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The Dual Codes of Several Classes of BCH Codes
Binkai Gong , Cunsheng Ding , Senior Member, IEEE, and Chengju Li

Abstract— As a special subclass of cyclic codes, BCH codes
have wide applications in communication and storage systems.
A BCH code of length n over Fq is always relative to an
n-th primitive root of unity β in an extension field of Fq , and is
called a dually-BCH code if its dual is also a BCH code relative
to the same β. The question as to whether a BCH code is a
dually-BCH code is in general very hard to answer. In this
paper, an answer to this question for primitive narrow-sense
BCH codes and projective narrow-sense ternary BCH codes is
given. Sufficient and necessary conditions in terms of the designed
distances δ will be presented to ensure that these BCH codes are
dually-BCH codes. In addition, the parameters of the primitive
narrow-sense BCH codes and their dual codes are investigated.
Some lower bounds on minimum distances of the dual codes of
primitive and projective narrow-sense BCH codes are developed.
Especially for binary primitive narrow-sense BCH codes, the new
bounds on the minimum distances of the dual codes improve
the classical Sidel’nikov bound, and are also better than the
Carlitz and Uchiyama bound for large designed distances δ. The
question as to what subclasses of cyclic codes are BCH codes is
also answered to some extent. As a byproduct, the parameters
of some subclasses of cyclic codes are also investigated.

Index Terms— BCH code, cyclic code, linear code.

I. INTRODUCTION

THROUGHOUT this paper, let Fq denote the finite field
of order q, where q is a power of a prime p. An [n, k, d]

linear code C over Fq is a k-dimensional subspace of F
n
q with

minimum (Hamming) distance d. The (Euclidean) dual code
of C, denoted by C⊥, is defined by

C⊥ = {b ∈ F
n
q : bcT = 0 ∀ c ∈ C},

where bcT denotes the standard inner product of the two
vectors b and c.

A linear code C is said to be cyclic if (c0, c1, . . . , cn−1) ∈ C
implies (cn−1, c0, . . . , cn−2) ∈ C. By identifying each vector
(c0, c1, . . . , cn−1) ∈ F

n
q with

c0 + c1x + c2x
2 + · · · + cn−1x

n−1 ∈ Fq[x]/�xn − 1�,
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a code C of length n over Fq corresponds to a subset of
Fq[x]/�xn − 1�. Then C is a cyclic code if and only if the
corresponding subset is an ideal of Fq[x]/�xn − 1�. Note
that every ideal of Fq[x]/�xn − 1� is principal. Then there
is a monic polynomial g(x) of the smallest degree such that
C = �g(x)� and g(x) | (xn − 1). Then g(x) is called the
generator polynomial and h(x) = (xn − 1)/g(x) is referred
to as the check polynomial of C.

We always assume that gcd(n, q) = 1 in this paper. Denote
m = ordn(q), i.e., m is the smallest positive integer such that
qm ≡ 1 (mod n). Let α be a primitive element of Fqm and
put β = α

qm−1
n . Then β is a primitive n-th root of unity.

The set T = {0 ≤ i ≤ n − 1 : g(βi) = 0} is referred to
as the defining set of C with respect to β. It is clear that
the generator polynomial of the cyclic code C can be derived
from its defining set and the corresponding β. Thus the code
is determined once the defining set and β are given. Denote
T−1 = {n− t : i ∈ T }. Then the defining set of the dual code
C⊥ with respect to β is Zn \ T−1.

For an integer b and an integer δ with 2 ≤ δ ≤ n, define

g(q,n,δ,b)(x)= lcm
�
Mβb(x), Mβb+1 (x), . . . , Mβb+δ−2(x)

�
, (1)

where Mβi(x) denotes the minimal polynomial of βi over
Fq and lcm denotes the least common multiple of these
polynomials. Let C(q,n,δ,b) denote the cyclic code of length n
over Fq with generator polynomial g(q,n,δ,b)(x). Then C(q,n,δ,b)

is called a BCH code with designed distance δ with respect to
β. We call C(q,n,δ,b) a narrow-sense BCH code if b = 1 and
for convenience we will use C(q,n,δ) in the sequel. When n =
qm−1
q−1 , C(q,n,δ,b) is called a projective BCH code. It follows

from the BCH bound for cyclic codes that the minimum
distance of C(q,n,δ,b) is greater than or equal to the designed
distance δ.

A cyclic code C over Fq with length n is called a BCH
code if there are an n-th primitive root of unity β in Fqm ,
an integer δ with 2 ≤ δ ≤ n+1, and an integer b such that the
generator polynomial of C can be expressed as the polynomial
g(q,n,δ,b)(x) in (1). BCH codes form a subclass of cyclic
codes, and are very attractive in both theory and practice.
Consequently, the following question is quite interesting.

Question 1: When is a cyclic code a BCH code?
By definition, if the generator polynomial of a cyclic code is

irreducible, then the cyclic code is a BCH code with designed
distance 2. However, Question 1 is hard to answer in general.
Our interest in this question comes from the fact that the
largest designed distance (called the Bose distance) of a BCH
code may be a very tight estimation of the minimum distance
of the BCH code. If we are able to prove that a cyclic code C
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is a BCH code with designed distance δ, we will know that C
has minimum distance at least δ. We will answer Question 1
for some subclasses of cyclic codes in Section III.

It is well-known that the dual codes of cyclic codes are also
cyclic. Then we have the following question.

Question 2: When is the dual code of a BCH code still a
BCH code?

This is a very hard question in general, although it may
be answered for some special BCH codes. If the dual of a
BCH code is still a BCH code, then the BCH bound may
be a tight lower bound on the minimum distance of the dual
code. This explains why we are interested in Question 2. Since
Question 2 is very hard to answer, we are interested in the
following question:

Question 3: When is the dual code of a BCH code over Fq

with respect to an n-th primitive root of unity β still a BCH
code with respect to β?

If the dual of a BCH code C over Fq with respect to an n-th
primitive root of unity β is still a BCH code with respect to β,
we call C a dually-BCH code. If a cyclic code C is a dually-
BCH code, by definition C⊥ must be a BCH code. If a cyclic
code C is not a dually-BCH code, C⊥ could still be a BCH
code. Hence, Question 3 is in general easier than Question 2.

We are very much interested in dually-BCH codes, as
the BCH bound may give a very tight lower bound on the
minimum distance of their dual codes and binary BCH codes
of length between 7 and 125 are always the best cyclic codes
except two special cases [8, Appendix A]. This is the main
motivation of this paper. In the past 55 years, a lot of progress
on the study of BCH cyclic codes has been made, but little
is known about the minimum distances of the duals of BCH
codes. We refer the reader to [2]–[4], [6], [7], [9], [10], [13],
[15]–[18], [20], [21], [23], [24] and references therein for
known results on BCH codes.

In this paper, we will answer Question 1 for some subclasses
of cyclic codes. In addition, we will answer Question 3 for
the codes C(q,qm−1,δ) and C(3, 3

m−1
2 ,δ), where 2 ≤ δ ≤ n.

Sufficient and necessary conditions in terms of the designed
distance δ are given to ensure that these codes are dually-BCH
codes. In addition, we will investigate the parameters of these
narrow-sense dually-BCH codes and their dual codes. Some
lower bounds on the minimum distances of C⊥

(q,qm−1,δ) and
C⊥
(q,(qm−1)/(q−1),δ) are developed. Especially for the binary

codes C(2,2m−1,δ), our new bounds on the minimum distances
of the dual codes improve the classical Sidel’nikov bound, and
are also better than the Carlitz and Uchiyama bound for large
designed distances δ.

In this paper, the tables of best known linear codes, main-
tained at http://www.codetables.de/, are referred to as the
Database. All examples of codes presented in this paper are
computed by Magma.

II. PRELIMINARIES

In this section, we introduce some results on coset lead-
ers and BCH codes, which will be employed later. For
more information on BCH codes, we refer the reader
to [22] and [5].

A. Coset Leaders

Let Zn = {0, 1, 2, . . . , n−1} be the ring of integers modulo
n. For any s ∈ Zn, the q-cyclotomic coset of s modulo n is
defined by

Cs = {s, sq, sq2, . . . , sqls−1} mod n ⊆ Zn,

where ls is the smallest positive integer such that s ≡ sqls

(mod n), and is the size of the q-cyclotomic coset. The
smallest integer in Cs is called the coset leader of Cs. Let
Γ(n,q) be the set of all the coset leaders. We have then
Cs ∩ Ct = φ for any two distinct elements s and t in Γ(n,q),
and �

s∈Γ(n,q)

Cs = Zn.

Hence, the distinct q-cyclotomic cosets modulo n partition
Zn.

For an integer i with 0 ≤ i ≤ qm − 1, let

i = im−1q
m−1 + im−2q

m−2 + · · · + i1q + i0

be the q-adic expansion of i, where 0 ≤ ij ≤ q − 1 for 0 ≤
j ≤ m − 1. We will also write i = (im−1, im−2, . . . , i1, i0)q

and call it the q-adic expansion of i in the sequel. It is
easy to obtain the q-cyclotomic coset leaders from the q-adic
expansion when n = qm − 1. The following two lemmas on
coset leaders modulo n = qm − 1 and n = (qm − 1)/(q − 1)
will play an important role in the sequel.

Lemma 1: [11] The first three largest q-cyclotomic coset
leaders modulo n = qm − 1 are give as follows:

δ1 = (q − 1)qm−1 − 1, δ2 = (q − 1)qm−1 − 1 − q�
m−1

2 �,

δ3 = (q − 1)qm−1 − 1 − q�
m+1

2 �.

Lemma 2: [18] Let q = 3 and m ≥ 2. The first largest
coset leader modulo n = (qm − 1)/(q − 1) is

δ1 = qm−1 − 1 − q�(m−1)/2� − 1
q − 1

.

B. Some Lemmas on BCH Codes

Charpin pointed out in [5] that it is a well-known hard
problem to determine the minimum distance of BCH codes.
So far, we have very limited knowledge of BCH codes,
as the dimension and minimum distance of BCH codes are
in general open. The following lemmas about the dimensions
and minimum distances of primitive BCH codes and their dual
codes will be employed later.

Lemma 3: [21] The dimension k of C(q,qm−1,qt) is equal
to

qm − 1 −
� m

r+1 ��
i=1

(−1)i−1m(q − 1)i

i

�
m − ir − 1

i − 1

�
qm−i(r+1),

where r = m − t.
Lemma 4: [22] For any t with 1 ≤ t ≤ m− 1, a primitive

narrow-sense BCH code of length n = qm − 1 and design
distance δ = qt − 1 has minimum distance d = qt − 1.
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Lemma 5 (Carlitz-Uchiyama Bound, See [22]): Let C be
a binary BCH code of length 2m − 1 and designed distance
2s + 1. Then C⊥ has minimum distance

d⊥ ≥ 2m−1 − (s − 1)2
m
2 .

Lemma 6 (Sidel’nikov Bound, See [22]): Let C be a binary
BCH code of length 2m − 1 and designed distance 2s + 1.
Then C⊥ has minimum distance

d⊥ ≥ 2m−1−�log2(2s−1)�.

III. WHEN IS A CYCLIC CODE A BCH CODE?

We follow the notation introduced in Section I, and will
give an answer to Question 1 for some special cyclic codes.
Recall that gcd(n, q) = 1, m = ordn(q), β = α(qm−1)/n

and α is a primitive element of Fqm . The following result is
straightforward.

Theorem 7: Let C be a cyclic code over Fq with length n
and generator polynomial g(x). If g(x) is irreducible over Fq,
then C is a BCH code with designed distance 2.

Theorem 8: Let C be the cyclic code over Fq with length
n and generator polynomial g(x) = Mβi(x)Mβj (x), where i
and j are not in the same q-cyclotomic coset modulo n. Then
C is a BCH code if and only if there exists an integer � with
0 ≤ � ≤ m − 1 such that gcd(i − jq�, n) = 1.

Proof: Note that every n-th primitive root of unity β� must
be of the form β� = βu with gcd(u, n) = 1. By definition,
C is a BCH code with designed distance 3 with respect to β�

if and only if ui− ujq� ≡ ±1 (mod n) for an integer � with
0 ≤ � ≤ m − 1, which holds if and only if i − jq� ≡ ±u−1

(mod n) for an integer � with 0 ≤ � ≤ m − 1. The desired
conclusions then follow.

As a corollary of Theorem 8, we have the following.
Corollary 9: Let C be the cyclic code over Fq with length

n and generator polynomial g(x) = Mβi(x)Mβj (x), where i
and j are not in the same q-cyclotomic coset modulo n. If n
is a prime, then C is a BCH code.

Corollary 9 shows that cyclic codes of prime lengths
are very interesting. The following is also a corollary of
Theorem 8.

Corollary 10: Let C(j) be the cyclic code over Fq with
length n and generator polynomial gj(x) = (x − 1)Mβj (x),
where 1 ≤ j < n. Then C(j) is a BCH code with designed
distance 3 if and only if gcd(j, n) = 1.

If gcd(j, n) = 1, then C(j) has parameters [n, n−m−1, d]
with d ≥ 3, and is permutation-equivalent to C(1).

Proof: The conclusion of the first part follows from
Theorem 8. We now prove the second conclusion. Since
gcd(j, n) = 1, j(q� − 1) ≡ 0 (mod n) for some � with
1 ≤ � ≤ m if and only if � = m. Hence, the q-cyclotomic
class Cj modulo n has size m. Consequently, the dimension
of C(j) equals n−(m+1). The conclusion of the first part and
the BCH bound show that the minimum distance d(C(j)) ≥ 3.
By Delsarte’s theorem,

C(j) = {(Trqm/q(aβ−ji) + b)n−1
i=0 : a ∈ Fqm , b ∈ Fq},

where Trqm/q(x) denotes the trace function from Fqm to
Fq. Clearly, πj(x) := xj mod n is a permutation of Zn,

TABLE I

C(1) AND C(1)⊥

TABLE II

C′((n − 2)/2) AND C′((n − 2)/2)⊥

as gcd(j, n) = 1. It is easily seen that πj(C(1)) = C(j). This
completes the proof.

We remark that the lower bound that d(C(j)) ≥ 3 given
in Corollary 10 is very general and is tight in certain cases.
Such cyclic codes C(j) with generator polynomial gj(x) =
(x − 1)Mβj (x) have very good parameters in general, where
1 ≤ j < n and gcd(j, n) = 1, as they are BCH codes.
Table I documents examples of C(1) and C(1)⊥, where the
record linear code with same length and dimension is from
the Database.

Similarly, we can prove the following.
Corollary 11: Let q be odd and let n be even. Let C�(j)

be the cyclic code over Fq with length n and generator
polynomial g�j(x) = (x + 1)Mβj (x), where 1 ≤ j < n and
j �= n/2. Then C�(j) is a BCH code if and only if there is an
integer u such that gcd(u, n) = 1 and j = u(n±2)/2 mod n.

If there is an integer u such that gcd(u, n) = 1 and j =
u(n±2)/2 mod n, then C�(j) has parameters [n, n−m−1, d]
with d ≥ 3.

The cyclic codes C�((n±2)/2) documented in Corollary 11
are very good in general, as they are BCH codes. Table II
documents examples of C�((n − 2)/2) and C�((n − 2)/2)⊥,
where the record linear code with same length and dimension
is from the Database.

Theorem 12: Let C(0, i, j) denote the cyclic code over
Fq with length n and generator polynomial g(0,i,j)(x) =
(x − 1)Mβi(x)Mβj (x), where i and j are not in the same
q-cyclotomic coset modulo n and {i, j} ⊂ Zn \ {0}. Then
C(0, i, j) is a BCH code if and only if one of the following
sets of conditions is satisfied:

(a) gcd(i, n) = 1 and j = 2i mod n;
(b) gcd(j, n) = 1 and i = 2j mod n;
(c) gcd(i, n) = gcd(j, n) = 1 and i + j ≡ 0 (mod n).

Proof: Let β� = βu with gcd(u, n) = 1. Note that u ×
0 = 0. Then C(0, i, j) is a BCH code with designed distance
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TABLE III

C(0, 2, 4) AND C(0, 2, 4)⊥

TABLE IV

C(0, 1, n − 1) AND C(0, 1, n − 1)⊥

4 with respect to β� if and only if one of the following sets
of conditions is satisfied:

(1) ui ≡ 1 (mod n) and uj ≡ 2 (mod n);
(2) ui ≡ 2 (mod n) and uj ≡ 1 (mod n);
(3) ui ≡ 1 (mod n) and uj ≡ −1 (mod n);
(4) ui ≡ −1 (mod n) and uj ≡ 1 (mod n);
(5) ui ≡ −1 (mod n) and uj ≡ −2 (mod n);
(6) ui ≡ −2 (mod n) and uj ≡ −1 (mod n).

It is easily verified that both (1) and (5) are the same as (a),
both (2) and (6) are the same as (b), and both (3) and (4) are
the same as (c). This completes the proof.

As a corollary of Theorem 11, we have the following results.
Corollary 13: Let C(0, i, j) denote the cyclic code over

Fq with length n and generator polynomial g(0,i,j)(x) =
(x − 1)Mβi(x)Mβj (x), where i and j are not in the same
q-cyclotomic coset modulo n and {i, j} ⊂ Zn \ {0}.
If gcd(i, n) = 1 and j = 2i mod n, then C(0, i, j) has
parameters [n, n − (deg(Mβj (x)) + m + 1), d] with d ≥ 4,
where deg(Mβj (x)) = m provided that n is odd.

The cyclic codes documented in Corollary 13 have very
good parameters in general, as they are BCH codes. Table III
documents examples of C(0, 2, 4) and C(0, 2, 4)⊥ over F4,
where the record linear code with same length and dimension
is from the Database.

Corollary 14: Let C(0, i, n− i) denote the cyclic code over
Fq with length n and generator polynomial g(0,i,n−i)(x) =
(x−1)Mβi(x)Mβn−i(x), where i and n−i are not in the same
q-cyclotomic coset modulo n and 1 ≤ i < n. If gcd(i, n) = 1,
then C(0, i, n − i) has parameters [n, n − (2m + 1), d] with
d ≥ 4.

The cyclic codes documented in Corollary 14 have very
good parameters in general, as they are BCH codes. Table IV
documents examples of C(0, 1, n − 1) and C(0, 1, n − 1)⊥

over Fq , where the record linear code with same length and
dimension is from the Database.

If the generator polynomial g(x) of a cyclic code C over Fq

is the product of more distinct irreducible polynomials over

Fq in general, it is harder to answer Question 1 for C. The
reader is cordially invited to answer Question 1 for other
special subclasses of cyclic codes.

IV. DUAL CODES OF BINARY NARROW-SENSE BCH
CODES OF LENGTH 2m − 1

In this section, we always assume that n = 2m − 1, where
m ≥ 2. We follow the notation introduced in Section I.
In this case, β = α, which is a primitive element of F2m .
Let C(2,n,δ) be the primitive narrow-sense binary BCH code
with designed distance δ, i.e., the defining set of C(2,n,δ) with
respect to β is T = C1 ∪ C2 ∪ · · · ∪ Cδ−1, where 2 ≤ δ ≤ n.
Denote by T⊥ the defining set of the dual code C⊥

(2,n,δ) with
respect to β. It is clear that T⊥ = Zn \ T−1 and 0 ∈ T⊥.
We aim to investigate the parameters of the dual code C⊥

(2,n,δ)

and present a characterization of C⊥
(2,n,δ) being a dually-

BCH code. To this end, we will need the following lemma
later.

Lemma 15: For 4 ≤ δ < 2m−1−2�
m−1

2 �, let I(δ) ≥ 2 be the
integer such that {0, 1, 2, . . . , I(δ)−1} ⊆ T⊥ and I(δ) /∈ T⊥.
Then we have I(δ) = 2m−t − 1 if 2t ≤ δ < 2t+1 (2 ≤ t ≤
m − 3) and I(δ) = 3 if 2m−2 ≤ δ < 2m−1 − 2�

m−1
2 �.

Proof: When 2t ≤ δ < 2t+1 (2 ≤ t ≤ m − 3), it is easy
to see that

2m − 2m−t = 2m−t(2t − 1) ∈ C2t−1 ⊆ T.

Thus 2m−t − 1 = n− (2m− 2m−t) ∈ T−1 and 2m−t − 1 �∈
T⊥ = Zn \ T−1.

Next we need to show that {0, 1, 2, . . . , 2m−t − 2} ⊆ T⊥.
It is clear that 0 ∈ T⊥. For every integer i with 1 ≤ i ≤
2m−t − 2, we have i = 2m−t − u, where 2 ≤ u ≤ 2m−t − 1.
Note that

((u − 1)2t + 2t − 1)2m−t ≡ 2m − 1 − 2m−t + u (mod n).

Thus (u − 1)2t + 2t − 1 ∈ C2m−1−2m−t+u = Cn−i.
In addition, we have

(u − 1)2t + 2t − 1 = (im−1, im−2, . . . , it� 	
 �
m−t

, 1, . . . , 1� 	
 �
t

)2,

where (im−1, im−2, . . . , it) �= (0, 0, . . . , 0), i.e.,

Z = |{ij = 0 : t ≤ j ≤ m − 1}| ≤ m − t − 1.

Note that

2t+1 − 2 = (0, . . . , 0� 	
 �
m−t−1

, 1, . . . , 1� 	
 �
t

, 0)2.

It then follows that

CL(2m − 1 − 2m−t + u) > 2t+1 − 2 ≥ δ − 1,

where CL(2m − 1 − 2m−t + u) denotes the coset leader
of the 2-cyclotomic coset containing 2m − 1 − 2m−t + u.
Hence 2m − 1 − 2m−t + u �∈ T and 2m−t − u �∈ T−1.
This leads to i = 2m−t − u ∈ T⊥. Consequently, we have
I(δ) = 2m−t − 1.

When 2m−2 ≤ δ < 2m−1 − 2�
m−1

2 �, the desired conclusion
can be similarly proved. We omit the details of the proof of
this part here.
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TABLE V

C⊥
(2,n,δ)

FOR 2 ≤ m ≤ 5

Proposition 16:

1) Let m ≥ 4 be even. Then 2m−1
3 ∈ T⊥ is a coset leader

modulo n if 4 ≤ δ ≤ 2m−1
3 and 2

m
2 +1 ∈ T⊥ is a coset

leader modulo n if 2m−1
3 < δ < 2m−1 − 2

m
2 −1.

2) Let m ≥ 5 be odd. Then 2m+1
3 ∈ T⊥ is a coset leader

modulo n if 4 ≤ δ ≤ 2m−1−1
3 and 2

m−1
2 + 1 ∈ T⊥ is a

coset leader modulo n if 2m−1−1
3 < δ < 2m−1 − 2

m−1
2 .

Proof: We prove only the desired conclusions for
the even m case, as the desired conclusions for the
odd m case can be similarly proved. It is clear that
2m−1

3 = (0, 1, 0, 1, . . . , 0, 1)2 is the 2-cyclotomic coset
leader of C 2(2m−1)

3
. Note that n − 2m−1

3 = 2(2m−1)
3 =

(1, 0, 1, 0, . . . , 1, 0)2. If 4 ≤ δ ≤ 2m−1
3 , then we have

CL

�
n − 2m − 1

3

�
=

2m − 1
3

>
2m − 1

3
− 1 ≥ δ − 1.

Thus n − 2m−1
3 �∈ T and 2m−1

3 ∈ T⊥.
It is also easy to see that 2

m
2 +1 = (0, . . . , 0� 	
 �

m
2 −1

, 1, 0, . . . , 0� 	
 �
m
2 −1

, 1)2

is the 2-cyclotomic coset leader of C
2

m
2 +1

. In addi-
tion, we have n − (2

m
2 + 1) = 2m − 2

m
2 − 2 =

(1, . . . , 1� 	
 �
m
2 −1

, 0, 1, . . . , 1� 	
 �
m
2 −1

, 0)2. Then

CL
�
n − (2

m
2 − 1)



= (0, 1, . . . , 1� 	
 �

m
2 −1

, 0, 1, . . . , 1� 	
 �
m
2 −1

)2

= 2m−1 − 2
m
2 −1 − 1.

For 2m−1
3 < δ < 2m−1 − 2

m
2 −1, we have

CL
�
n − (2

m
2 − 1)



> 2m−1 − 2

m
2 −1 − 2 ≥ δ − 1.

It then follows that n − (2
m
2 + 1) �∈ T and 2

m
2 + 1 ∈ T⊥.

This completes the proof.
For 2 ≤ m ≤ 5, Table V documents if C(2,n,δ) is a dually-

BCH code. For m ≥ 6, the following theorem gives a sufficient
and necessary condition for C(2,n,δ) being a dually-BCH code,
where 2 ≤ δ ≤ n.

Theorem 17: Let m ≥ 6. Then C(2,n,δ) is a dually-BCH
code if and only if

δ = 2, 3, or 2m−1 − 2�
m−1

2 � ≤ δ ≤ n.

Proof: Let β be the n-th primitive root of unity for
defining C(2,n,δ) and let T denote the defining set of this
code with respect to β. It is clear that 0 /∈ T and 1 ∈ T ,
so 0 /∈ T−1 and n− 1 ∈ T−1. Furthermore, we have 0 ∈ T⊥

and n − 1 /∈ T⊥, which means that C0 must be the initial

cyclotomic coset of T⊥. In other words, there must be an
integer J ≥ 1 such that T⊥ = C0∪C1∪· · ·∪CJ−1 if C(2,n,δ)

is a dually-BCH code.
When δ = 2, 3, the defining set of C(2,n,δ) is equal to T =

C1. In this case, T−1 = C2m−1−1. Note that δ1 := 2m−1−1 is
the largest coset leader modulo n by Lemma 1. Consequently,
T⊥ = Zn \ T−1 = C0 ∪ C1 ∪ · · · ∪ C2m−1−2 and C⊥

(2,n,δ) =
C(2,n,2m−1,0), which is a BCH code with the designed distance
2m−1 with respect to β.

By Lemma 1, δ2 := 2m−1 − 2�
m−1

2 � is the second largest
coset leader modulo n. When δ2 ≤ δ ≤ n, we will show that
T⊥ = C0 or T⊥ = C0 ∪ C1. If δ1 + 1 ≤ δ ≤ n, it is easy to
see that T⊥ = {0}. In this subcase, C⊥

(2,n,δ) = C(2,n,2,0) with
respect to β. If δ2 + 1 ≤ δ ≤ δ1, then

T⊥ = Zn \ T−1 = (Zn \ T )−1 = (C0 ∪ Cδ1)
−1 = C0 ∪ C1.

In this subcase, C⊥
(2,n,δ) = C(2,n,3,0) with respect to β.

Finally, we need to show that C⊥
(2,n,δ) is not a BCH code

with respect to β when 4 ≤ δ < 2m−1 − 2�
m−1

2 � for m ≥ 6.
It suffices to show that there is no integer J ≥ 1 such that
T⊥ = C0 ∪ C1 ∪ · · · ∪ CJ−1.

When m ≥ 6 is even, we have the following two cases.

• If 4 ≤ δ ≤ 2m−1
3 , it follows from Proposition 16 that

2m−1
3 ∈ T⊥ is the coset leader of C 2m−1

3
. Note that

2m−1
3 − Imax = 2m

12 + 2
3 > 0, where

Imax := max{I(δ) : 4 ≤ δ ≤ 2m − 1
3

} = 2m−2 − 1

by Lemma 15. As a result, there is no integer J ≥ 1 such
that T⊥ = C0 ∪ C1 ∪ · · · ∪ CJ−1, i.e., C⊥

(2,n,δ) is not a
BCH code with respect to β.

• If 2m−1
3 < δ < 2m−1 − 2

m
2 −1, it follows from Propo-

sition 16 that 2
m
2 + 1 ∈ T⊥ is the coset leader of

C
2

m
2 +1

. Note that 2
m
2 + 1 > 3. It then follows from

Lemma 15 that there is no integer J ≥ 1 such that
T⊥ = C0 ∪ C1 ∪ · · · ∪ CJ−1, i.e., C⊥

(2,n,δ) is not a BCH
code with respect to β.

When m ≥ 7 is odd, we also have the following two cases.

• If 4 ≤ δ ≤ 2m−1−1
3 , Proposition 16 tells us that 2m+1

3 ∈
T⊥ is the coset leader of C 2m+1

3
. Note that 2m+1

3 >

(2m−2 − 1) = Imax by Lemma 15. Consequently, there
is no integer J ≥ 1 such that T⊥ = C0∪C1∪· · ·∪CJ−1,
i.e., C⊥

(2,n,δ) is not a BCH code with respect to β.

• If 2m−1−1
3 < δ < 2m−1 − 2

m−1
2 , Proposition 16 informs

us that 2
m−1

2 + 1 ∈ T⊥ is the coset leader of C
2

m−1
2 +1

.

Note that 2
m−1

2 + 1 > 7 if m > 5. It then follows from
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TABLE VI

THE CODES OF C(2,127,δ) AND C⊥
(2,127,δ)

Lemma 15 that there is no integer J ≥ 1 such that
T⊥ = C0 ∪ C1 ∪ · · · ∪ CJ−1, i.e., C⊥

(2,n,δ) is not a BCH
code with respect to β.

Collecting all discussions above proves the desired
conclusions.

Example 1: For m = 7, we have n = 127. The para-
meters of C(2,127,δ) and C⊥

(2,127,δ) are presented in Table VI,
where the codes are optimal or best known according to the
Database [14].

The following theorem gives the parameters or their bounds
of the codes C(2,n,δ) and C⊥

(2,n,δ), where n = 2m − 1 and
m ≥ 6. Specially, lower bounds on minimum distances of the
dual codes C⊥

(2,n,δ) are presented.
Theorem 18: Let [n, k, d] and [n, k⊥, d⊥] be the parameters

of C(2,n,δ) and C⊥
(2,n,δ), respectively, where n = 2m − 1 and

m ≥ 6. Denote

kt = 2m − 1 −
� m

r+1 ��
i=1

(−1)i−1 m

i

�
m − ir − 1

i − 1

�
2m−i(r+1),

where r = m − t.

1) For δ = 2, 3, we have

k = 2m−1−m, d = 3, and k⊥ = m, d⊥ = 2m−1.

2) Assume that 4 ≤ δ < 2m−1 − 2�
m
2 �−1.

• For 2t ≤ δ < 2t+1 with 2 ≤ t ≤ m − 3, we have

kt+1 < k ≤ kt, d ≥ δ, and

qm − 1 − kt ≤ k⊥ < qm − 1 − kt+1, d⊥ ≥ 2m−t.

• For 2m−2 ≤ δ < 2m−1 − 2�
m
2 �−1, we have

km−1 < k ≤ km−2, d ≥ δ, and

qm − 1 − km−2 ≤ k⊥ < qm − 1 − km−1, d⊥ ≥ 4.

3) For 2m−1 − 2�
m
2 �−1 ≤ δ < 2m−1, we have

k = m + 1, d = 2m−1 − 1 and

k⊥ = 2m − m − 2, d⊥ ≥ 4.

Proof: For δ = 2, 3, it follows from the proof of
Theorem 17 that the defining sets of C(2,n,δ) and C⊥

(2,n,δ) are

T = C1 and T⊥ = C0 ∪ C1 ∪ · · · ∪ C2m−1−2,

respectively. Then we have k = 2m−1−m and k⊥ = m. It is
easy to see from Lemma 4 that d = 3. Note that Cn−1 = Cδ1 .
Then C⊥

(2,n,δ) is an irreducible primitive cyclic code with check
polynomial Mδ1 (x), where Mδ1(x) is the minimal polynomial
of αδ1 over F2. Then the minimum distance of C⊥

(2,n,δ) is equal
to d⊥ = 2m−1, which is also documented in [11] and [12].

For every fixed δ in the range 4 ≤ δ < 2m−1 − 2�
m
2 �−1,

there is an integer t0 such that 2 ≤ t0 ≤ m−2 and 2t0 ≤ δ <
2t0+1, which means that

C(2,n,2t0+1) ⊆ C(2,n,δ) ⊆ C(2,n,2t0 ).

The desired conclusion on the dimensions of C(2,n,δ) and
C⊥
(2,n,δ) then follows from Lemma 3. Moreover, the lower

bound on the minimum distance d comes from the BCH
bound. It is clear that C⊥

(2,n,δ) is a subcode of C⊥
(2,n,I(δ)),

where I(δ) is given in Lemma 15. We then obtain the desired
conclusion on d⊥.

When 2m−1 − 2�
m
2 �−1 ≤ δ < 2m−1, from the proof of

Theorem 17 we have T⊥ = C0 ∪ C1. Then k = m + 1 and
k⊥ = 2m −m− 2. In addition, d = 2m−1 − 1 is documented
in [11]. Note that C1 = C2 and T⊥ = C0 ∪ C1 ∪ C2. Then
d⊥ ≥ 4.

It should be remarked that Theorem 18 improves the
classical Sidel’nikov bound documented in Lemma 6. For
δ = 2s+1, there is an integer t such that 2t < 2s+1 < 2t+1
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TABLE VII

LOWER BOUNDS ON MINIMUM DISTANCES OF C⊥
(2,63,δ)

and 2t − 2 < 2s − 1 < 2t+1 − 2. Moreover, we have

2m−1−�log2(2s−1)� ≤ 2m−1−�log2(2t−2)� = 2m−t.

It then follows that the lower bound on d⊥ given in The-
orem 18 is tighter than the Sidel’nikov bound (see Table VII
for comparison). It is clear that Carlitz-Uchiyama bound given
in Lemma 5 is useless when δ > 2

m
2 + 3 since the bound is

negative. Therefore, the bound on d⊥ given in Theorem 18 is
larger than the Carlitz-Uchiyama bound when δ > 2

m
2 + 3.

Corollary 19: For δ = 2t − 1 (2 ≤ t ≤ m − 1), we have

k = kt + m, d = 2t − 1, and

k⊥ = 2m − 1 − kt − m, d⊥ ≥ 2m−t+1,

where kt was given in Theorem 18.
Proof: For δ = 2t−1, we have T = C1∪C2∪· · ·∪C2t−2.

It is clear that 2t−1 is a coset leader and |C2t−1| = m. It then
follows from Lemmas 3 and 4 that k = kt+m and d = 2t−1.
Thus k⊥ = 2m−1−kt−m. Moreover, d⊥ ≥ 2m−t+1 follows
from the proof of Theorem 18.

V. DUAL CODES OF BCH CODES OF LENGTH qm − 1

In this section, we always assume that n = qm − 1, where
q ≥ 3 and m ≥ 2. We follow the notation introduced in
Section I. In this case, β = α, which is a primitive element of
Fqm . Let C(q,n,δ) be the primitive narrow-sense BCH code over
Fq with designed distance δ, i.e., the defining set of C(q,n,δ)

with respect to the n-th primitive root β is T = C1 ∪ C2 ∪
· · · ∪ Cδ−1, where 2 ≤ δ ≤ n. Denote by T⊥ the defining
set of the dual code C⊥

(q,n,δ) with respect to β. It is clear that
T⊥ = Zn \ T−1 and 0 ∈ T⊥. Our task in this section is to
investigate the parameters of the dual code C⊥

(q,n,δ) and present
a characterization of C⊥

(q,n,δ) being a dually-BCH code. As will
be seen later, the case q ≥ 3 is more complicated than the case
q = 2, and should be treated separately.

The following lemma will be employed later.
Lemma 20: For 3 ≤ δ < (q−1)qm−1− q�

m−1
2 �, let I(δ) ≥

2 be the integer such that {0, 1, 2, . . . , I(δ) − 1} ⊆ T⊥ and

I(δ) /∈ T⊥. Then we have

I(δ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qm−t − a, if aqt ≤ δ ≤ (a + 1)qt − 1
(1 ≤ t ≤ m − 2, 1 ≤ a < q − 1);

qm−t − q + 1, if (q − 1)qt ≤ δ ≤ qt+1 − q + 1
(1 ≤ t ≤ m − 2);

q − a, if aqm−1≤δ≤(a + 1)qm−1−1
(1 ≤ a < q − 2);

2, if (q − 2)qm−1 ≤ δ <

(q − 1)qm−1 − q�
m−1

2 �;
(b + 1)qm−t − 1 if δ = qt − b

(1 ≤ t ≤ m − 1, 1 ≤ b ≤ q − 2,

qt − b ≥ 3).

Proof: When aqt ≤ δ ≤ (a+1)qt−1 (1 ≤ t ≤ m−2, 1 ≤
a < q − 1), it is easy to see that

qm − qm−t + a − 1 ≡ qm−t(aqt − 1) ∈ Caqt−1 ⊆ T.

Thus qm−t − a = n − (qm − qm−t + a − 1) ∈ T−1 and
qm−t − a �∈ T⊥ = Zn \ T−1.

Now we are going to show that {0, 1, 2, . . . , qm−t − a −
1} ⊆ T⊥. It is clear that 0 ∈ T⊥. For every integer i with
1 ≤ i ≤ qm−t − a − 1, we have i = qm−t − a − u, where
1 ≤ u ≤ qm−t − a − 1. Note that

qm−t(aqt − 1 + uqt) ≡ qm − qm−t + a + u − 1 (mod n).

Thus aqt − 1 + uqt ∈ Cqm−qm−t+a+u−1 = Cn−i. In addi-
tion, we have

aqt − 1 + uqt = (a + u − 1)qt + qt − 1
= (im−1, im−2, . . . , it+1� 	
 �

m−t−1

, it, q − 1, . . . , q − 1� 	
 �
t

)q.

Note that

(a + 1)qt − 2 = (0, . . . , 0� 	
 �
m−t−1

, a, q − 1, . . . , q − 1, q − 2� 	
 �
t

)q.

Denote

Z = |{ij = 0 : t + 1 ≤ j ≤ m − 1}|.
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If Z < m − t − 1, then there is some integer t + 1 ≤ j0 ≤
m − 1 such that ij0 �= 0. It is clear that

CL(qm − qm−t + a + u − 1) > (a + 1)qt − 2 ≥ δ − 1. (2)

If Z = m − t − 1, then a ≤ a + u − 1 ≤ q − 1 and
Equation (2) also holds. Hence qm − qm−t + a + u − 1 �∈ T
and qm−t−a−u �∈ T−1. This leads to i = qm−t−a−u ∈ T⊥.
Thus we have I(δ) = qm−t − a.

For the following four cases of δ,

• (q − 1)qt ≤ δ ≤ qt+1 − q + 1 (1 ≤ t ≤ m − 2),
• aqm−1 ≤ δ ≤ (a + 1)qm−1 − 1 (1 ≤ a < q − 2),
• (q − 2)qm−1 ≤ δ < (q − 1)qm−1 − q�

m−1
2 �,

• δ = qt − b (1 ≤ t ≤ m − 1, 1 ≤ b ≤ q − 2, qt − b ≥ 3),
we can similarly prove the desired results and omit the details
here.

Proposition 21: Let n = qm − 1, where q ≥ 3 and m ≥ 2.
Then the following hold:

1) (q−2)(qm−1)
q−1 ∈ T⊥ is a coset leader modulo n if 3 ≤

δ ≤ qm−1
q−1 .

2) q�
m
2 � + 1 ∈ T⊥ is a coset leader modulo n if qm−1

q−1 <

δ < (q − 1)qm−1 − q�
m−1

2 �.

Proof: Obviously, (q−2)(qm−1)
q−1 = (q − 2, . . . , q − 2� 	
 �

m

)q .

Hence, (q−2)(qm−1)
q−1 is the q-cyclotomic coset leader of

C (q−2)(qm−1)
q−1

. Note that

n − (q − 2)(qm − 1)
q − 1

=
qm − 1
q − 1

= (1, . . . , 1)q.

If 3 ≤ δ ≤ qm−1
q−1 , then we have

CL

�
n − (q − 2)(qm − 1)

q − 1

�
=

qm − 1
q − 1

>
qm − 1
q − 1

−1 ≥ δ−1.

Consequently, n − (q−2)(qm−1)
q−1 �∈ T and (q−2)(qm−1)

q−1 �∈
T−1. This leads to (q−2)(qm−1)

q−1 ∈ T⊥.

When qm−1
q−1 < δ < (q − 1)qm−1 − q�

m−1
2 �, we prove the

desired conclusion only for the even m case, as the desired
conclusion for the odd m case can be similarly proved. It is
straightforward that

q�
m
2 � + 1 = q

m
2 + 1 ∈ T⊥ = (0, . . . , 0� 	
 �

m
2 −1

, 1, 0, . . . , 0� 	
 �
m
2 −1

, 1)q.

Hence, q
m
2 + 1 is the q-cyclotomic coset leader of C

q
m
2 +1

.
Note that

n − (q
m
2 + 1) = qm − q

m
2 − 2

= (q − 1, . . . , q − 1� 	
 �
m
2 −1

, q − 2, q − 1, . . . , q − 1� 	
 �
m
2 −1

, q − 2)q. (3)

If qm−1
q−1 < δ < (q−1)qm−1− q�

m−1
2 �, then by (3) we have

CL
�
n − (q

m
2 + 1)



= (q − 1)qm−1 − q

m
2 −1 − 1

> (q − 1)qm−1 − q
m
2 −1 − 2

≥ δ − 1.

Thus n − (q
m
2 + 1) �∈ T and (q

m
2 + 1) �∈ T−1. This leads

to q
m
2 + 1 ∈ T⊥. The proof is then completed.

The following theorem gives a sufficient and necessary
condition for C(q,n,δ) being a dually-BCH code, where 2 ≤
δ ≤ n.

Theorem 22: Let q ≥ 3 and m ≥ 2. Then C(q,n,δ) is a
dually-BCH code if and only if

δ = 2 or (q − 1)qm−1 − q�
m−1

2 � ≤ δ ≤ n.

Proof: It is clear that 0 /∈ T and 1 ∈ T , so 0 /∈ T−1 and
n− 1 ∈ T−1. Furthermore, we have 0 ∈ T⊥ and n− 1 /∈ T⊥.
As a result, C0 must be the initial cyclotomic coset of T⊥.
Consequently, there must be an integer J ≥ 1 such that T⊥ =
C0 ∪ C1 ∪ · · · ∪ CJ−1 if C⊥

(q,n,δ) is a BCH code with respect
to β.

When δ = 2, the defining set of C(q,n,δ) with respect to β
is equal to T = C1. Then it is clear that T−1 = C(q−1)qm−1.
Recall that δ1 := (q − 1)qm − 1 is the largest coset leader
modulo n. Thus T⊥ = Zn\T−1 = C0∪C1∪· · ·∪C(q−1)qm−2

and C⊥
(q,n,δ) is a BCH code with respect to β.

Recall that δ2 = qm−1 − q�
m−1

2 �. When qm−1 − q�
m−1

2 � ≤
δ < n, we will show that T⊥ = C0 or T⊥ = C0 ∪ C1. If
δ1 + 1 ≤ δ ≤ n, it is easy to see that T⊥ = {0}. If δ2 + 1 ≤
δ ≤ δ1, then

T⊥ = Zn \ T−1 = (Zn \ T )−1 = (C0 ∪ Cδ1)
−1 = C0 ∪ C1.

Hence, C⊥
(q,n,δ) is a BCH code with respect to β.

Finally, we will show that C⊥
(q,n,δ) is not a BCH code with

respect to β when 3 ≤ δ < (q − 1)qm−1 − q�
m−1

2 �. It suffices
to prove that there is no integer J ≥ 1 such that T⊥ = C0 ∪
C1 ∪ · · · ∪ CJ−1.

When 3 ≤ δ ≤ qm−1
q−1 , it follows from Proposition 21 that

(q−2)(qm−1)
q−1 ∈ T⊥ is a coset leader modulo n. Write Imax =

max{I(δ) : 3 ≤ δ ≤ qm−1
q−1 }. It then follows from Lemma 20

that Imax = I(3) = (q − 2)qm−1 − 1. It is clear that

(q − 2)(qm − 1)
q − 1

> Imax.

Consequently, there is no integer J ≥ 1 such that T⊥ =
C0 ∪ C1 ∪ · · · ∪ CJ−1, i.e., C⊥

(q,n,δ) is not a BCH code with
respect to β.

When qm−1
q−1 < δ < (q − 1)qm−1 − q�

m−1
2 �, it follows

from Proposition 21 that q�
m
2 � + 1 ∈ T⊥ is the coset leader

of C
q� m

2 �+1
. Write I �max = max{I(δ) : qm−1

q−1 < δ <

(q − 1)qm−1 − q�
m−1

2 �}. It then follows from Lemma 20 that
I �max = q− 1. Note that q�

m
2 � + 1 > I �max. Therefore, there is

no integer J ≥ 1 such that T⊥ = C0 ∪ C1 ∪ · · · ∪ CJ−1, i.e.,
C⊥
(q,n,δ) is not a BCH code with respect to β. Summarising all

discussions above, we obtain the desired conclusion.
The following theorem gives information on the codes

C(q,n,δ) and C⊥
(2,n,δ), where n = qm − 1 and m ≥ 2. In fact,

the dimensions of the codes C(q,n,δ) were determined explicitly
in [1] and [19] when 2 ≤ δ ≤ q�

m
2 �+1.

Theorem 23: Let [n, k, d] and [n, k⊥, d⊥] denote the
parameters of C(q,n,δ) and C⊥

(q,n,δ), respectively, where
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TABLE VIII

THE CODES C(3,26,δ) AND C⊥
(3,26,δ)

n = qm − 1 and q ≥ 3. Let r = m − s and

ks = qm − 1 −
� m

r+1 ��
i=1

(−1)i−1m(q − 1)i

i

�
m − ir − 1

i − 1

�
qm−i(r+1).

1) When δ = 2, we have

k = qm−1−m, d = 2, and k⊥ = m, d = qm−qm−1.

2) When 3 ≤ δ < (q−1)qm−1−q�
m−1

2 �, there is an integer
s ≥ 0 such that qs ≤ δ < qs+1, and we have

ks+1 < k ≤ ks, d ≥ δ, and

qm − 1 − ks ≤ k⊥ < qm − 1 − ks+1, d⊥ ≥ I(δ) + 1,

where I(δ) is given in Lemma 20.
3) When (q − 1)qm−1 − q�

m−1
2 � ≤ δ < (q − 1)qm−1,

we have

k = m + 1, d = (q − 1)qm−1 − 1, and

k⊥ = qm − m − 2, d⊥ ≥ 3.

Proof: For δ = 2, it follows from the proof of Theorem 22
that the defining sets of C(q,n,δ) and C⊥

(q,n,δ) with respect to β
are

T = C1 and T⊥ = C0 ∪ C1 ∪ · · · ∪ C(q−1)qm−2,

respectively. Then we have k = qm − 1 − m and k⊥ = m.
In this case, C⊥

(q,n,δ) is an irreducible primitive cyclic code with
check polynomial Mβδ

1
(x) as Cn−1 = Cδ1 , where Mβδ

1
(x) is

the minimal polynomial of βδ1 over Fq. Then the minimum
distance of C⊥

(q,n,δ) is equal to d⊥ = qm − qm−1 and its

weight enumerator is 1 + (qm − 1)xqm−qm−1
, which are

also documented in [11] and [12]. It then follows from the
MacWilliams identity that d = 2.

For every fixed δ in the range 3 ≤ δ < (q − 1)qm−1 −
q�

m−1
2 �, there is an integer s ≥ 0 such that qs ≤ δ < qs+1,

which leads to

C(q,n,qs+1) ⊆ C(q,n,δ) ⊆ C(q,n,qs).

The desired conclusion on the dimensions of C(q,n,δ) and
C⊥
(q,n,δ) then follows from Lemma 3. Moreover, the lower

bound on the minimum distance d comes from the BCH
bound and Theorem 22. It is clear that C⊥

(q,n,δ) is a subcode of

C⊥
(q,n,I(δ)), where I(δ) is given in Lemma 20. We then obtain

the desired conclusion on d⊥.
When (q − 1)qm−1 − q�

m−1
2 � ≤ δ < (q − 1)qm−1, we have

T⊥ = C0 ∪ C1. Then k = m + 1 and k⊥ = qm − m − 2.
In addition, d = (q − 1)qm−1 − 1 is documented in [11], and
d⊥ ≥ 3.

Example 2: For q = 3, m = 3, we have n = 26.
The parameters of C(3,26,δ) and C⊥

(3,26,δ) are presented in
Table VIII, where the codes are optimal or the best known
according to the Database [14].

Corollary 24: For δ = qs−1 (1 ≤ s ≤ m−1 and qs ≥ 4),
we have

k = ks + m, d = qs − 1, and

k⊥ = qm − 1 − ks − m, d⊥ ≥ 2qm−s,

where ks is given in Theorem 23.
Proof: For δ = qs−1, we have T = C1∪C2∪· · ·∪Cqs−2.

It is clear that qs−1 is a coset leader and |Cqs−1| = m. It then
follows from Lemmas 3 and 4 that k = ks+m and d = qs−1.
Thus k⊥ = qm −1−ks −m. Moreover, d⊥ ≥ 2qm−s follows
from Theorem 23.

VI. DUAL CODES OF BCH CODES OF LENGTH qm−1
q−1

In this section, we always assume that q ≥ 3 and n =
qm−1
q−1 , where m ≥ 3 is an integer. We follow the notation

specified in Section I, where α is a primitive element of Fqm

and β = αq−1. Consider the projective narrow-sense BCH
code C(q,n,δ) whose defining set with respect to β is T =
C1 ∪ C2 ∪ · · · ∪ Cδ−1, where 2 ≤ δ ≤ n. As before, denote
by T⊥ the defining set of the dual code C⊥

(q,n,δ) with respect
to β. It is clear that T⊥ = Zn \ T−1 and 0 ∈ T⊥.

The dimension of the dual code C⊥
(q,n,δ) was known in many

cases and is documented in the next few theorems.
Theorem 25: [16, Theorem 27] Let m ≥ 4 be even and

2 ≤ δ ≤ qm/2. Define

� =
�

(δ − 2)(q − 1)
qm/2 − 1

�
.

Then C⊥
(q,n,δ) has dimension

k⊥ =

�
m

�
(δ−1)(q−1)

q

�
− (2� − (q − 2))m

2 , if � ≥ � q−1
2 �;

m �(δ − 1)(q − 1)/q� , if � < � q−1
2 �.
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Theorem 26: [19] Let m ≥ 5 be an odd integer. Set h =
(m−1)/2. For δ = �qh +1 with 1 ≤ � ≤ q−1, the dimension
of C⊥

(q,n,δ) is given by

k⊥=

⎧⎪⎨
⎪⎩

m (δNq − �(� − 1)) if � ≤ � q
2�;

m (δNq − �(� − 1) + 2� − q) if � q
2� + 1 ≤ � ≤ q−1;

m (δNq − �(� − 1) + 2� − 2) if � = q,

where δNq = δ − 1 − � δ−1
q �.

Although the dimension of C⊥
(q,n,δ) is known in many cases,

little is known about the minimum distance of this code. One
of our tasks in this section is to develop lower bounds on
the minimum distance of C⊥

(q,n,δ). Another task is to present a
characterization of the ternary code C(3,n,δ) being dually-BCH.
To this end, we need the lemma below.

Lemma 27: For 2 ≤ δ < n, let I(δ) ≥ 2 be the integer such
that {0, 1, 2, . . . , I(δ) − 1} ⊆ T⊥ and I(δ) /∈ T⊥. Then we
have I(δ) = qm−t−1

q−1 if qt−1
q−1 < δ ≤ qt+1−1

q−1 (1 ≤ t ≤ m − 2)

and I(δ) = 1 if qm−1−1
q−1 < δ < n.

Proof: When qt−1
q−1 < δ ≤ qt+1−1

q−1 , it is easy to see
that qt−1 is a coset leader modulo qm−1. We then assert that
qt−1
q−1 is a coset leader modulo n. On the contrary, suppose that
qt−1
q−1 is not a coset leader modulo n, then there would be an

integer � with 1 ≤ � ≤ m such that

qt − 1
q − 1

q� mod n <
qt − 1
q − 1

⇔
(qt − 1)q� mod (q − 1)n < qt − 1. (4)

This means that qt − 1 is not a coset leader modulo qm −
1 and leads to a contradiction.

It is straightforward to see that

qm − qm−t

q − 1
=

qt − 1
q − 1

qm−t ∈ C qt−1
q−1

⊆ T.

Therefore, qm−t−1
q−1 = n − qm−qm−t

q−1 ∈ T−1 and qm−t−1
q−1 �∈

T⊥ = Zn \ T−1.
We are ready to show that {0, 1, 2, . . . , qm−t−1

q−1 −1} ⊆ T⊥.
It is clear that 0 ∈ T⊥. For every integer i with 1 ≤ i ≤
qm−t−1

q−1 − 1, we have i = qm−t−1
q−1 − u, where 1 ≤ u ≤

qm−t−1
q−1 − 1. Note that

((q−1)qtu+qt−1)qm−t ≡ qm−qm−t+(q−1)u (mod qm−1)

and

(q−1)qtu+ qt−1 = (im−1, im−2, . . . , it� 	
 �
m−t

, q − 1, . . . , q − 1� 	
 �
t

)q,

where it = q−1 if u = 1 and ij �= 0 for t+1 ≤ j ≤ m−1 if
u > 1. It follows that the coset leader of the cyclotomic coset
of (q − 1)qtu + qt − 1 modulo qm − 1 is larger than or equal
to qt+1 − 1. Then we obtain from (4) that

CL

�
qt − 1 + (q − 1)qtu

q − 1

�
≥ qt+1 − 1

q − 1
> δ − 1.

Consequently, qm−qm−t+(q−1)u
q−1 �∈ T and qm−t−1

q−1 − u �∈
T−1. This leads to i = qm−t−1

q−1 −u ∈ T⊥. It then follows that

TABLE IX

LOWER BOUNDS ON MINIMUM DISTANCES OF C⊥
(3,40,δ)

I(δ) = qm−t−1
q−1 for any δ with qt−1

q−1 < δ ≤ qt+1−1
q−1 (1 ≤ t ≤

m − 2).
When qm−1−1

q−1 < δ < qm−1
q−1 , we can similarly prove the

desired result and hence omit the details. The proof is then
completed.

Although the dimension of C⊥
(q,n,δ) is known in many cases,

little is known about the minimum distance of this code.
One of the main contributions of this paper is the following
theorem, which documents very good lower bounds on the
minimum distance of the code C⊥

(q,n,δ).
Theorem 28: Let d⊥(δ) be the minimum distance of

C⊥
(q,n,δ). Then we have

d⊥(δ)≥
�

qm−t−1
q−1

+ 1, if qt−1
q−1

< δ ≤ qt+1−1
q−1

(1 ≤ t ≤ m−2);

2, if qm−1−1
q−1

< δ < n.

Proof: The desired conclusions then follow from
Lemma 27 and the BCH bound for cyclic codes.

Theorems 25, 26 and 28 give a lot of information on the
parameters of the code C⊥

(q,n,δ). It would be very hard to
determine the minimum distance of C⊥

(q,n,δ). However, the
following example shows that the lower bounds in Theorem 28
are very good.

Example 3: When q = 3 and m = 4, we have
n = 40. The minimum distances and their lower bounds
of the dual codes C⊥

(3,40,δ) are listed in Table IX, where
δ ∈ {4, 9, 13, 14, 40}.

Proposition 29: Let q = 3. Then the following hold.

1) When m is even, 3m−1
4 ∈ T⊥ is a coset leader modulo

n if 2 ≤ δ ≤ 3m−1
4 and 3

m
2 +1
2 ∈ T⊥ is a coset leader

modulo n if 3m−1
4 < δ ≤ 3m−1 − 3

m
2 −1+1

2 .
2) When m is odd, we have the following.

• 3m+1
4 ∈ T⊥ is a coset leader modulo n if 2 ≤ δ ≤

3m−1−1
4 ,

• 3m−1−1
4 ∈ T⊥ is a coset leader modulo n if

3m−1−1
4 < δ ≤ 3m+1

4 ,

• 3
m−1

2 +1
2 ∈ T⊥ is a coset leader modulo n if

3m+1
4 < δ ≤ 3m−1 − 3

m−1
2 +1
2 .

Proof: We prove the desired conclusion only for the even
m case, as the conclusion for the odd m case can be similarly
proved. It is clear that 3m−1

2 = (1, . . . , 1)3 is a coset leader
modulo 3m − 1. It then follows from the proof of Lemma 27
that 3m−1

4 is a coset leader modulo n. If 2 ≤ δ ≤ 3m−1
4 , then

we have

CL

�
n − 3m − 1

4

�
=

3m − 1
4

>
3m − 1

4
− 1 ≥ δ − 1.
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TABLE X

THE DUAL CODE C⊥
(3,n,δ)

Consequently, n − 3m−1
4 �∈ T and 3m−1

4 ∈ T⊥. It is easy
to see that

3
m
2 + 1 = (0, . . . , 0� 	
 �

m
2 −1

, 1, 0, . . . , 0� 	
 �
m
2 −1

, 1)3

is a coset leader modulo 3m − 1, so 3
m
2 +1
2 is a coset leader

modulo n. Note that

3m − 3
m
2 − 2 = (2, . . . , 2� 	
 �

m
2 −1

, 1, 2, . . . , 2� 	
 �
m
2 −1

, 1)3.

It is clear that the 3-cyclomotic coset leader of 3m − 3
m
2 −

2 modulo 3m − 1 is

(1, 2, . . . , 2� 	
 �
m
2 −1

, 1, 2, . . . , 2� 	
 �
m
2 −1

)3 = 2 · 3m−1 − 3
m
2 −1 − 1.

Then

CL

�
n − 3

m
2 + 1
2

�
= CL

�
3m − 3

m
2 − 2

2

�

= 3m−1 − 3
m
2 −1 + 1

2
.

For 3m−1
4 < δ ≤ 3m−1 − 3

m
2 −1+1

2 , we have

CL
�
n − 3

m
2 +1
2

�
> 3m−1 − 3

m
2 −1+1

2 − 1 ≥ δ − 1. It then

follows that n− 3
m
2 +1
2 �∈ T and 3

m
2 +1
2 ∈ T⊥. This completes

the proof.
The following theorem gives a sufficient and necessary

condition for C(3,n,δ) being a dually-BCH code, where
2 ≤ δ ≤ n.

Theorem 30: Let n = 3m−1
2 and m ≥ 4. Then C(3,n,δ) is a

dually-BCH code if and only if

3m−1 − 3� m−1
2 �−1
2 ≤ δ ≤ n.

Proof: It is clear that 0 /∈ T and 1 ∈ T , so 0 /∈ T−1 and
n− 1 ∈ T−1. Furthermore, we have 0 ∈ T⊥ and n− 1 /∈ T⊥,
which means that C0 must be the initial cyclotomic coset of
T⊥. In other words, there must be an integer J ≥ 1 such that
T⊥ = C0 ∪C1 ∪ · · · ∪CJ−1 if C(3,n,δ) is a dually-BCH code.

When 3m−1− 3� m−1
2 �−1
2 ≤ δ ≤ n, we will show that T⊥ =

C0. Note that δ1 = 3m−1 − 3� m−1
2 �−1
2 − 1, where δ1 is the

largest coset leader modulo n and was given by Lemma 2.
Then it is easy to see that T⊥ = {0} and C⊥

(3,n,δ) is a BCH
code with respect to β.

It remains to show that C⊥
(3,n,δ) is not a BCH code with

respect to β when 2 ≤ δ < 3m−1 − 3� m−1
2 �−1
2 for m ≥ 4.

To this end, we show that there is no integer J ≥ 1 such that

T⊥ = C0 ∪ C1 ∪ · · · ∪ CJ−1. We prove the conclusion only
for the even m case, as the conclusion for the odd m case can
be similarly proved. For even m, we have the following two
subcases.

• If 2 ≤ δ ≤ 3m−1
4 , it is easy to see from Proposition 29

that 3m−1
4 ∈ T⊥ is the coset leader of C 3m−1

4
. It follows

from Lemma 27 that

Imax := max{I(δ) : 2 ≤ δ ≤ 3m − 1
4

}

= I(2) =
3m−1 − 1

2
.

Note that 3m−1
4 − I(2) > 0. It then follows that there is

no integer J ≥ 1 such that T⊥ = C0 ∪C1 ∪ · · · ∪CJ−1,
i.e., C⊥

(3,n,δ) is not a BCH code with respect to β.

• If 3m−1
4 < δ < 3m−1 − 3� m−1

2 �−1
2 , it then follows from

Proposition 29 that 3
m
2 +1
2 ∈ T⊥ is the coset leader of

C
3

m
2 +1
2

. Note that 3
m
2 +1
2 > 1. It then follows from

Lemma 27 that there is no integer J ≥ 1 such that
T⊥ = C0 ∪ C1 ∪ · · · ∪ CJ−1, i.e., C⊥

(3,n,δ) is not a BCH
code with respect to β.

This completes the proof.
By Theorem 30, the dual code C⊥

(3,n,δ) is not a BCH code
with respect to β in most cases. When m = 4, 5, 6, 7, we give
some examples of the dual code C⊥

(3,n,δ) in Table X.
Since Proposition 29 works only for the ternary case,

Theorem 30 is restricted to the ternary code C(3,n,δ). It looks
much harder to give a characterisation of C(q,n,δ) being dually-
BCH for q ≥ 4. The reader is cordially invited to solve this
problem.

VII. SUMMARY AND CONCLUDING REMARKS

The main contributions of this paper are the following:
• The question as to what cyclic codes are BCH codes

was answered for several subclasses of cyclic codes in
Theorems 7, 8, and 12. The parameters of several classes
of cyclic codes were studied in Corollaries 10, 11, 13,
and 14.

• Sufficient and necessary conditions for C(q,qm−1,δ) and
C(3, 3

m−1
2 ,δ) being dually-BCH were developed (see

Theorems 17, 22 and 30).
• The parameters of the primitive narrow-sense BCH codes

and their duals were investigated in Theorems 18 and 23,
Corollaries 19 and 24. Some lower bounds on the
minimum distances of the dual codes of primitive and
projective narrow-sense BCH codes were developed (see
Theorems 18, 23, and 28). Especially for binary primitive
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narrow-sense BCH codes, the bounds on minimum dis-
tances of the dual codes improve the classical Sidel’nikov
bound, and are also better than the Carlitz-Uchiyama
bound for large designed distances δ.

The question as to what cyclic codes are BCH codes is
extremely hard to answer in general. It would be good if
further progress regarding this question can be made. Little
is known about the duals of BCH cyclic codes. The reader is
cordially invited to study the duals of BCH codes.
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