameters of these codes appear to
be new when 2 ≤ � ≤ m − 1. This family of codes

includes some optimal codes, as well as codes meeting
the BCH bound. These codes do not satisfy the conditions
of the Assmus-Mattson theorem, but nevertheless hold
2-designs. It is plausible that most of these codes do not
admit 2-transitive automorphism groups (Conjecture 17
and Theorem 18).

• A new construction of a two-parameter family of
2-designs with parameters

2–(22m, 22m−1−2m−1, (2� − 1)(22m−2−2m−1)), (16)

and having three block intersection numbers, where
2 ≤ � ≤ m, based on bent vectorial functions
(Theorem 11 and Theorem 19). This construction is a
generalization of the construction of SDP designs from
single bent functions given in [8].

• The number of nonisomorphic designs with parame-
ters (16) in the special case when � = 1, grows expo-
nentially with m by a known theorem of Kantor [15]. It
is an interesting open problem to prove that the number
of nonisomorphic designs with parameters (16) grows
exponentially for any fixed � > 1.

Finally, we would like to mention that vectorial Boolean
functions were employed in a different way to construct binary
linear codes in [20]. The codes from [20] have different
parameters from the codes described in this paper.
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