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Two Classes of Constacyclic Codes With Variable
Parameters [(qm − 1)/r, k, d]

Zhonghua Sun , Cunsheng Ding , and Xiaoqiang Wang

Abstract— Constacyclic codes over finite fields are a family of
linear codes and contain cyclic codes as a subclass. Constacyclic
codes are related to many areas of mathematics and outperform
cyclic codes in several aspects. Hence, constacyclic codes are of
theoretical importance. On the other hand, constacyclic codes
are important in practice, as they have rich algebraic structures
and may have efficient decoding algorithms. In this paper, two
classes of constacyclic codes are constructed using a general
construction of constacyclic codes with cyclic codes. The first
class of constacyclic codes is motivated by the punctured Dilix
cyclic codes and the second class is motivated by the punctured
generalised Reed-Muller codes. The two classes of constacyclic
codes contain optimal linear codes. The parameters of the
two classes of constacyclic codes are analysed and some open
problems are presented in this paper.

Index Terms— Constacylic codes, punctured Dilix cyclic codes,
punctured generalised Reed-Muller codes.

I. INTRODUCTION AND MOTIVATIONS

A. The State-of-the-Art of Constacyclic Codes Over
Finite Fields

CONSTACYCLIC codes over finite fields are an important
class of linear codes due to their performance and

applications. Akre [1] and Aydin [3] et al. found some
new constacyclic codes that improve the minimum distance
of currently best known linear codes. Danev [17], Fang
[24], Sun [56], Wang [62] and Zhou [66] et al. constructed
several infinite classes of distance-optimal constacyclic
codes. Constacyclic codes can also be MDS codes with
flexible parameters [16], [26], [33], [44]. On the other
hand, constacyclic codes have important applications in the
construction of symbol-pair codes [14], [31], [38], locally
repairable codes [13], [59] and quantum codes [15], [30], [39],
[60], [61], [65].
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The algebraic structure of constacyclic codes over finite
fields has been studied in [4], [8], [9], [11], [12], [23], [25],
[41], [45], [50], [51], [52], [53], [54]. Several classes of
distance-optimal constacyclic codes with small distances have
been constructed in [17], [24], [56], [62], [66]. The weight
distributions of several classes of constacyclic codes have been
determined in [35], [36], [49], [54], [57], [58], [63]. Although
constacyclic codes are of theoretical importance, very limited
results on λ-constacyclic codes with λ ̸= 1 are known in
the literature, while there are a lot of references on cyclic
codes.

B. Motivations and Objectives

By definition, cyclic codes are a proper subclass of
constacyclic codes and constacyclic codes are a proper
subclass of linear codes (see Section II-A for their definitions).
Clearly, cyclic codes have a better algebraic structure than
λ-constacyclic codes with λ ̸= 1 and constacyclic codes have
a better algebraic structure than other linear codes. A better
algebraic structure may mean a better decoding algorithm.
Then the following two questions are interesting and good
motivations for studying constacyclic codes.

Question 1: Is a given linear code over GF(q) monomially-
equivalent to a cyclic code over GF(q)?

Question 2: Is a given linear code over GF(q) monomially-
equivalent to a λ-constacyclic code over GF(q) with λ ̸= 1?

For example, the Hamming code of length (qm−1)/(q−1)
over GF(q) is monomially-equivalent to a cyclic code over
GF(q) when gcd(m, q − 1) = 1 [28, Theorem 5.1.4], and
is always monomially-equivalent to a contacyclic code over
GF(q) [24], [57]. This shows that the Hamming code is
attractive. Notice that the two questions above are open for
most linear codes.

Recall that cyclic codes have a better algebraic structure.
Then one would ask why we would study constacyclic codes.
Below is a list of motivations for studying λ-constacyclic
codes with λ ̸= 1:
• There does not exist a cyclic code over GF(q) with

parameters [n, k, d] for certain q, n, k and d; but there
is a λ-constacyclic codes over GF(q) with parameters
[n, k, d] and λ ̸= 1 [26], [33].

• The best [n, k] constacyclic code over GF(q) has a
much better error-correcting capability than the best [n, k]
cyclic code over GF(q) for certain q, n and k (see [17],
[56] and the references therein).

• Constacyclic codes can do many things that cyclic codes
cannot do. For example, the Hamming code of length
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(qm − 1)/(q − 1) can always be constructed by a
constacyclic code, but cannot be constructed by a cyclic
code when gcd(q − 1, m) ̸= 1.

• Cyclic self-dual codes of length n over GF(q) exist if
and only if n is even and q = 2s with a positive integer
s [29]; but negacyclic self-dual codes of length n over
GF(q) exist if and only if n = 2an′ with an odd integer
n′ and q ̸≡ −1 (mod 2a+1) [9].

The original binary Reed-Muller codes were introduced by
Reed and Muller in 1954 [42], [48]. They are called geometric
codes, as all the minimum weight codewords of the r-th order
Reed-Muller code R2(r, m) are the incidence vectors of all the
(m− r)-flats in the affine geometry AG(m, GF(2)) and they
generate R2(r, m) [2]. The automorphism group of R2(r, m)
is known to be the general affine group GAm(GF(2)) which
is triply transitive on GF(2)m. Hence, the binary Reed-Muller
codes support 3-designs. It was later discovered that the
binary Reed-Muller codes become cyclic codes if they are
punctured in a special coordinate position. These properties
show that the original Reed-Muller codes are very interesting
in theory. For more information on Reed-Muller codes, the
reader is referred to [2], [6], [7], [18], [22], [34], [37]
and the references therein. Binary Reed-Muller codes are
also interesting in practice as they have efficient decoding
algorithms [48]. The binary Reed-Muller codes and their
punctured codes were later generalised to codes over GF(q)
for general q. In 2018, the binary Reed-Muller codes were
generalised into another type of linear codes [19], which were
called Dilix codes for the purpose of distinguishing the two
types of generalisations [21, Chapter 6]. The Dilix codes have
also interesting properties and are extended cyclic codes by
definition. In other words, if the Dilix codes are punctured
in the last coordinate, the punctured Dilix codes are cyclic.
A recent result by Yardi and Pellikaan [64] shows that any
linear code can be obtained by a sequence of puncturing
and/or shortening of some cyclic code. Motivated by the
interesting properties of the punctured generalized Reed-
Muller codes and punctured Dilix codes, we will construct and
analyse two classes of constacyclic codes which are obtained
from the punctured generalized Reed-Muller codes and the
punctured Dilix codes. In particular, a new infinite class of
distance-optimal constacyclic codes and a new infinite class of
distance-almost-optimal constacyclic codes are obtained, and
a new infinite class of negacyclic self-dual codes of length
n = (qm− 1)/2 over GF(q) with minimum distance d >

√
n

is presented in this paper.

C. The Organisation of This Paper

The rest of this paper is organized as follows. Section II
recalls some basic results about linear codes and constacyclic
codes, which will be needed later. Section III introduces a
general construction of constacyclic codes of length (qm−1)/r
with cyclic codes of length qm− 1. Section IV introduces the
first class of constacyclic codes and analyses the parameters
of these codes. Section V introduces the second class of
constacyclic codes and analyses the parameters of these
codes. Section VI concludes this paper and makes concluding
remarks.

II. PRELIMINARIES

A. Constacyclic Codes and Cyclic Codes

Let q be a prime power, GF(q) be the finite field with q
elements, and let GF(q)∗ denote the multiplicative group of
GF(q). By an [n, k, d] linear code C over GF(q) we mean
a k-dimensional linear subspace of GF(q)n with minimum
distance d. For a linear code C of length n over GF(q),
we use dim(C) and d(C) to denote its dimension and
minimum Hamming distance, respectively. Let Ai denote the
number of codewords with Hamming weight i in C. The
weight enumerator of C is defined as 1 + A1z + · · · +
Anzn. The sequence (1, A1, . . . , An) is called the weight
distribution of C. If the number of nonzero Ai in the sequence
(A1, A2, . . . , An) equals t, then C is called a t-weight code.

Let λ ∈ GF(q)∗ and let ord(λ) denote the order of λ
in GF(q)∗. We say that a linear code C of length n is
λ-constacyclic if (c0, c1, . . . , cn−1) ∈ C implies

(λcn−1, c0, c1, . . . , cn−2) ∈ C.

By definition, 1-constacyclic codes are the classical cyclic
codes. Hence, cyclic codes form a subclass of constacyclic
codes. In other words, constacyclic codes are a generalisation
of the classical cyclic codes.

Let Φ be the mapping from GF(q)n to the quotient ring
GF(q)[x]/⟨xn − λ⟩ defined by

Φ((c0, c1, . . . , cn−1)) =
n−1∑
i=0

cix
i.

It is well known that every ideal of the ring GF(q)[x]/⟨xn−λ⟩
is principal and a linear code C ⊂ GF(q)n is λ-constacyclic
if and only if Φ(C) is an ideal of GF(q)[x]/⟨xn − λ⟩.
Consequently, we will identify C with Φ(C) for any λ-
constacyclic code C. Let C = ⟨g(x)⟩ be a λ-constacyclic code
of length n over GF(q), where g(x) is monic and has the
smallest degree. Then g(x) is called the generator polynomial
and

h(x) = (xn − λ)/g(x)

is referred to as the check polynomial of C. The dual code of
C, denoted by C⊥, is defined by

C⊥ = {b ∈ GF(q)n : bcT = 0, ∀ c ∈ C},

where bcT denotes the standard inner product of the two
vectors b and c. Constacyclic codes and their duals have the
following relation, which is a fundamental result.

Lemma 3 [33]: The dual code of an [n, k] λ-constacyclic
code C generated by g(x) is an [n, n − k] λ−1-constacyclic
code C⊥ generated by ĥ(x) = h−1

0 xkh(x−1), where h(x) =
(xn − λ)/g(x) is the check polynomial of C and h0 is the
coefficient of x0 in h(x).

B. Cyclotomic Cosets

Let n be a positive integer with gcd(q, n) = 1, r be a
positive divisor of q − 1, and let λ be an element of GF(q)
with order r. To deal with λ-constacyclic codes of length n
over GF(q), we have to study the factorization of xn−λ over
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GF(q). To this end, we need to introduce q-cyclotomic cosets
modulo rn.

Let Zrn = {0, 1, 2, · · · , rn − 1} be the ring of integers
modulo rn. For any i ∈ Zrn, the q-cyclotomic coset of i
modulo rn is defined by

C
(q,rn)
i = {i, iq, iq2, · · · , iqℓi−1} mod rn ⊆ Zrn,

where ℓi is the smallest positive integer such that

i ≡ iqℓi (mod rn),

and is the size of the q-cyclotomic coset C
(q,rn)
i . The smallest

integer in C
(q,rn)
i is called the coset leader of C

(q,rn)
i . Let

Γ(q,rn) be the set of all the coset leaders. We have then

C
(q,rn)
i ∩ C

(q,rn)
j = ∅

for any two distinct elements i and j in Γ(q,rn), and⋃
i∈Γ(q,rn)

C
(q,rn)
i = Zrn.

Let ordrn(q) denote the multiplicative order of q modulo
rn and let m = ordrn(q). It is easily seen that there is a
primitive element α of GF(qm) such that β = α(qm−1)/rn

and βn = λ. Then β is a primitive rn-th root of unity in
GF(qm). The minimal polynomial Mβi(x) of βi over GF(q)
is the monic polynomial of the smallest degree over GF(q)
with βi as a zero. We have

Mβi(x) =
∏

j∈C
(q,rn)
i

(x− βj) ∈ GF(q)[x],

which is irreducible over GF(q). It then follows that

xrn − 1 = xrn − λr =
∏

i∈Γ(q,rn)

Mβi(x).

Define

Γ(1)
(q,rn,r) = {i : i ∈ Γ(q,rn), i ≡ 1 (mod r)}.

Then

xn − λ =
∏

i∈Γ
(1)
(q,rn,r)

Mβi(x).

Lemma 4 [57]: Let n be a positive integer with
gcd(q, n) = 1 and let r be a positive divisor of q − 1.
If ordn(q) = ℓ, then ordrn(q) = r

gcd((qℓ−1)/n,r)
ℓ, which is

the size ℓ1 of C
(q,rn)
1 , and the size ℓi of each q-cyclotomic

coset C
(q,rn)
i is a divisor of ordrn(q).

C. The Trace Representation of Constacyclic Codes

For any positive integer m, let Trqm/q denote the trace
function from GF(qm) to GF(q). The trace representation of
λ-constacyclic codes is documented below (see [23], [49], [58,
Theorem 1]).

Lemma 5: Let λ ∈ GF(q)∗ with ord(λ) = r. Let n be a
positive integer such that gcd(n, q) = 1. Let m = ordrn(q)
and let β ∈ GF(qm) be a primitive rn-th root of unity such
that βn = λ. Let C be a λ-constacyclic code of length n

over GF(q) with check polynomial
∏s

j=1 Mβij (x), where
C

(q,r n)
ia

∩ C
(q,rn)
ib

= ∅ for a ̸= b. Then C has the trace
representation

 s∑
j=1

Trqmj /q(ajβ
−tij )

n−1

t=0

: aj ∈ GF(qmj ), 1 ≤ j≤s

 ,

where mj = |C(q,rn)
ij

|.
Lemma 5 is very useful in determining the parameters and

weight distributions of some constacyclic codes. We will make
use of this lemma later in this paper.

D. The BCH Bound for Constacyclic Codes

The following lemma documents the BCH bound for
constacyclic codes over finite fields, which is a generalization
of the BCH bound of cyclic codes.

Lemma 6 ([33, Lemma 4] The BCH Bound for Constacyclic
Codes): Let λ ∈ GF(q)∗ with ord(λ) = r. Let n be a positive
integer such that gcd(n, q) = 1. Let C be a λ-constacyclic
code of length n over GF(q) with generator polynomial g(x).
Let β ∈ GF(qm) be a primitive rn-th root of unity such that
βn = λ. If there are integers e, h, δ with gcd(e, n) = 1 and
2 ≤ δ ≤ n such that

g(β1+reh) = g(β1+re(h+1)) = · · · = g(β1+re(h+δ−2)) = 0,

then d(C) ≥ δ.

E. Some Bounds of Linear Codes

We now recall two bounds on linear codes, which will be
needed later.

Lemma 7 (Sphere Packing Bound [28]): Let C be an
[n, k, d] code over GF(q). Then

⌊(d−1)/2⌋∑
i=0

(
n

i

)
(q − 1)i ≤ qn−k,

where ⌊·⌋ is the floor function.
The following lemma is the sphere packing bound for linear

codes with an even minimum distance.
Lemma 8 [24]: Let C be an [n, k, d] code over GF(q),

where d is an even integer. Then

(d−2)/2∑
i=0

(
n− 1

i

)
(q − 1)i ≤ qn−1−k.

F. Automorphism Groups and Equivalence of Linear Codes

Two linear codes C1 and C2 are said to be permutation-
equivalent if there is a permutation of coordinates which sends
C1 to C2. This permutation could be described employing a
permutation matrix, which is a square matrix with exactly
one 1 in each row and column and 0s elsewhere. The set of
coordinate permutations that map a code C to itself forms a
group, which is referred to as the permutation automorphism
group of C and denoted by PAut(C).
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A monomial matrix over GF(q) is a square matrix having
exactly one nonzero element of GF(q) in each row and
column. A monomial matrix M can be written either in the
form DP or the form PD1, where D and D1 are diagonal
matrices and P is a permutation matrix.

Let C1 and C2 be two linear codes of the same length
over GF(q). Then C1 and C2 are said to be monomially-
equivalent if there is a nomomial matrix over GF(q) such
that C2 = C1M . Monomial equivalence and permutation
equivalence are precisely the same for binary codes. If C1 and
C2 are monomially-equivalent, then they have the same weight
distribution. The set of monomial matrices that map C to
itself forms the group MAut(C), which is called the monomial
automorphism group of C. By definition, we have PAut(C) ⊆
MAut(C). Two linear codes C1 and C2 of the same length over
GF(q) are said to be scalar-equivalent if there is an invertible
diagonal matrix D over GF(q) such that C2 = C1D.

Two codes C1 and C2 are said to be equivalent if there is a
monomial matrix M and an automorphism γ of GF(q) such
that C1 = C2Mγ. All three are the same if the codes are
binary; monomial equivalence and equivalence are the same
if the field considered has a prime number of elements.

The automorphism group of C, denoted by Aut(C), is the
set of maps of the form Mγ, where M is a monomial matrix
and γ is a field automorphism, that map C to itself. In the
binary case, PAut(C), MAut(C) and Aut(C) are the same.
If q is a prime, MAut(C) and Aut(C) are identical. In general,
we have

PAut(C) ⊆ MAut(C) ⊆ Aut(C).

In this paper, we consider the monomial equivalence of
linear codes. Two monomially-equivalent codes have the same
parameters and weight distribution. If a linear code C is
monomially-equivalent to a constacyclic code C2, we prefer
C2 to C as constacyclic codes have a better algebraic structure
than general linear codes.

G. Some Basic Notation

From now on, we fix the following notation, unless it is
stated otherwise:
• q is a prime power.
• m ≥ 2 is an integer.
• r ≥ 2 is a divisor of q − 1.
• N = qm − 1.
• λ ∈ GF(q)∗ with ord(λ) = r.
• β is a primitive element of GF(qm) such that

β(qm−1)/r = λ.

H. The Hamming Weight and q-Weight of Nonnegative
Integers

For each 0 ≤ i ≤ N , let the q-adic expansion of i be

i =
m−1∑
j=0

ijq
j ,

where 0 ≤ ij ≤ q− 1. The Hamming weight of i, denoted by
wt(i), is defined to be the Hamming weight of the vector

(i0, i1, . . . , im−1). The q-weight of i, denoted by wtq(i),
is defined to be

∑m−1
j=0 ij . The two kinds of weights will be

used later.

I. The Projective Reed-Muller Codes

A point of the projective geometry PG(m − 1, GF(q))
is given in homogeneous coordinates by (x1, x2, . . . , xm)
where all xi are in GF(q) and are not all zero. Each point
of PG(m − 1, GF(q)) has q − 1 coordinate representations,
as (ax1, ax2, . . . , axm) and (x1, x2, . . . , xm) generate the
same 1-dimensional subspace of GF(q)m for any nonzero
a ∈ GF(q).

Let GF(q)[x1, x2, . . . , xm] be the set of polynomials in
m indeterminates over GF(q), which is a linear space over
GF(q). Let A(q, m, h) be the subspace of

GF(q)[x1, x2, . . . , xm]

generated by all the homogeneous polynomials of degree h.
Let n = (qm − 1)/(q − 1) and let {x1,x2, · · · ,xn} be a
set of projective points in PG(m− 1, GF(q)). Then the h-th
order projective Reed-Muller code PRM(q, m, h) of length n
is defined by

PRM(q,m, h) ={
(
f(x1), f(x2), . . . , f(xn)

)
:

f(x1, x2, . . . , xm) ∈ A(q, m, h)}.

The code PRM(q, m, h) depends on the choice of the
set {x1,x2, · · · ,xn} of coordinate representatives of the
point set in PG(m − 1, GF(q)), but is unique up to
monomial equivalence (in fact, up to scalar equivalence). The
parameters of PRM(q,m, h) and PRM(q, m, h)⊥ are known
and documented in the following theorems [5], [34], [55].

Theorem 9: Let m ≥ 2 and 1 ≤ h ≤ (m− 1)(q− 1). Then
the linear code PRM(q, m, h) has length n = (qm−1)/(q−1)
and minimum distance (q− v)qm−2−u, where h− 1 = u(q−
1) + v and 0 ≤ v < q − 1. Furthermore,

dim(PRM(q, m, h))

=
∑

t≡h (mod q−1)
0<t≤h

 m∑
j=0

(−1)j

(
m

j

)(
t− jq + m− 1

t− jq

) .

Theorem 10: Let m ≥ 2 and 1 ≤ h ≤ (m − 1)(q − 1).
If h ̸≡ 0 (mod q − 1), then

PRM(q, m, h)⊥ = PRM(q, m, (m− 1)(q − 1)− h).

By Theorem 9 and definition, PRM(q, m, 1) is monomially-
equavalent to the Simplex code. The weight distribution of
PRM(q,m, 2) was settled in [37]. It was pointed out in [7],
[55] that the code PRM(q, m, h) is not cyclic in general, but
is equivalent to a cyclic code if gcd(m, q − 1) = 1 or h ≡
0 (mod q − 1). Later in this paper, we will compare some
newly constructed constacyclic codes with the projective Reed-
Muller codes. This explains why we introduced the projective
Reed-Muller codes here. We will need the following theorem
later.
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Theorem 11 [37]: Let m ≥ 2. Then the weight distribution
of PRM(q, m, 2) is given by

A0 = 1,

Aqm−1 = qm − 1 +
⌊(m−1)/2⌋∑

j=1

qj2+j

∏m
i=m−2j(q

i − 1)∏j
i=1(q2i − 1)

,

Aqm−1−τqm−1−j =
qj2

(qj + τ)
2

∏m
i=m−2j+1(q

i − 1)∏j
i=1(q2i − 1)

,

1 ≤ j ≤ ⌊m/2⌋ , τ ∈ {1,−1}, and Ah = 0 for other h.

J. The Nonprimitive Reed-Muller Codes

Let ℓ = (q−1)h+ℓ0 < (q−1)m, where 0 ≤ ℓ0 ≤ q−2 and
ℓ0 ≡ 0 (mod r). Let P(q, m, r, ℓ) be the linear subspace of
GF(q)[x1, x2, . . . , xm], which is spanned by all monomials
xi1

1 xi2
2 · · ·xim

m satisfying the following three conditions:
1) 0 ≤ ij ≤ q − 1 for 1 ≤ j ≤ m,
2)

∑m
j=1 ij ≡ 0 (mod r),

3)
∑m

j=1 ij ≤ ℓ.
Let β be a primitive element of GF(qm) and let

Mβ(x) =
m−1∑
i=0

ϵix
i + xm,

where ϵi ∈ GF(q). Let

M =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ϵ0 −ϵ1 −ϵ2 · · · −ϵm−1


be the companion matrix of Mβ(x). Let n = (qm − 1)/r and
e = (1, 0, . . . , 0). Then the nonprimitive generalized Reed-
Muller code NGRM(q, m, r, h) of length n is defined by

NGRM(q, m, r, h) ={
(
f(e), f(eM), . . . , f(eMn−1)

)
:

f(x1, x2, . . . , xm) ∈ P(q, m, r, ℓ)}.

In particular, when r = q − 1, it is easily verified that

{e, eM, · · · , eMn−1}

is the set of projective points in PG(m − 1, GF(q)). Then
the code NGRM(q, m, q − 1, h) is also called the h-th order
projective generalized Reed-Muller code PGRM(q,m, h) of
length n.

Theorem 12 [18]: Let ℓ = (q−1)h+ℓ0 < (q−1)m, where
0 ≤ ℓ0 ≤ q − 2 and ℓ0 ≡ 0 (mod r). Then the minimum
weight of NGRM(q,m, r, h) is (q−ℓ0)q

m−h−1−1
r and

dim(NGRM(q, m, r, h))
= |{0 ≤ j ≤ (qm − 1)/r : wtq(jr) ≤ ℓ}|. (1)

Note that the minimum distance of NGRM(q, m, r, h) is
known to be (q−ℓ0)q

m−h−1−1
r . But the expression in (1) is not

specific, and no specific formula for dim(NGRM(q,m, r, h))
is known. Later we will compare the codes NGRM(q, m, r, h)
with the constacyclic codes presented in this paper. To this end,
we present the following example.

Example 13: The parameters of the codes
NGRM(3, 4, 2, h) for 0 ≤ h ≤ 3 are given below:

[40, 1, 40], [40, 11, 13], [40, 30, 4], [40, 40, 1].

K. The Punctured Dilix Codes

In this subsection, we outline a type of cyclic codes, called
punctured Dilix codes [19]. Let β be a primitive element of
GF(qm). For any 1 ≤ h ≤ m, we define a polynomial

ω(q,m,h)(x) =
∏

1≤a≤n−1
1≤wt(a)≤h

(x− βa).

Since wt(a) is a constant function on each q-cyclotomic coset
modulo qm − 1, ω(q,m,h)(x) is a polynomial over GF(q).
By definition, ω(q,m,h)(x) is a divisor of xqm−1 − 1. Let
Ω(q, m, h) denote the cyclic code over GF(q) with length
qm − 1 and generator polynomial ω(m,q,h)(x).

Theorem 14 [19]: Let m ≥ 2 and 1 ≤ h ≤ m − 1. Then
Ω(q, m, h) has parameters[
qm − 1, qm −

h∑
i=0

(
m

i

)
(q − 1)i, d ≥ (qh+1 − 1)/(q − 1)

]
.

Later we will use the codes Ω(q, m, h) to construct some
constacyclic codes. This explains why we introduced the
punctured Dilix codes Ω(q, m, h) here.

III. A GENERAL CONSTRUCTION OF CONSTACYCLIC
CODES OF LENGTH (qm − 1)/r WITH CYCLIC

CODES OF LENGTH qm − 1
In this section, we present a general construction of

constacyclic codes of length (qm − 1)/r with cyclic codes
of length qm − 1 over GF(q), where r > 1 is a divisor of
q − 1. Throughout this section, let n = (qm − 1)/r, where m
is an integer with m ≥ 2. Define N = rn = qm − 1. Let β
be a primitive element of GF(qm) and λ = βn. Then λ is an
element of GF(q)∗ with order r.

Let C be a cyclic code of length N over GF(q) with
generator polynomial

g(x) =
∏

i∈D(C)

(x− βi),

where D(C) is the union of some q-cyclotomic cosets modulo
N and is called the defining set of C with respect to the
primitive element β of GF(qm). Put

D(C) = {i ∈ D(C) : i ≡ 1 (mod r)}.

If D(C) = ∅, define g(x) = 1. If D(C) ̸= ∅, define

g(x) =
∏

i∈D(C)

(x− βi).

Then the following hold:
1) g(x) is a polynomial over GF(q).
2) g(x) = gcd(g(x), xn − λ).

Let C denote the λ-constacyclic code of length n over GF(q)
with generator polynomial g(x). By definition, C is constructed
from the given cyclic code C. In particular, the following hold:
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1) If (xn − λ) | g(x), i.e., D(C) = Γ(1)
(q,N,r), then C = {0}.

2) If gcd(g(x), xn − λ) = 1, i.e., D(C) = ∅, then
C = GF(q)n.

This general construction produces a nontrivial code only
when D(C) ̸∈ {∅, Γ(1)

(q,N,r)}.
By definition,

dim(C) = N − deg(g) = N − |D(C)|

and

dim(C) = n− deg(g) = n− |D(C)|.

Hence, it may not be easy to determine dim(C) even if dim(C)
is known. However, this may be possible in some special cases.
It is clear that

xrn − 1 =
r−1∏
i=0

(xn − λi),

and gcd(xn − λi, xn − λj) = 1 for 0 ≤ i ̸= j ≤ r − 1. For a
given g(x) | (xN − 1), let g

i
(x) = gcd(g(x), xn − λi). Then

g
1
(x) = g(x). Let Ind(C) = {i : g

i
(x) ̸= 1, 0 ≤ i ≤ r − 1},

then

g(x) =
∏

i∈Ind(C)

g
i
(x).

Theorem 15: Assume that gcd(g(x), xn − λ) ̸= 1 and
gcd(g(x), xn − λ) ̸= xn − λ. Then the following hold:

1) d(C) ≤ |Ind(C)| · d(C).
2) If 1 ≤ |Ind(C)| ≤ r − 1, then 2 ≤ d(C) ≤ |Ind(C)|+ 1.
3) The code C = {c(x) (mod xn − λ) : c(x) ∈ C}.
Proof: 1) For any c(x) ∈ C, we have

c(x) := c(x)
∏

i∈Ind(C)\{1}

(xn − λi) ∈ C.

Since
∏

i∈Ind(C)\{1}(x
n − λi) can be expanded as a sum of

the form
∑

aix
ni, we have

wt(c(x)) = wt(c(x)) · wt

 ∏
i∈Ind(C)\{1}

(xn − λi)

 .

Consequently,

d(C)

≤ min

wt

c(x)
∏

i∈Ind(C)\{1}

(xn − λi)

 : 0 ̸= c(x) ∈ C


≤ |Ind(C)| · d(C).

2) If 1 ≤ |Ind(C)| ≤ r− 1, then 0 ̸=
∏

i∈Ind(C)(x
n−λi) ∈

C. Note that

wt

 ∏
i∈Ind(C)

(xn − λi)

 ≤ |Ind(C)|+ 1,

we have d(C) ≤ |Ind(C)|+ 1.
3) Let Res(C) = {c(x) (mod xn − λ) : c(x) ∈ C}. Let

c(x) ∈ C, then there is c(x) ∈ GF(q)[x]/⟨xn − λ⟩ such that

c(x) ≡ c(x) (mod xn − λ).

Clearly,

gcd(c(x), xn − λ) = gcd(c(x), xn − λ).

Then g(x) divides c(x). It follows that c(x) ∈ C.
Consequently, Res(C) ⊆ C.

Let c(x) ∈ C. It is easily verified that

gcd
(

xn − λ

g(x)
,
g(x)
g(x)

)
= 1.

Then there are a1(x) and a2(x) such that

a1(x)
xn − λ

g(x)
+ a2(x)

g(x)
g(x)

= 1.

It follows that

a2(x)
g(x)
g(x)

c(x) = c(x)− a1(x)
xn − λ

g(x)
c(x).

Note that g(x) | c(x), we have g(x) | g(x)
g(x)c(x) and

(xn − λ) | xn − λ

g(x)
c(x).

Therefore,

c(x) := a2(x)
g(x)
g(x)

c(x) ∈ C

and c(x) ≡ c(x) (mod xn − λ). Consequently, C ⊆ Res(C).
The desired conclusion follows.

The third conclusion of Theorem 15 shows that there is no
clear connection between d(C) and d(C) in general.

Example 16: Let (q, m, r) = (3, 4, 2). Then n = (qm −
1)/2 = 40 and N = 80. Let β be a primitive element of
GF(34) with β4 − β3 − 1 = 0.

1) Let C be the cyclic code of length N over GF(q) with
generator polynomial g(x) = Mβ(x), then C is the
negacyclic code of length n over GF(q) with generator
polynomial g(x) = Mβ(x). Clearly, Ind(C) = {1}.
Then C has parameters [80, 76, 2] and C has parameters
[40, 36, 3]. It is clear that d(C) < d(C).

2) Let C be the cyclic code of length N over GF(q) with
generator polynomial g(x) = (x − 1)Mβ(x), then C
is the negacyclic code of length n over GF(q) with
generator polynomial g(x) = Mβ(x). Clearly, Ind(C) =
{0, 1}. Then C has parameters [80, 75, 3] and C has
parameters [40, 36, 3]. It is clear that d(C) = d(C).

3) Let C be the cyclic code of length N over GF(q) with
generator polynomial g(x) = (xn − 1)Mβ(x), then C
is the negacyclic code of length n over GF(q) with
generator polynomial g(x) = Mβ(x). Clearly, Ind(C) =
{0, 1}. Then C has parameters [80, 36, 6] and C has
parameters [40, 36, 3]. It is clear that d(C) = 2d(C).

Later in this paper, we will use this general construction to
obtain two classes of λ-constacyclic codes of length (qm−1)/r
over GF(q), where r > 1 and r | (q − 1).
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IV. THE FIRST CLASS OF CONSTACYCLIC CODES

We follow the previous notation. Throughout this section,
let r > 1 and r | (q − 1). Let n = (qm − 1)/r, where m
is an integer with m ≥ 2. Define N = rn = qm − 1. Then
it follows from Lemma 4 that ordn(q) = ordN (q) = m. Let
Γ(q,N) be the set of q-cyclotomic coset leaders modulo N and
let

Γ(1)
(q,N,r) = {i : i ∈ Γ(q,N), i ≡ 1 (mod r)}.

Let β be a primitive element of GF(qm) and let λ =
β(qm−1)/r. Then λ ∈ GF(q)∗ with ord(λ) = r. Let ℓ be a
positive integer with 1 ≤ ℓ ≤ m. Define

g′(q,m,r,ℓ)(x) =
∏

i∈Γ(1)
(q,N,r)

1≤wt(i)≤ℓ

Mβi(x).

Let

D′
(q,m,r,ℓ) =

⋃
i∈Γ(1)

(q,N,r)
1≤wt(i)≤ℓ

C
(q,N)
i .

Then {βi : i ∈ D′
(q,m,r,ℓ)} is the set of all zeros of

g′(q,m,r,ℓ)(x). It is easily verified that D′
(q,m,r,ℓ) is invariant

under the permutation qy mod N of ZN . Consequently,
g′(q,m,r,ℓ)(x) is over GF(q) and is a divisor of xn − λ. Let
C′(q, m, r, ℓ) denote the λ-constacyclic code of length n over
GF(q) with generator polynomial g′(q,m,r,ℓ)(x). By definition,
g′(q,m,r,m)(x) = xn − λ and the code C′(q, m, r, m) is the
zero code and C′(q, m, r, m)⊥ is the [n, n, 1] code GF(q)n

over GF(q). Hence, we will consider the code C′(q, m, r, ℓ)
only for 1 ≤ ℓ ≤ m − 1, and call D′

(q,m,r,ℓ) the defining
set of C′(q, m, r, ℓ) with respect to the primitive element β of
GF(qm).

To settle the dimension of this code C′(q, m, r, ℓ), we need
the following lemma.

Lemma 17: Let t be a positive integer and let q be a prime
power. Then the number of solutions (x1, x2, . . . , xt) with 1 ≤
xi ≤ q − 1 to the equation x1 + x2 + · · · + xt ≡ 1 (mod r)
is equal to (q−1)t

r .
Proof: For any (x1, x2, . . . , xt−1) with 1 ≤ xi ≤ q−1, let

a = x1+x2+· · ·+xt−1, then the equation x1+x2+· · ·+xt ≡
1 (mod r) is equivalent to xt ≡ 1 − a (mod r). For any
a, the number of solutions xt with 1 ≤ xt ≤ q − 1 to the
equation xt ≡ 1 − a (mod r) is equal to (q − 1)/r. The
desired conclusion follows.

Theorem 18: Let 1 ≤ ℓ ≤ m− 1. Then

dim(C′(q, m, r, ℓ)) =
qm −

∑ℓ
i=0

(
m
i

)
(q − 1)i

r

and

d(C′(q, m, r, ℓ)) ≥
⌊

qℓ+1 − 1− 2(q − 1)
r(q − 1)

⌋
+ 2. (2)

Proof: Let i be an integer with 1 ≤ i ≤ qm − 2. Let the
q-adic expression of i be

i =
m−1∑
j=0

ijq
j , 0 ≤ ij ≤ q − 1.

Then i ≡
∑m−1

j=0 ij (mod r). It then follows from Lemma 17
that the number of i with 1 ≤ i ≤ qm− 2 such that wt(i) = t

and i ≡ 1 (mod r) is
(
m
t

) (q−1)t

r . Consequently,

deg(g′(q,m,r,ℓ)(x)) =
ℓ∑

i=1

(
m

i

)
(q − 1)i

r
.

Thus,

dim(C′(q, m, r, ℓ)) =
qm − 1

r
−

ℓ∑
i=1

(
m

i

)
(q − 1)i

r

=
qm −

∑ℓ
i=0

(
m
i

)
(q − 1)i

r
.

We now prove the lower bound on the minimum distance
of the code C′(q, m, r, ℓ). It is straightforward to verify that
every integer a with 1 ≤ a ≤ qℓ+1−1

q−1 −1 has Hamming weight
wt(a) ≤ ℓ. It then follows from the definition of the code
C′(q, m, r, ℓ) that βi is a zero of C′(q, m, r, ℓ) for each i in
the set{

1 + rj : 0 ≤ j ≤
⌊

qℓ+1 − 1− 2(q − 1)
r(q − 1)

⌋}
.

The desired lower bound then follows from the BCH bound
for constacyclic codes (see Lemma 6).

Next we study the dual code of the constacyclic code
C′(q, m, r, ℓ). We have the following theorem.

Theorem 19: Let q ≥ 3, r > 1 and r | (q−1). Let 1 ≤ ℓ ≤
m− 1. Then

dim(C′(q, m, r, ℓ)⊥) =
∑ℓ

i=1

(
m
i

)
(q − 1)i

r
and

d(C′(q, m, r, ℓ)⊥) ≥ qm−ℓ. (3)

Proof: The desired dimension of C′(q, m, r, ℓ)⊥ follows
from the dimension of C′(q,m, r, ℓ). Note that (β−1)n = λ−1

and β−1 is a primitive element of GF(qm). By Lemma 3, the
dual code C′(q, m, r, ℓ)⊥ is a λ−1-constacyclic code of length
n = (qm − 1)/r over GF(q) with generator polynomial∏

i∈Γ(1)
(q,N,r)

wt(i)>ℓ

M(β−1)i(x).

Let

D(q,m, r, ℓ) = {i ∈ ZN : wt(i) ≥ ℓ + 1, i ≡ 1 (mod r)},

then ⋃
i∈Γ(1)

(q,N,r)
wt(i)>ℓ

C
(q,N)
i = D(q, m, r, ℓ).

Let

B :=
{

1 + rj :
qm − 1

r
− qm−ℓ + 1 ≤ j ≤ qm − 1

r
− 1

}
.

It is easily checked that wt(i) ≥ ℓ+1 and i ≡ 1 (mod r) for
all i ∈ B. Hence, B is a subset of D(q, m, r, ℓ). Consequently,
(β−1)i is a zero of C′(q, m, r, ℓ)⊥ for each i ∈ B. Note that(

qm − 1
r

− 1
)
−

(
qm − 1

r
− qm−ℓ + 1

)
+ 1 = qm−ℓ − 1.
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The desired conclusion then follows from the BCH bound for
constacyclic codes (see Lemma 6).

An interesting fact about the family of constacyclic codes
C′(q, m, r, ℓ) is the following.

Corollary 20: Let m ≥ 2 and r = q − 1. Then the
constacyclic code C′(q, m, r, 1) over GF(q) has parameters

[(qm − 1)/(q − 1), (qm − 1)/(q − 1)−m, 3]

and is monomially-equivalent to the Hamming code. In addi-
tion, C′(q, m, r, 1)⊥ has parameters[

(qm − 1)/(q − 1), m, qm−1
]

and is monomially-equivalent to the Simplex code.
Proof: The desired dimension of the code C′(q, m,

q− 1, 1) follows from Theorem 18. It follows from Lemma 7
that d(C′(q, m, q − 1, 1)) ≤ 4. It then follows from Lemma 8
that

d(C′(q, m, q − 1, 1)) ̸= 4.

Again by Theorem 18, d(C′(q, m, q−1, 1)) ≥ 3. Consequently,
d(C′(q, m, q−1, 1)) = 3. Hence, C′(q, m, q−1, 1) has the same
parameters as the Hamming code of length (qm − 1)/(q − 1)
over GF(q). It is well known that all linear codes over GF(q)
with parameters

[(qm − 1)/(q − 1), (qm − 1)/(q − 1)−m, 3]

are unique up to monomial equivalence. Therefore,
C′(q, m, q − 1, 1) is monomially-equivalent to the Hamming
code and C′(q, m, q − 1, 1)⊥ is monomially-equivalent to the
Simplex code.

Corollary 21: Let m ≥ 2. Let q be an odd prime power
and r = (q − 1)/2. Then the constacyclic code C′(q,m, r, 1)
over GF(q) has parameters

[2(qm − 1)/(q − 1), 2(qm − 1)/(q − 1)− 2m, 4]

and is distance-optimal with respect to the Sphere Packing
bound. The dual code C′(q, m, r, 1)⊥ has the following
properties:
• When m ≥ 3 is odd and q is an odd prime, C′(q, m, r, 1)⊥

has parameters[
2(qm − 1)/(q − 1), 2m, 2qm−1 − q(m−1)/2

]
,

and the weight distribution of C′(q, m, r, 1)⊥ is given in
Table I.

• When m ≥ 2 is even and q is an odd prime,
C′(q, m, r, 1)⊥ has parameters[
2(qm − 1)/(q − 1), 2m, 2qm−1 − (q − 1)q(m−2)/2

]
,

and the weight distribution of C′(q, m, r, 1)⊥ is given in
Table II.

Proof: The desired dimension of the code C′(q, m, r, 1)
follows from Theorem 18. It follows from Lemma 7 that
[2(qm−1)/(q−1), 2(qm−1)/(q−1)−2m, d ≥ 5] linear codes
over GF(q) do not exist. Therefore, d(C′(q, m, r, 1)) ≤ 4.
Again by Theorem 18, d(C′(q, m, r, 1)) ≥ 4. Consequently,

TABLE I

WEIGHT DISTRIBUTION OF THE CODE C′(q, m, r, 1)⊥ FOR ODD m

TABLE II

WEIGHT DISTRIBUTION OF THE CODE C′(q, m, r, 1)⊥ FOR EVEN m

d(C′(q, m, r, 1)) = 4, and C′(q, m, r, 1) is distance-optimal
with respect to the Sphere Packing bound.

It is easily checked that the generator polynomial of
C′(q, m, r, 1) is Mβ(x)Mβ(q+1)/2(x). By Lemma 5, the code
C′(q, m, r, 1)⊥ has the trace representation

C′(q, m, r, 1)⊥ = {c(a1, a2) : a1, a2 ∈ GF(qm)},

where

c(a1, a2) = (Trqm/q(a1β
i + a2β

( q+1
2 )i))n−1

i=0 .

Define

EC′(q,m, r, 1)⊥ = {c̃(a1, a2) : a1, a2 ∈ GF(qm)},

where

c̃(a1, a2) = (Trqm/q(a1β
i + a2β

( q+1
2 )i))qm−2

i=0 .

It is easily verified that EC′(q, m, r, 1)⊥ is the cyclic code of
length qm − 1 over GF(q) with check polynomial

Mβ−1(x)Mβ−(q+1)/2(x).

For each (a1, a2) ∈ GF(qm)2, we have

c̃(a1, a2) = (c(a1, a2)∥λ · c(a1, a2)∥ · · · ∥λ
q−3
2 · c(a1, a2)),

where λ = βn ∈ GF(q)∗ and ∥ denotes the concatenation of
vectors. It follows that the constacyclic code C′(q,m, r, 1)⊥

has weight distribution W (z) if and only if the cyclic code
EC′(q,m, r, 1)⊥ has weight distribution W (z(q−1)/2). When
q is an odd prime, the weight distribution of EC′(q, m, r, 1)⊥

was determined in [40]. The desired result follows.
Let n = 2(qm − 1)/(q − 1), where q is an odd prime

power and m ≥ 2. Any constacyclic code over GF(q) with
parameters [n, n−2m, 4] is optimal with respect to the Sphere
Packing bound. Fang et al. constructed constacyclic codes with
the same parameters as their counterparts in Corollary 21
using the q-polynomial approach [24]. The contribution of
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Corollary 21 is to solve the weight distribution of the dual
codes of this class of optimal codes

Example 22: Let (q, m, r, ℓ) = (5, 2, 2, 1). Let β be the
primitive element of GF(52) with β2 + 4β + 2 = 0. Then
the constacyclic code C′(5, 2, 2, 1) over GF(5) has parameters
[12, 8, 4] and is distance-optimal. The dual code C′(5, 2, 2, 1)⊥

has parameters [12, 4, 6] and weight enumerator 1 + 8z6 +
144z8 + 144z9 + 168z10 + 96z11 + 64z12.

Example 23: Let (q, m, r, ℓ) = (5, 3, 2, 1). Let β be
the primitive element of GF(53) with β3 + 3β + 3 =
0. Then the constacyclic code C′(5, 3, 2, 1) over GF(5)
has parameters [62, 56, 4] and is distance-optimal. The dual
code C′(5, 3, 2, 1)⊥ has parameters [62, 6, 45] and weight
enumerator 1 + 3720z45 + 9424z50 + 2480z55. Moreover, the
code C′(5, 3, 2, 1)⊥ has the best parameters known [27].

Corollary 24: Let m ≥ 2. Let q be a prime power with q ≡
1 (mod 3), and let r = (q− 1)/3 > 1. Then the constacyclic
code C′(q, m, r, 1) over GF(q) has parameters

[3(qm − 1)/(q − 1), 3(qm − 1)/(q − 1)− 3m, 5 ≤ d ≤ 6] .

Proof: The desired dimension of the code C′(q, m, r, 1)
follows from Theorem 18. It follows from Lemma 7 that

d(C′(q, m, r, 1)) ≤ 6.

Again by Theorem 18, d(C′(q, m, r, 1)) ≥ 5. The desired
result follows.

Let n = 3(qm − 1)/(q − 1), where q ≡ 1 (mod 3) and
m ≥ 2. By the Sphere Packing bound, an [n, n − 3m,
d ≥ 7] linear code over GF(q) does not exist. Therefore, the
constacyclic code constructed by Corollary 24 is optimal in
the sense that the error-correction ability is maximal for the
fixed length n and the fixed dimension n− 3m.

Example 25: Let (q,m, r, ℓ) = (7, 2, 2, 1). Let β be the
primitive element of GF(72) with β2 + 6β + 3 = 0. Then
the constacyclic code C′(7, 2, 2, 1) over GF(7) has parameters
[24, 18, 5] and has the best parameters known [27].

Let Ω(q, m, ℓ) denote the punctured Dilix code constructed
in [19] (see also Section II-K). Theorem 18 tells us that

dim(Ω(q,m, r, ℓ)) = r · dim(C′(q, m, r, ℓ)).

Experimental data indicates that the lower bound in (2) is good
in general. But the following problem is worth of investigation.

Open Problem 26: Determine the minimum distance of
C′(q, m, r, ℓ) or improve the lower bound in (2) for 2 ≤ ℓ ≤
m− 1.

Experimental data shows that the lower bound in (3) is quite
away from the true minimum distance.

Open Problem 27: Determine the minimum distance of
C′(q, m, r, ℓ)⊥ or improve the lower bound in (3) for 2 ≤
ℓ ≤ m− 1.

Example 28: Let (q, m, r, ℓ) = (3, 4, 2, 1). Let β be the
primitive element of GF(34) with β4 + 2β3 + 2 = 0. Then
the constacyclic code C′(3, 4, 2, 1) over GF(3) has parameters
[40, 36, 3] and C′(3, 4, 2, 1)⊥ has parameters [40, 4, 27]. The
former is a perfect code and the latter meets the Griesmer
bound.

Example 29: Let (q, m, r, ℓ) = (3, 4, 2, 2). Let β be the
primitive element of GF(34) with β4 + 2β3 + 2 = 0. Then

the constacyclic code C′(3, 4, 2, 2) over GF(3) has parameters
[40, 24, 8] and C′(3, 4, 2, 2)⊥ has parameters [40, 16, 12]. The
best ternary code known of length 40 and dimension 24 has
minimum distance 9 [27].

Example 30: Let (q, m, r, ℓ) = (3, 4, 2, 3). Let β be the
primitive element of GF(34) with β4 + 2β3 + 2 = 0. Then
the constacyclic code C′(3, 4, 2, 3) over GF(3) has parameters
[40, 8, 21] and has the best parameters known [27], and
C′(3, 4, 2, 3)⊥ has parameters [40, 32, 4].

Example 31: Let (q, m, r, ℓ) = (4, 3, 3, 2). Let β be the
primitive element of GF(43) with β6 + β4 + β3 + β +
1 = 0. Then the constacyclic code C′(4, 3, 3, 2) over GF(4)
has parameters [21, 9, 8] and C′(4, 3, 3, 2)⊥ has parameters
[21, 12, 6].

The forgoing examples demonstrate that the constacyclic
code C′(q, m, r, ℓ) over GF(q) and its dual C′(q, m, r, ℓ)⊥

may be optimal or have the best parameters known sometimes.
Below we explain some connection and difference among the
code C′(q,m, q − 1, ℓ), the projective Reed-Muller codes and
the nonprimitive generalized Reed-Muller codes.

By Corollary 20, C′(q,m, q − 1, 1)⊥ is monomially-
equivalent to PRM(q, m, 1), as both codes are monomially-
equivalent to the Simplex code. This is one connection
between the codes C′(q, m, q − 1, ℓ) and the projective
Reed-Muller codes. Consider now all the projective codes
PRM(3, 4, ℓ) for all ℓ with 1 ≤ ℓ ≤ 6. It follows from
Theorem 9 that

d(PRM(3, 4, 1)) = 27,

d(PRM(3, 4, 2)) = 18,

d(PRM(3, 4, 3)) = 9,

d(PRM(3, 4, 4)) = 6,

d(PRM(3, 4, 5)) = 3,

d(PRM(3, 4, 6)) = 2.

By Example 29, d(C′(3, 4, 2, 2)) = 8 and d(C′(3, 4, 2, 2)⊥) =
12. This means that both C′(3, 4, 2, 2) and C′(3, 4, 2, 2)⊥

cannot be monomially-equivalent to a code PRM(3, 4, ℓ) for
all ℓ with 1 ≤ ℓ ≤ 6. Hence, the two families of codes
C′(q, m, q − 1, ℓ) and PRM(q, m, ℓ) are different in general.
Notice that C′(q, m, q − 1, ℓ) and the punctured Dilix code
Ω(q, m, ℓ) are not monomially-equivalent when q > 2, as they
have different lengths.

Compared with parameters of the codes NGRM(3, 4, 2, ℓ)
in Example 13, both C′(3, 4, 2, 2) and C′(3, 4, 2, 2)⊥ cannot
be monomially-equivalent to a code NGRM(3, 4, 2, ℓ) for all
ℓ with 0 ≤ ℓ ≤ 3. Hence, the class of codes C′(q, m, q− 1, ℓ)
and the class of codes NGRM(q, m, q − 1, ℓ) are different.

V. THE SECOND CLASS OF CONSTACYCLIC CODES

We follow the previous notation. Throughout this section,
let r > 1 and r | (q− 1). Let n = (qm− 1)/r, where m is an
integer with m ≥ 2. Define N = rn = qm−1, then it follows
from Lemma 4 that ordn(q) = ordN (q) = m. Let Γ(q,N) be
the set of q-cyclotomic coset leaders modulo N and let

Γ(1)
(q,N,r) = {i : i ∈ Γ(q,N), i ≡ 1 (mod r)}.
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Recall that r | (q − 1), we have wtq(i) ≡ i (mod r). Then
wtq(i) ≡ 1 (mod r) for i ∈ Γ(1)

(q,N,r).

A. Definition and Basic Properties of the Constacyclic Codes

Let β be a primitive element of GF(qm) and let λ =
β(qm−1)/r. Then λ ∈ GF(q)∗ with ord(λ) = r. Let ℓ be
an integer with 0 ≤ ℓ < (q − 1)m− 1. Define

g(q,m,r,ℓ)(x) =
∏

i∈Γ(1)
(q,N,r)

wtq(i)<(q−1)m−ℓ

Mβi(x).

Let

D(q,m,r,ℓ) =
⋃

i∈Γ(1)
(q,N,r)

wtq(i)<(q−1)m−ℓ

C
(q,N)
i .

Note that wtq(i) ≡ i (mod r). It is easily checked that

D(q,m,r,ℓ)

= {i ∈ ZN : wtq(i) < (q − 1)m− ℓ, wtq(i) ≡ 1 (mod r)}.

By definition, {βi : i ∈ D(q,m,r,ℓ)} is the set of all zeros of
g(q,m,r,ℓ)(x). It is easily verified that D(q,m,r,ℓ) is invariant
under the permutation qy mod N of ZN . Consequently,
g(q,m,r,ℓ)(x) is over GF(q) and is a divisor of xn − λ.
Let C(q, m, r, ℓ) denote the λ-constacyclic code of length n
over GF(q) with generator polynomial g(q,m,r,ℓ)(x). We call
D(q,m,r,ℓ) the defining set of C(q, m, r, ℓ) with respect to the
primitive element β of GF(qm).

Theorem 32: Let 0 ≤ ℓ = rℓ1 + ℓ0 < m(q − 1)− 1, where
0 ≤ ℓ0 ≤ r − 1. If ℓ1 = 0 and 0 ≤ ℓ0 ≤ r − 2, then
C(q, m, r, ℓ) = {0}. Otherwise,

C(q, m, r, ℓ) = C(q, m, r, rℓ2 + r − 1),

where

ℓ2 =

{
ℓ1 if ℓ0 = r − 1,

ℓ1 − 1 if ℓ0 ̸= r − 1.

Proof: Since r | (q − 1), we have

(q − 1)m− ℓ ≡ 1 (mod r)

if and only if ℓ ≡ r−1 (mod r). If ℓ1 = 0 and 0 ≤ ℓ0 ≤ r−2,
i.e., 0 ≤ ℓ ≤ r − 2. Then (q − 1)m− ℓ ≤ (q − 1)m− r + 2.
In this case, D(q,m,r,ℓ) = {i ∈ ZN : wtq(i) ≡ 1 (mod r)},
i.e., g(q,m,r,ℓ)(x) = xn−λ. Consequently, C(q, m, r, ℓ) = {0}.
If ℓ ≥ r− 1 and ℓ0 < r− 1, then wtq(i) < (q− 1)m− ℓ with
wtq(i) ≡ 1 (mod r) if and only if

wtq(i) ≤ (q − 1)m− (rℓ1 + r − 1)
< (q − 1)m− (rℓ1 + r − 1) + r

with wtq(i) ≡ 1 (mod r). The desired conclusion
follows.

It follows from Theorem 32 that the class of λ-constacyclic
codes C(q, m, r, ℓ) contains only the following distinct
codes

C(q, m, r, rℓ1 + r − 1), 0 ≤ ℓ1 ≤
(

q − 1
r

)
m− 2.

To determine the dimension of the λ-constacyclic code
C(q, m, r, ℓ), we need the following lemma.

Lemma 33 [55]: The number of ways one can place t
objects in m cells such that no cell contains more than s
objects is

N(t, m, s) =
m∑

j=0

(−1)j

(
m

j

)(
t− j(s + 1) + m− 1

t− j(s + 1)

)
.

The dimension of the λ-constacyclic code C(q,m, r, ℓ) is
documented in the next theorem.

Theorem 34: Let ℓ = rℓ1 + r − 1, where 0 ≤ ℓ1 ≤
( q−1

r )m− 2. Then

dim(C(q,m, r, ℓ))

=
∑

t≡r−1 (mod r)
0<t≤ℓ

 m∑
j=0

(−1)j

(
m

j

)(
t− jq + m− 1

t− jq

)
=

ℓ1∑
t=0

m∑
j=0

(−1)j

(
m

j

)(
tr + r − 1− jq + m− 1

tr + r − 1− jq

)
. (4)

Proof: Define

H(q, m, r, ℓ) =
{i ∈ ZN : wtq(i) ≥ (q − 1)m− ℓ, wtq(i) ≡ 1 (mod r)}.

By definition, dim(C(q, m, r, ℓ)) = |H(q, m, r, ℓ)|. We now
determine |H(q, m, r, ℓ)|.

For each i ∈ ZN , i ≡ 1 (mod r) if and only if N−i ≡ r−1
(mod r). Furthermore, wtq(N − i) = (q − 1)m − wtq(i).
Consequently, wtq(i) ≥ (q − 1)m− ℓ if and only if

wtq(N − i) ≤ ℓ.

We then deduce that

|H(q, m, r, ℓ)|
=|{i ∈ ZN : wtq(i) ≤ ℓ, wtq(i) ≡ r − 1 (mod r)}|. (5)

From Lemma 33, the number of ways of picking t objects
from a set of m objects, under the restriction that no objects
can be chosen more than q − 1 times, is equal to

N(t, m, q − 1) =
m∑

j=0

(−1)j

(
m

j

)(
t− jq + m− 1

t− jq

)
.

The desired dimension then follows from (5).
The formula in (4) looks complicated. The following

theorem documents a upper bound on the dimension of the
code C(q, m, r, ℓ).

Theorem 35: Let ℓ = rℓ1+r−1, where 0 ≤ ℓ1 ≤ ( q−1
r )m−

2. Let ℓ2 = ⌈ ℓ+1
q−1⌉. Then

dim(C(q, m, r, ℓ)) ≤
qm −

∑m−ℓ2
t=0

(
m
t

)
(q − 1)t

r
.

Proof: Recall

D(q,m,r,ℓ)

= {i ∈ ZN : 1 ≤ wtq(i) < (q − 1)m− ℓ, i ≡ 1 (mod r)}.
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Note that (q − 1)m − ℓ = (q − 1)m − rℓ1 − r + 1. Then by
definition,

D(q,m,r,ℓ)

={i ∈ ZN : 1 ≤ wtq(i) ≤ (q − 1)m− rℓ1 − 2r + 1,

i ≡ 1 (mod r)}
⊇{i ∈ ZN : 1 ≤ wtq(i) ≤ (q − 1)(m− ℓ2), i ≡ 1 (mod r)}
⊇{i ∈ ZN : 1 ≤ wt(i) ≤ m− ℓ2, i ≡ 1 (mod r)}.

It then follows from Lemma 17 that

|D(q,m,r,ℓ)|
≥|{i ∈ ZN : 1 ≤ wt(i) ≤ m− ℓ2, i ≡ 1 (mod r)}|

=
m−ℓ2∑
t=1

(
m

t

)
|{(x1, x2, . . . , xt) ∈ {1, 2, · · · , q − 1}t :

x1 + x2 + · · ·+ xt ≡ 1 (mod r)}|

=
m−ℓ2∑
t=1

(
m

t

)
(q − 1)t

r
.

Consequently,

dim(C(q, m, r, ℓ)) =
qm − 1

r
− |D(q,m,r,ℓ)|

≤
qm −

∑m−ℓ2
t=0

(
m
t

)
(q − 1)t

r
.

The desired conclusion follows.
In order to determine the minimum distance of the λ-

constacyclic code C(q, m, r, ℓ), we will give another form of
this code.

Let β be a primitive element of GF(qm) and let

Mβ(x) =
m−1∑
i=0

ϵix
i + xm,

where ϵi ∈ GF(q). Since Mβ(x) is the minimal polynomial
of β over GF(q), ϵ0 ̸= 0. Let

M =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ϵ0 −ϵ1 −ϵ2 · · · −ϵm−1


be the companion matrix of Mβ(x). Note that n = (qm−1)/r
and βn = λ, then Mn = λE, where E is the identity matrix
of order m. Furthermore,

GF(q)m = {0} ∪ {eMi : 0 ≤ i ≤ qm − 2}, (6)

where 0 = (0, 0, . . . , 0) and e = (1, 0, . . . , 0). It is clear that
{1, β, · · · , βm−1} is a basis for GF(qm) as a vector space
over GF(q). Let β = (1, β, . . . , βm−1), then

Mβ
T

= (β, β2, . . . , βm−1,−
m−1∑
j=0

ϵjβ
j)T

= (β, β2, . . . , βm−1, βm)T

= β · βT
.

It follows that Miβ
T

= βi ·βT
for 0 ≤ i ≤ qm−2. Therefore,

βi = (eMi, β) for 0 ≤ i ≤ qm − 2, where (·, ·) denotes
the inner product of two vectors. It follows that the mapping
0 7→ 0, eMi 7→ βi = (eMi, β) is an isomorphism between
the vector space structures of GF(q)m and GF(qm). Let

r − 1 ≤ ℓ < (q − 1)m− 1

with ℓ ≡ r − 1 (mod r), and let M(q, m, r, ℓ) be the
linear subspace of GF(q)[x1, x2, . . . , xm], which is spanned
by all monomials xi1

1 xi2
2 · · ·xim

m satisfying the following three
conditions:

1) 0 ≤ ij ≤ q − 1 for 1 ≤ j ≤ m,
2)

∑m
j=1 ij ≡ r − 1 (mod r),

3)
∑m

j=1 ij ≤ ℓ.
Define

GC(q, m, r, ℓ) = {cf = (f(e), f(eM), . . . , f(eMn−1)) :
f(x1, x2, . . . , xm) ∈ M(q, m, r, ℓ)}.

Below we will prove that GC(q, m, r, ℓ) = C(q, m, r, ℓ). For
this purpose, we need the following two lemmas.

Lemma 36 [18]: Let

f(x1, x2, . . . , xm) ∈ GF(q)[x1, x2, . . . , xm],

then we have the following:
1) If f(P) = 0 for all P ∈ GF(q)m, then f ≡ 0.
2) If deg(f) < (q − 1)m, then

∑
P∈GF(q)m f(P) = 0.

Lemma 37: Let f(x1, x2, . . . , xm) ∈ M(q, m, r, ℓ), then
the following hold:

1) Let 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ r − 1, then

f(eMjn+i) = λ−j · f(eMi).

2) If f(eMi) = 0 for all 0 ≤ i ≤ n− 1, then f ≡ 0.
Proof: 1) Suppose

f(x1, x2, . . . , xm) =
∑

ci1,i2,··· ,imxi1
1 xi2

2 · · ·xim
m .

It follows from Mn = λE that eMjn+i = λjeMi. Note that∑m
k=1 ik ≡ r − 1 (mod r) and ord(λ) = r, then

(λj)i1+i2+···+im = λ−j .

Consequently,

f(eMjn+i) = f(λjeMi) = λ−j · f(eMi).

2) Let P ∈ GF(q)m\{0}, it follows from (6) that there are
0 ≤ i ≤ n−1 and 0 ≤ j ≤ r−1 such that P = eMjn+i. Then
f(P) = λ−j · f(eMi) = 0. Note that f(0) = 0. Therefore,
f(P) = 0 for all P ∈ GF(q)m. By the first conclusion of
Lemma 36, we have f ≡ 0. The desired conclusion follows.

Theorem 38: Let q > 2 be a prime power and m ≥ 2 be
an integer. Let r > 1 with r | (q − 1), and let r − 1 ≤ ℓ <
(q− 1)m− 1 with ℓ ≡ r− 1 (mod r). Then GC(q, m, r, ℓ) =
C(q, m, r, ℓ).

Proof: Firstly, we prove that GC(q, m, r, ℓ) is a
λ-constacyclic code of length n over GF(q). For any

f(x) ∈ M(q, m, r, ℓ),
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let g(x) = λ · f(xMn−1). It is easily verified that

g(x) ∈ M(q, m, r, ℓ).

By Lemma 37,

g(eMi) = λ · f(eMn+i−1)

= λ · λ−1 · f(eMi−1)

= f(eMi−1)

for 1 ≤ i ≤ n− 1. Therefore,

cg = (λ · f(eMn−1), f(e), . . . , f(eMn−2)) ∈ GC(q, m, r, ℓ).

It follows that GC(q, m, r, ℓ) is a λ-constacyclic code of length
n over GF(q).

Secondly, we prove that

dim(GC(q, m, r, ℓ)) = dim(C(q, m, r, ℓ)).

By the second conclusion of Lemma 37, the evaluations of all
monomials{

xi1
1 xi2

2 · · ·xim
m :

m∑
k=1

ik ≡ r − 1 (mod r),

0 ≤ ik ≤ q − 1,

m∑
k=1

ik ≤ ℓ

}
give linearly independent codewords. It follows that

dim(GC(q, m, r, ℓ))
=|{(i1, i2, . . . , im) ∈ {0, 1, · · · , q − 1}m :

m∑
k=1

ik ≡ r − 1 (mod r),
m∑

k=1

ik ≤ ℓ}|

=|{i ∈ ZN : wtq(i) ≡ r − 1 (mod r), wtq(i) ≤ ℓ}|.

The desired dimension then follows from Theorem 34.
Finally, we prove that GC(q, m, r, ℓ) ⊆ C(q, m, r, ℓ). Let

g(x) be the generator polynomial of GC(q, m, r, ℓ). Then we
only need to prove g(q,m,r,ℓ)(x) | g(x). Suppose that i =∑m−1

l=0 ilq
l, wtq(i) < (q − 1)m− ℓ and wtq(i) ≡ 1 (mod r).

For any f(x1, x2, . . . , xm) ∈ M(q, m, r, ℓ), let

cf (x) =
n−1∑
j=0

f(eMj)xj

be the polynomial corresponding to the codeword

cf ∈ GC(q, m, r, ℓ).

For each 1 ≤ t ≤ r − 1, by Lemma 37,
n−1∑
j=0

f(eMtn+j)(βi)tn+j =
n−1∑
j=0

f(eMj)λ−t(βi)tn+j

=
n−1∑
j=0

f(eMj)(βi)j

= cf (βi).

Then we have

cf (βi) =
n−1∑
j=0

f(eMj)(βi)j

=
1
r

rn−1∑
j=0

f(eMj)(βi)j

=
1
r

qm−2∑
j=0

f(eMj)(βj)i

=
1
r

qm−2∑
j=0

f(eMj)[(eMj , β)]i

=
1
r

qm−2∑
j=0

f(eMj)[(eMj , β)]
∑m−1

l=0 ilq
l

=
1
r

qm−2∑
j=0

f(eMj)
m−1∏
l=0

[(eMj , β)ql

]il .

For eM j = (x1, x2, . . . , xm) ∈ GF(q)m,

h(eMj) : =
m−1∏
l=0

[(eMj , β)ql

]il

=
m−1∏
l=0

[x1 + x2β
ql

+ · · ·+ xmβ(m−1)ql

]il

is a homogenous polynomial of degree wtq(i) in indetermi-
nates xj . It is clear that

deg(fh) < ℓ + (q − 1)m− ℓ = (q − 1)m

and f(0)h(0) = 0. It follows from Lemma 36 that

qm−2∑
j=0

f(eMj)
m−1∏
l=0

[(eMj , β)ql

]il

=
∑

P∈GF(q)m

f(P)
m−1∏
l=0

[(P, β)ql

]il

= 0.

Therefore, βi is a root of g(x). It follows that g(q,m,r,ℓ)(x)
divides g(x). This completes the proof.

It is hard to settle the minimum distance of the constacyclic
code C(q, m, r, ℓ). Below we develop some bounds on
d(C(q, m, r, ℓ)).

Theorem 39: Let ℓ = (q−1)ℓ1 + ℓ0 < (q−1)m−1, where
0 ≤ ℓ0 ≤ q − 2 and ℓ0 ≡ r − 1 (mod r). Then

(q − ℓ0)qm−ℓ1−1 − 2
r

+ 1 ≤ d(C(q, m, r, ℓ))

≤ (q − ℓ0 + r − 2)qm−ℓ1−1

r
. (7)

Proof: By definition, we have

(q − 1)m− ℓ = (q − 1)(m− ℓ1 − 1) + q − 1− ℓ0.

Let H be the smallest integer with wtq(H) = (q − 1)m − ℓ.
Then

H = (q − 1− ℓ0)qm−ℓ1−1 +
m−ℓ1−2∑

i=0

(q − 1)qi

= (q − ℓ0)qm−ℓ1−1 − 1.
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It is easily verified that every integer u with 0 < u < H
satisfies wtq(u) < (q − 1)m− ℓ. Define

B =
{

1 + rj : 0 ≤ j ≤ (q − ℓ0)qm−ℓ1−1 − 2
r

− 1
}

.

Then B is a subset of {1, 2, · · · , H − r} and βi is a zero of
C(q, m, r, ℓ) for each i ∈ B. The desired lower bound then
follows from Lemma 6.

Let

D(q, m, r, ℓ) ={c̃f = (f(eMi))rn−1
i=0 :

f(x1, x2, . . . , xm) ∈ M(q, m, r, ℓ)}.

For any f(x1, x2, . . . , xm) ∈ M(q, m, r, ℓ), it follows from
Lemma 37 that

c̃f = (cf ∥ λ−1cf ∥ · · · ∥ λ−(r−1)cf ),

where cf = (f(eMi))n−1
i=0 and ∥ denotes the concatenation of

vectors. By Theorem 38, we have

d(C(q, m, r, ℓ)) =
1
r
· d(D(q, m, r, ℓ)).

Let

f(x1, . . . , xm) =
ℓ1∏

i=1

[1− x
(q−1)
i ] · xr−1

ℓ1+1 ·

ℓ0−r+1
r∏

i=1

[xr
ℓ1+1 − ωri],

where ω is a primitive element of GF(q). It is easily verified
that deg(f) = (q − 1)ℓ1 + ℓ0 and f ∈ M(q, m, r, ℓ). Clearly,
f(x1, x2, . . . , xm) is zero in GF(q)m unless

xi = 0 for i = 1, 2, · · · , ℓ1,

xℓ1+1 /∈ {0}∪
{

λjωi : 1≤ i ≤ ℓ0 − r + 1
r

, 0 ≤ j ≤ r − 1
}

.

(8)

For any 1 ≤ i, i′ ≤ ℓ0−r+1
r , 0 ≤ j, j′ ≤ r − 1, if λj′ωi′ =

λjωi, then ωi−i′ = λj′−j . It follows that ωr(i−i′) = 1. Then
we have (q − 1)/r divides i− i′. Note that

0 ≤ |i− i′| ≤ ℓ0 − 2r + 1
r

<
q − 1

r
.

Therefore, i = i′. Consequently, j = j′. That is to say,
there are [q−r( ℓ0−r+1

r )−1]qm−1−ℓ1 vectors in GF(q)m\{0}
satisfying both equations in (8) and

wt(cf ) = (q − ℓ0 + r − 2)qm−1−ℓ1 .

It follows that

d(D(q, m, r, ℓ)) ≤ (q − ℓ0 + r − 2)qm−1−ℓ1 .

The desired upper bound follows.
If r = 2 or ℓ1 = m−1, it is easily verified that the upper and

lower bounds in (7) are equal. Therefore, we have following
two conclusions.

Corollary 40: Let ℓ = (q − 1)(m− 1) + ℓ0, where m ≥ 2,
0 ≤ ℓ0 ≤ q − 2 and ℓ0 ≡ r − 1 (mod r). Then

d(C(q, m, r, ℓ)) =
q − ℓ0 + r − 2

r
.

Corollary 41: Let q be an odd prime power and r = 2. Let
r − 1 ≤ ℓ = (q − 1)ℓ1 + ℓ0 < (q − 1)m − 1, where m ≥ 2,
0 ≤ ℓ0 ≤ q − 2 and ℓ0 ≡ r − 1 (mod r). Then

d(C(q,m, r, ℓ)) =
(

q − ℓ0
2

)
qm−1−ℓ1 .

Example 42: Let (q, m, r, ℓ) = (3, 3, 2, 3). Let β be the
primitive element of GF(33) with β3 + 2β + 1 = 0. Then
the constacyclic code C(3, 3, 2, 3) over GF(3) has parameters
[13, 10, 3] and is distance-optimal.

Example 43: Let (q, m, r, ℓ) = (5, 2, 2, 3). Let β be the
primitive element of GF(52) with β2 + 4β + 2 = 0. Then
the constacyclic code C(5, 2, 2, 3) over GF(5) has parameters
[12, 6, 5]. Furthermore, C(5, 2, 2, 3) is self-dual and almost-
distance optimal.

For ℓ with r − 1 ≤ ℓ ≤ (q − 1)(m− 1)− 1 and ℓ ≡ r − 1
(mod r), we will give an improved bound on the minimum
distance of the code C(q,m, r, ℓ). To this end, we consider
the subcode of the λ-constacyclic code C(q,m, r, ℓ). Let
M̃(q, m, r, ℓ) be the linear subspace of GF(q)[x1, x2, . . . , xm],
which is spanned by all monomials xi1

1 xi2
2 · · ·xim

m satisfying
the following three conditions:

1) 0 ≤ ij ≤ q − 1 for 1 ≤ j ≤ m,
2)

∑m
j=1 ij ≡ ℓ (mod q − 1),

3)
∑m

j=1 ij ≤ ℓ.
It is easily verified that M̃(q,m, r, ℓ) ⊆ M(q, m, r, ℓ). In the
special case r = q − 1, M̃(q,m, r, ℓ) = M(q, m, r, ℓ).
Associated with the λ-constacyclic code C(q, m, r, ℓ) are the
following two codes over GF(q):

C̃(q,m, r, ℓ) ={c̃f = (f(e), f(eM), . . . , f(eMn−1)) :

f(x1, x2, . . . , xm) ∈ M̃(q, m, r, ℓ)},

and

P(C̃(q,m, r, ℓ)) ={cf = (f(e), f(eM), . . . , f(eMn−1)) :

f(x1, x2, . . . , xm) ∈ M̃(q, m, r, ℓ)},

where n = (qm − 1)/(q − 1). In the special case r = q − 1,
C(q, m, r, ℓ), C̃(q, m, r, ℓ) and P(C̃(q, m, r, ℓ)) are identical.

Theorem 44: Let q > 2 be a prime power and m ≥ 2 be
an integer. Let r > 1 with r | (q − 1), and let r − 1 ≤ ℓ ≤
(q−1)(m−1)−1 with ℓ ≡ r−1 (mod r). Then the following
hold:

1) The linear code C̃(q, m, r, ℓ) is a λ-constacyclic code of
length (qm − 1)/r over GF(q).

2) The λ-constacyclic code C̃(q, m, r, ℓ) ⊆ C(q, m, r, ℓ).
In the special case r = q − 1, C̃(q, m, r, ℓ) =
C(q, m, r, ℓ).

3) If r = q − 1, the λ-constacyclic code

C̃(q, m, r, ℓ) = P(C̃(q, m, r, ℓ)).

If r < q − 1, the λ-constacyclic code

C̃(q,m, r, ℓ) = {(cf∥ωℓ · cf∥ · · · ∥ω( q−1
r −1)ℓ · cf ) :

cf ∈ P(C̃(q, m, r, ℓ))},

where ω = βn is a primitive element of GF(q).
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Proof: 1) The proof is similar to Theorem 38, and the
details are omitted here.

2) Note that M̃(q, m, r, ℓ) ⊆ M(q, m, r, ℓ) and

M̃(q, m, r, ℓ) = M(q, m, r, ℓ)

for r = q − 1. The desired result follows.
3) If r = q − 1, the desired result is obvious. If r < q − 1,

since β is a primitive element of GF(qm), ω := βn is a
primitive element of GF(q). Therefore, Mn = ωE. It follows
that eMjn+i = ωjeMi for any 0 ≤ j ≤ q−1

r − 1, 0 ≤ i ≤
n− 1. Let f(x1, x2, . . . , xm) ∈ M̃(q, m, r, ℓ), then

f(eMjn+i) = f(ωjeMi) = ωjℓ · f(eMi).

Let

c̃f = (f(e), f(eM), . . . , f(eMn−1))

be the codeword corresponding to the polynomial

f(x1, x2, . . . , xm).

Then

c̃f = (cf∥ωℓ · cf∥ · · · ∥ω( q−1
r −1)ℓ · cf ).

The third desired result follows.
Below we will prove that the code P(C̃(q, m, r, ℓ)) is scalar-

equivalent to the projective Reed-Muller code PRM(q, m, ℓ).
Let T be the mapping from GF(q)[x1, x2, . . . , xm] to the

quotient ring

GF(q)[x1, x2, . . . , xm]/⟨xq
1 − x1, x

q
2 − x2, . . . , x

q
m − xm⟩

defined by

T (
∑

ci1,i2,...,im
xi1

1 xi2
2 · · ·xim

m )=
∑

ci1,i2,...,im
x

i′1
1 x

i′2
2 · · ·x

i′m
m

where these i′j satisfy the following conditions:
1) If ij = 0, then i′j = 0.
2) If ij > 0, then 1 ≤ i′j ≤ q−1 and i′j ≡ ij (mod q−1).

For each a ∈ GF(q), aq = a. It follows that aij = ai′j .
Consequently, f(x) = T (f)(x) for any x ∈ GF(q)m.

Recall that A(q, m, ℓ) denotes the subspace of

GF(q)[x1, x2, . . . , xm]

generated by all the homogeneous polynomials of degree ℓ,
where ℓ < (q − 1)m.

Lemma 45: Let q > 2 be a prime power, m ≥ 2 be an
integer and n = (qm−1)/(q−1). Then {eMi : 0 ≤ i ≤ n−1}
is the set of points in PG(m− 1, GF(q)).

Proof: Suppose there are 0 ≤ i < j ≤ n − 1 such that
eMi = γ · eMj , where γ ∈ GF(q)∗. Then

βi = (eMi, β)

= (γ · eMj , β)

= γ · (eMj , β)

= γ · βj .

It follows that βj−i ∈ GF(q)∗, which deduces that n | (j− i),
a contradiction. Therefore, any two distinct elements in the set
{eMi : 0 ≤ i ≤ n− 1} are linearly independent over GF(q).
The desired result follows.

According to Lemma 45, the projective Reed-Muller code
PRM(q, m, ℓ) is scalar-equivalent to the code

Ĉ(q, m, ℓ) ={ĉf = (f(e), f(eM), . . . , f(eMn−1)) :
f(x1, x2, . . . , xm) ∈ A(q, m, ℓ)},

where n = (qm − 1)/(q − 1).
Theorem 46: Let q > 2 be a prime power and m ≥ 2 be

an integer. Let r > 1 with r | (q − 1), and let r − 1 ≤ ℓ ≤
(q−1)(m−1)−1 with ℓ ≡ r−1 (mod r). Then the following
hold.

1) The code P(C̃(q, m, r, ℓ)) over GF(q) has dimension

∑
t≡ℓ (mod q−1)

0<t≤ℓ

 m∑
j=0

(−1)j

(
m

j

)(
t− jq + m− 1

t− jq

) .

2) The projective Reed-Muller code PRM(q, m, ℓ) over
GF(q) is scalar-equivalent to the code P(C̃(q,m, r, ℓ)).
In particular, if r = q − 1, the code PRM(q, m, ℓ)
is scalar-equivalent to the λ-constacyclic code
C(q, m, r, ℓ).

3) Let ℓ = (q−1)ℓ1+ℓ0, where ℓ1 ≥ 0 and 0 < ℓ0 < q−1,
then the code P(C̃(q, m, r, ℓ)) has minimum distance

(q − ℓ0 + 1)qm−2−ℓ1 .

4) The λ-constacyclic code C̃(q, m, r, ℓ) over GF(q) has
parameters [n, k, d], where

n =(qm − 1)/r,

k =
∑

t≡ℓ (mod q−1)
0<t≤ℓ

m∑
j=0

(−1)j

(
m

j

)(
t− jq + m− 1

t− jq

)
,

d =
(

q − 1
r

)
(q − ℓ0 + 1)qm−2−ℓ1 .

Proof: 1) Similar to Theorem 38, one can prove that

dim(P(C̃(q, m, r, ℓ)))
= |{(i1, i2, . . . , im) ∈ {0, 1, · · · , q − 1}m :

m∑
k=1

ik ≡ ℓ (mod q − 1),
m∑

k=1

ik ≤ ℓ}|.

The remaining proofs are similar to Theorem 34, and details
are omitted here.

2) We claim that Ĉ(q, m, ℓ) = P(C̃(q, m, r, ℓ)). It follows
from Theorem 9 and Result 1 that

dim(Ĉ(q, m, ℓ)) = dim(P(C̃(q, m, r, ℓ))).

Therefore, in order to prove the desired conclusion, we only
need to prove Ĉ(q, m, ℓ) ⊆ P(C̃(q, m, r, ℓ)). Let

f(x1, x2, . . . , xm) ∈ A(q, m, ℓ)

and let

ĉf = (f(e), f(eM), . . . , f(eMn−1))

be the codeword corresponding to the polynomial

f(x1, x2, . . . , xm).
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Since f(x) = T (f)(x) for any x ∈ GF(q)m, we have

ĉf = (T (f)(e), T (f)(eM), . . . , T (f)(eMn−1)).

If

f(x1, . . . , xm) =
∑

ci1,i2,...,imxi1
1 xi2

2 · · ·xim
m ∈ A(q,m, ℓ),

then T (f) =
∑

ci1,i2,...,im
x

i′1
1 x

i′2
2 · · ·x

i′m
m where i′j = ij = 0 or

1 ≤ i′j ≤ q − 1 and such that i′j ≡ ij (mod q − 1). It is clear
that

m∑
j=1

i′j ≡
m∑

j=1

ij ≡ ℓ (mod q − 1),

and deg(T (f)) ≤ ℓ. Therefore, T (f) ∈ M̃(q, m, r, ℓ).
It follows that

ĉf = (T (f)(e), T (f)(eM), . . . , T (f)(eMn−1))

∈ P(C̃(q, m, r, ℓ)).

Consequently, Ĉ(q, m, ℓ) ⊆ P(C̃(q,m, r, ℓ)). This proves the
claim.

Note that the code PRM(q, m, ℓ) is scalar-equivalent to
the code Ĉ(q, m, ℓ), and P(C̃(q, m, r, ℓ)) = C(q, m, r, ℓ) for
r = q − 1. The desired result follows.

3) The desired result follows from Result 2 and Theorem 9.
4) By Result 3 of Theorem 44,

dim(C̃(q,m, r, ℓ)) = dim(P(C̃(q, m, r, ℓ)))

and

d(C̃(q, m, r, ℓ)) =
(

q − 1
r

)
· d(P(C̃(q, m, r, ℓ))).

The desired result follows from Result 1 and Result 3.
Note that C̃(q, m, r, ℓ) ⊆ C(q, m, r, ℓ), we have

d(C(q, m, r, ℓ)) ≤ d(C̃(q, m, r, ℓ)).

By Result 4 of Theorem 46, we can improve the upper bound
in (7).

Theorem 47: Let r > 2 and r | (q−1). Let ℓ = (q−1)ℓ1 +
ℓ0 ≤ (q−1)(m−1)−1, where ℓ1 ≤ m−2, 0 ≤ ℓ0 ≤ q−2 and
ℓ0 ≡ r − 1 (mod r). Then

(q − ℓ0)qm−ℓ1−1 − 2
r

+ 1 ≤ d(C(q, m, r, ℓ))

≤
(

q − 1
r

)
(q − ℓ0 + 1)qm−2−ℓ1 . (9)

When r = q − 1, the minimum distance of the code
C(q,m, r, ℓ) just takes the upper bound in (9).

Corollary 48: Let q ≥ 3 be a prime power and r = q − 1.
Let ℓ = (q − 1)ℓ1 + q − 2, where 0 ≤ ℓ1 ≤ m − 2. Then
the code C(q, m, q − 1, ℓ) over GF(q) is scalar-equivalent to
the projective Reed-Muller code PRM(q, m, ℓ) over GF(q).
Furthermore, d(C(q, m, q − 1, ℓ)) = 3 · qm−2−ℓ1 .

Proof: When r = q − 1, C(q, m, r, ℓ) = P(C̃(q, m, r, ℓ)).
The desired result follows directly from Theorem 46.

Corollary 48 shows that the constacyclic code

C(q,m, q − 1, (q − 1)ℓ1 + q − 2)

is scalar-equivalent to the projective Reed-Muller code

PRM(q, m, (q − 1)ℓ1 + q − 2),

where 0 ≤ ℓ1 ≤ m− 2. Although the two codes

C(q, m, q − 1, (q − 1)ℓ1 + q − 2)

and PRM(q, m, (q − 1)ℓ1 + q − 2) are scalar-equivalent, the
former is more interesting, as the former is a constacyclic code
but the later is a linear code.

Example 49: Let (q, m, r, ℓ) = (3, 4, 2, 1). Let β be the
primitive element of GF(34) with β4 + 2β3 + 2 = 0. Then
the constacyclic code C(3, 4, 2, 1) over GF(3) has parameters
[40, 4, 27] and is distance-optimal.

When ℓ1 = m− 2 and ℓ0 = r − 1, it is easily verified that
the upper and lower bounds in (9) are equal. Then we have
the following conclusion.

Corollary 50: Let ℓ = (q−1)(m−2)+r−1, where m ≥ 2.
Then

d(C(q, m, r, ℓ)) =
(q − 1)(q − r + 2)

r
.

The following problem is interesting and worth of
investigation.

Open Problem 51: Let q ≥ 7 and m ≥ 2. Let r be a divisor
of q − 1 and 2 < r < q − 1. Let ℓ = rℓ1 + r − 1, where
1 ≤ ℓ1 ≤ ( q−1

r )m − 3. Determine the minimum distance of
the code C(q, m, r, ℓ) or improve the lower bound in (7).

We have the following results about the dual code of the
constacyclic code C(q, m, r, ℓ).

Theorem 52: Let ℓ = rℓ1+r−1, where 0 ≤ ℓ1 ≤ ( q−1
r )m−

2. Then the dual code C(q, m, r, ℓ)⊥ of the constacyclic code
C(q, m, r, ℓ) is the λ−1-constacyclic code of length (qm−1)/r
over GF(q) with generator polynomial

g⊥(q,m,r,ℓ)(x) =
∏

i∈Γ(r−1)
(q,N,r)

wtq(i)≤ℓ

Mβi(x),

where Γ(r−1)
(q,N,r) = {i ∈ Γ(q,N) : wtq(i) ≡ r − 1 (mod r)}.

In particular, if r = 2, then

C(q, m, r, ℓ)⊥ = C(q, m, r, (q − 1)m− ℓ− r).

Proof: It is clear that

xn − λ =
∏

i∈Γ
(1)
(q,N,r)

Mβi(x)

=
∏

i∈Γ(1)
(q,N,r)

wtq(i)<(q−1)m−ℓ

Mβi(x)
∏

i∈Γ(1)
(q,N,r)

wtq(i)≥(q−1)m−ℓ

Mβi(x).

It follows that the generator polynomial of C(q, m, r, ℓ)⊥ is

g⊥(q,m,r,ℓ)(x) : =
∏

i∈Γ(1)
(q,N,r)

wtq(i)≥(q−1)m−ℓ

M̂βi(x)

=
∏

i∈Γ(1)
(q,N,r)

wtq(i)≥(q−1)m−ℓ

MβN−i(x),
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where M̂βi(x) denotes the reciprocal polynomial of Mβi(x).
Since r | N , i ≡ 1 (mod r) if and only if N − i ≡ r − 1
(mod r). Note that

wtq(N − i) = (q − 1)m− wtq(i),

then wtq(i) ≥ (q − 1)m − ℓ if and only if wtq(N − i) ≤ ℓ.
Therefore,

g⊥(q,m,r,ℓ)(x) =
∏

i∈Γ(r−1)
(q,N,r)

wtq(i)≤ℓ

Mβi(x).

When r = 2, it is clear that

g⊥(q,m,r,ℓ)(x) = g(q,m,r,(q−1)m−ℓ−r)(x).

This completes the proof.
Theorem 53: Let r > 1 and r | (q−1). Let ℓ = rℓ1 +r−1,

where 0 ≤ ℓ1 ≤ ( q−1
r )m− 2. Then

dim(C(q, m, r, ℓ)⊥) =

qm − 1
r

−
ℓ1∑

t=0

m∑
j=0

(−1)j

(
m

j

)(
tr + r − 1− jq + m− 1

tr + r − 1− jq

)
and

d(C(q, m, r, ℓ)⊥) ≥
⌊(

ℓ′0 + 1
r

)
qℓ′1

⌋
+ 1, (10)

where ℓ′0, ℓ
′
1 such that ℓ = (q− 1)ℓ′1 + ℓ′0 and 0 ≤ ℓ′0 ≤ q− 2.

Proof: The desired conclusion on the dimension of the
dual code follows from Theorem 34. Below we prove the lower
bound on the minimum distance of the dual code.

Suppose ℓ = (q − 1)ℓ′1 + ℓ′0, where 0 ≤ ℓ′0 ≤ q − 2. Let H
be the smallest integer with wtq(H) = ℓ. Then

H = ℓ′0q
ℓ′1 +

ℓ′1−1∑
i=0

(q − 1)qi = (ℓ′0 + 1)qℓ′1 − 1.

It is easily verified that every integer u with 0 < u ≤ H
satisfies wtq(u) ≤ ℓ. Define

B =
{

r − 1 + rj : 0 ≤ j ≤
⌊(

ℓ′0 + 1
r

)
qℓ′1

⌋
− 1

}
.

Then βi is a zero of g⊥(q,m,r,ℓ)(x) for each i ∈ B. The desired
bound then follows from Lemma 6. This completes the proof.

When r = 2 or q−1, the minimum distance of C(q, m, r, ℓ)⊥

can be completely determined.
Theorem 54: Let q be an odd prime power and r = 2. Let

1 ≤ ℓ = (q − 1)ℓ1 + ℓ0 < (q − 1)m − 1, where m ≥ 2,
0 ≤ ℓ0 ≤ q − 2 and ℓ0 ≡ r − 1 (mod r). Then

d(C(q, m, r, ℓ)⊥) =

{(
3+ℓ0

2

)
qℓ1 if ℓ0 < q − 2,

qℓ1+1 if ℓ0 = q − 2.

Proof: By Theorem 52,

C(q, m, r, ℓ)⊥ = C(q, m, r, (q − 1)m− ℓ− r).

Note that

(q − 1)m− ℓ− r = (q − 1)(m− ℓ1 − 1) + q − 3− ℓ0.

If ℓ0 < q − 2, by Corollary 41,

d(C(q, m, r, ℓ)⊥) = [(3 + ℓ0)/2]qℓ1 .

If ℓ0 = q − 2, by Corollary 41,

d(C(q, m, r, ℓ)⊥) = qℓ1+1.

This completes the proof.
Theorem 55: Let q > 2 be a prime power and r = q − 1.

Let ℓ = (q − 1)ℓ1 + q − 2, where 0 ≤ ℓ1 ≤ m− 2. Then

d(C(q, m, r, ℓ)⊥) = qℓ1+1.

Proof: By Corollary 48, the code C(q, m, q − 1, ℓ) is
scalar-equivalent to PRM(q, m, ℓ). It follows that the code
C(q, m, q − 1, ℓ)⊥ is scalar-equivalent to PRM(q, m, ℓ)⊥.
It then follows from Theorem 10 that

PRM(q,m, ℓ)⊥ = PRM(q, m, (m− 1)(q − 1)− ℓ).

Thereby,

d(C(q, m, r, ℓ)) = d(PRM(q, m, (m− 1)(q − 1)− ℓ)).

Note that (m − 1)(q − 1) − ℓ − 1 = (m − 2 − ℓ1)(q − 1),
by Theorem 9,

d(PRM(q, m, (m− 1)(q − 1)− ℓ)) = qℓ1+1.

This completes the proof.

B. Some Special Cases of the Constacyclic Code C(q, m, r, ℓ)

In this subsection, we will study the code C(q, m, r, ℓ) in
some special cases. We do have the dimension formula of the
code C(q, m, r, ℓ) in Theorem 34, which may not be easily
simplified. Instead, we will determine the generator or check
polynomial of C(q, m, r, ℓ) and will then know the dimension
of the code without using Theorem 34.

Theorem 56: Let r > 1 and r | (q−1). Let ℓ = (q−1)m−
r − 1, where m ≥ 2. Then the constacyclic code C(q,m, r, ℓ)
over GF(q) has parameters [(qm − 1)/r, (qm − 1)/r −m, d],
where

d =

{
2 if r < q − 1,

3 if r = q − 1.

Moreover, the dual code C(q, m, r, ℓ)⊥ has parameters

[(qm − 1)/r, m, [(q − 1)/r]qm−1].

Proof: When ℓ = (q − 1)m− r − 1, we have

D(q,m,r,ℓ)

= {i ∈ ZN : wtq(i) < r + 1, wtq(i) ≡ 1 (mod r)}
= {i ∈ ZN : wtq(i) = 1}
= C

(q,N)
1 .

By definition, we have g(q,m,r,ℓ)(x) = Mβ(x). Then

dim(C(q,m, r, ℓ)) = (qm − 1)/r −m.

Now consider the minimum distance of the code
C(q, m, r, ℓ). There are two cases.
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1) r < q − 1. Then ℓ = (q − 1)(m − 1) + q − 2 − r.
By Theorem 39, d(C(q, m, r, ℓ)) = 2.

2) r = q − 1. Then ℓ = (q − 1)(m − 2) + (q − 2).
By Theorem 39, d(C(q, m, r, ℓ)) ≥ 3. By the Sphere
Packing bound, d(C(q, m, r, ℓ)) ≤ 3. The desired result
follows.

By Lemma 5, the trace representation of C(q, m, r, ℓ)⊥ is
given by

C(q, m, r, ℓ)⊥ = {c(a) = (Trqm/q(aβi))n−1
i=0 : a ∈ GF(qm)}.

For a ∈ GF(qm)∗,

wt(c(a)) = n− 1
q

n−1∑
i=0

∑
x∈GF(q)

ζ
Trq/p(xTrqm/q(aβi))
p

= n− 1
rq

rn−1∑
i=0

∑
x∈GF(q)

ζ
Trq/p(xTrqm/q(aβi))
p

= n− 1
rq

∑
x∈GF(q)

∑
y∈GF(qm)∗

ζ
Trqm/p(axy)
p

= n− 1
rq

[qm − 1 + (q − 1)
∑

y∈GF(qm)∗

ζ
Trqm/p(y)
p ]

= n− 1
rq

[qm − 1− (q − 1)]

= (
q − 1

r
)qm−1.

The desired minimum distance of the dual code then follows.

Notice that the constacyclic code

C(q, m, q − 1, (q − 1)(m− 2) + q − 2)

has parameters

[(qm − 1)/(q − 1), (qm − 1)/(q − 1)−m, 3]

and is monomially-equivalent to the Hamming code. The dual
code C(q, m, (q − 1)(m− 2) + q − 2)⊥ has parameters[

(qm − 1)/(q − 1), m, qm−1
]

and is monomially-equivalent to the Simplex code.
Theorem 57: Let r > 1 and r | (q − 1). Let ℓ = (q −

1)(m− 1)+ ℓ0, where m ≥ 2, 0 ≤ ℓ0 < q− 2 and ℓ0 ≡ r− 1
(mod r). Then the constacyclic code C(q, m, r, ℓ) over GF(q)
has parametersqm − 1

r
,
qm − 1

r
−

q−2−ℓ0
r −1∑
t=0

(
m + rt

rt + 1

)
,
q − ℓ0 + r − 2

r

 .

Proof: When ℓ = (q − 1)(m− 1) + ℓ0, we have

(q − 1)m− ℓ = q − 1− ℓ0.

Then

D(q,m,r,ℓ)

= {i ∈ ZN : wtq(i) < q − 1− ℓ0, wtq(i) ≡ 1 (mod r)}

=

q−2−ℓ0
r −1⋃
t=0

{i ∈ ZN : wtq(i) = rt + 1}.

It is easily checked that

|D(q,m,r,ℓ)| =

q−2−ℓ0
r −1∑
t=0

(
m + rt

rt + 1

)
.

The desired dimension follows. The desired minimum distance
then follows from Corollary 40.

Theorem 58: Let r > 1 and r | (q − 1). Let ℓ = (q −
1)(m− 2) + r− 1, where m ≥ 2. Then the constacyclic code
C(q, m, r, ℓ) over GF(q) has parameters[

qm − 1
r

,
qm − 1

r
− κ,

(q − 1)(q − r + 2)
r

]
,

where

κ

=



2(q−1−r)
r∑

t=0

(
m+rt
rt+1

)
if q+1

2 ≤ r ≤ q − 1,

2(q−1−r)
r∑

t=0

(
m+rt
rt+1

)
−m

2(q−1−r)
r∑

t= q−1
r

(
tr−q+m
tr−q+1

)
if 2 ≤ r ≤ q−1

2 .

Proof: When ℓ = (q − 1)(m − 2) + r − 1, we have
(q − 1)m− ℓ = 2(q − 1)− r + 1. Then

D(q,m,r,ℓ)

={i ∈ ZN : wtq(i) ≤ 2(q − r)− 1, wtq(i) ≡ 1 (mod r)}

=

2(q−1−r)
r⋃

t=0

{i ∈ ZN : wtq(i) = rt + 1}.

When (q+1)/2 ≤ r ≤ q−1, we have 2(q−1)−2r+1 ≤ q−2.
It is easily checked that

|D(q,m,r,ℓ)| =

2(q−1−r)
r∑

t=0

(
m + rt

rt + 1

)
.

When 2 ≤ r ≤ (q − 1)/2, we have

q ≤ 2(q − 1)− 2r + 1 < 2(q − 1).

Clearly,

|D(q,m,r,ℓ)|

=

q−1
r −1∑
t=0

|{i ∈ ZN : wtq(i) = rt + 1}|

+

2(q−1−r)
r∑

t= q−1
r

|{i ∈ ZN : wtq(i) = rt + 1}|

=

q−1
r −1∑
t=0

(
m + rt

rt + 1

)
+

2(q−1−r)
r∑

t= q−1
r

[(
m + rt

rt + 1

)
−m

(
tr − q + m

tr − q + 1

)]

=

2(q−1−r)
r∑

t=0

(
m + rt

rt + 1

)
−m

2(q−1−r)
r∑

t= q−1
r

(
tr − q + m

tr − q + 1

)
.
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The desired dimension follows. The desired minimum distance
then follows from Corollary 50.

Theorem 59: Let q ≥ 3 and m ≥ 3. Then the constacyclic
code C(q,m, q − 1, (q − 1)(m− 3) + q − 2) over GF(q) has
parameters[
(qm − 1)/(q − 1), (qm − 1)/(q − 1)−

(
m + q − 1

q

)
, 3 · q

]
,

and the dual code C(q, m, q− 1, (q− 1)(m− 3)+ q− 2)⊥ has
parameters[

(qm − 1)/(q − 1),
(

m + q − 1
q

)
, qm−2

]
.

Proof: Let ℓ = (q − 1)(m− 3) + q − 2. Note that

(q − 1)m− ℓ = 2(q − 1) + 1.

It is easy to see that

D(q,m,q−1,ℓ)

= {i ∈ ZN : wtq(i) < 2q − 1, wtq(i) ≡ 1 (mod q − 1)}
= {i ∈ ZN : wtq(i) = 1} ∪ {i ∈ Zqm−1 : wtq(i) = q}.

Then

|D(q,m,q−1,ℓ)|

=|{(i0, i1, . . . , im−1) ∈ Σm
q :

m−1∑
j=0

ij = 1}|+

|{(i0, i1, . . . , im−1) ∈ Σm
q :

m−1∑
j=0

ij = q}|, (11)

where Σm
q = {0, 1, · · · , q − 1}m.

Clearly, we have

|{(i0, i1, . . . , im−1) ∈ Σm
q :

m−1∑
j=0

ij = 1}| = m. (12)

It follows Lemma 33 that

|{(i0, i1, . . . , im−1) ∈ Σm
q :

m−1∑
j=0

ij = q}|

= N(q, m, q − 1)

=
(

m + q − 1
q

)
−m.

It then follows from (11) and (12) that

|D(q,m,q−1,ℓ)| =
(

m + q − 1
q

)
.

The desired conclusion on the dimension of C(q,m, q − 1, ℓ)
then follows. By Corollary 48,

d(C(q,m, q − 1, ℓ)) = 3 · q.

By Theorem 55, d(C(q, m, q−1, ℓ))⊥ = qm−2. This completes
the proof.

Theorem 60: Let q ≥ 3 and m ≥ 2. Then the constacyclic
code C(q, m, q − 1, q − 2) over GF(q) has parameters[

(qm − 1)/(q − 1),
(

m + q − 3
q − 2

)
, 3 · qm−2

]
,

and the dual code C(q, m, q − 1, q − 2)⊥ has parameters[
(qm − 1)/(q − 1), (qm − 1)/(q − 1)−

(
m + q − 3

q − 2

)
, q

]
.

Proof: Let ℓ = q − 2, then

D(q,m,q−1,ℓ) = {i ∈ ZN : wtq(i) < (q − 1)m− (q − 1) + 1,

wtq(i) ≡ 1 (mod q − 1)}.

It is easy to check that

{i ∈ ZN : wtq(i) = (q − 1)m− (q − 1) + 1}

=

{
N − (i0 + i1q + · · ·+ im−1q

m−1) :
m−1∑
k=0

ik = q − 2

}
.

It follows that

|{i ∈ ZN : wtq(i) = (q − 1)m− (q − 1) + 1}|

=
(

q − 2 + m− 1
q − 2

)
=

(
m + q − 3

q − 2

)
.

Then

dim(C(q, m, q − 1, q − 2)) =
(

m + q − 3
q − 2

)
,

and

dim(C(q, m, q − 1, q − 2)⊥) =
qm − 1
q − 1

−
(

m + q − 3
q − 2

)
.

The minimum distance of the code C(q, m, q − 1, q − 2)
(resp. C(q, m, q−1, q−2)⊥) follows from Corollary 48 (resp.
Theorem 55). This completes the proof.

Notice that the constacyclic code C(4, m, 3, 2) over GF(4)
and the code PRM(4, m, 2) over GF(4) are scalar-equivalent,
they have the same weight distribution. The weight distribution
of C(4, m, 3, 2) is the given in Theorem 11. The following four
examples show that C(4, m, 3, 2) is a (m + 1)-weight code
for even m and m-weight code for odd m. This is consistent
with the weight distribution of C(4, m, 3, 2), which is the same
as the weight distribution of PRM(4, m, 2) documented in
Theorem 11.

Example 61: Let (q, m, q − 1, ℓ) = (4, 2, 3, 2). Let β be
the primitive element of GF(42) with β4 + β + 1 = 0. Then
the constacyclic code C(4, 2, 3, 2) over GF(4) has parameters
[5, 3, 3] and weight enumerator 1 + 30z3 + 15z4 + 18z5.
Furthermore, C(4, 2, 3, 2)⊥ has parameters [5, 2, 4]. Both codes
are MDS and optimal.

Example 62: Let (q, m, q−1, ℓ) = (4, 3, 3, 2). Let β be the
primitive element of GF(43) with β6 + β4 + β3 + β + 1 =
0. Then the constacyclic code C(4, 3, 3, 2) over GF(4) has
parameters [21, 6, 12] and weight enumerator

1 + 630z12 + 3087z16 + 378z20.

Notice that C(4, 3, 3, 2) is distance-optimal [27]. Furthermore,
C(4, 3, 3, 2)⊥ has parameters [21, 15, 4] and is almost-distance-
optimal [27].

Example 63: Let (q,m, q−1, ℓ) = (4, 4, 3, 2). Let β be the
primitive element of GF(44) with β8 + β4 + β3 + β2 + 1 =
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0. Then the constacyclic code C(4, 4, 3, 2) over GF(4) has
parameters [85, 10, 48] and weight enumerator

1 + 10710z48 + 411264z60 + 257295z64

+ 362880z68 + 6426z80.

Furthermore, C(4, 4, 3, 2)⊥ has the best known parameters
[85, 75, 4] [27].

Example 64: Let (q, m, q − 1, ℓ) = (4, 5, 3, 2). Let β
be the primitive element of GF(45) with β10 + β6 +
β5 + β3 + β2 + β + 1 = 0. Then the constacyclic
code C(4, 5, 3, 2) over GF(4) has parameters [341, 15, 192]
and weight enumerator 1 + 173910z192 + 140241024z240 +
809480463z256 +123742080z272 +104346z320. Furthermore,
C(4, 5, 3, 2)⊥ has parameters [341, 326, 4].

Theorem 65: Let q ≥ 5 be an odd prime power, m ≥ 2, and
r = 2. Let ℓ = (q−1)(m−2)+ ℓ0, where 1 ≤ ℓ0 ≤ q−2 and
ℓ0 is odd. Then the constacyclic code C(q, m, 2, ℓ) over GF(q)
has parameters

[(qm − 1)/2, (qm − 1)/2− κ, [(q − ℓ0)/2]q] ,

where

κ =



2q−5−ℓ0
2∑

t=0

(
2t+m
2t+1

)
−m

2q−5−ℓ0
2∑

t= q−1
2

(
2t−q+m
2t−q+1

)
if ℓ0 < q − 2,

q−3
2∑

t=0

(
2t+m
2t+1

)
if ℓ0 = q − 2.

Moreover, the dual code C(q,m, 2, ℓ)⊥ has parameters

[(qm − 1)/2, κ, d] ,

where

d =

{
[(3 + ℓ0)/2]qm−2 if ℓ0 < q − 2,

qm−1 if ℓ0 = q − 2.

Proof: Note that (q− 1)m− ℓ = 2(q− 1)− ℓ0. It is easy
to see that

D(q,m,2,ℓ)

= {i ∈ ZN : wtq(i) ≤ 2q − 4− ℓ0, wtq(i) ≡ 1 (mod 2)}

=

2q−5−ℓ0
2⋃

t=0

{i ∈ ZN : wtq(i) = 2t + 1}.

If ℓ0 = q − 2, then 2q − 4− ℓ0 = q − 2. It follows that

|D(q,m,2,ℓ)| =

2q−5−ℓ0
2∑

t=0

(
2t + m

2t + 1

)
.

If ℓ0 < q − 2, then 2q − 4− ℓ0 ≥ q. Consequently,

|D(q,m,2,ℓ)|

=

q−3
2∑

t=0

|{i ∈ ZN : wtq(i) = 2t + 1}|+

2q−5−ℓ0
2∑

t= q−1
2

|{i ∈ ZN : wtq(i) = 2t + 1}|

=

q−3
2∑

t=0

(
2t + m

2t + 1

)
+

2q−5−ℓ0
2∑

t= q−1
2

[(
2t + m

2t + 1

)
−m

(
2t− q + m

2t− q + 1

)]

=

2q−5−ℓ0
2∑

t=0

(
2t + m

2t + 1

)
−m

2q−5−ℓ0
2∑

t= q−1
2

(
2t− q + m

2t− q + 1

)
.

It follows that dim(C(q, m, 2, ℓ)) = n − |D(q,m,2,ℓ)| =
n − κ, and dim(C(q, m, 2, ℓ)⊥) = κ. The minimum distance
of the code C(q, m, 2, ℓ) (resp. C(q, m, 2, ℓ)⊥) follows from
Corollary 41 (resp. Theorem 54). This completes the proof.

Theorem 66: Let q be an odd prime power, m ≥ 2 be an
integer and qm ≡ 1 (mod 4). Let r = 2 and ℓ = (q−1)m

2 − 1.
Then the constacyclic code C(q, m, 2, ℓ) over GF(q) is a self-
dual code with parameters [(qm − 1)/2, (qm − 1)/4, d], where

d =

{
qm/2 if m is even,

[(q + 3)/4]q(m−1)/2 if m is odd.

Proof: If qm ≡ 1 (mod 4), then ℓ = (q−1)m
2 − 1 is

odd. It follows from Theorem 52 that C(q, m, 2, ℓ)⊥ =
C(q, m, 2, ℓ). We now consider the minimum distance of the
code C(q, m, 2, ℓ). There are two cases.

1) m is even. Then ℓ = (q − 1)(m/2 − 1) + (q − 2).
By Corollary 41, d(C(q, m, 2, ℓ)) = qm/2.

2) m is odd. Then q ≡ 1 (mod 4). Consequently,

ℓ = (q − 1)[(m− 1)/2] + (q − 3)/2.

By Corollary 41, d(C(q, m, 2, ℓ)) = [(q+3)/4]q(m−1)/2.
This completes the proof.

Example 67: Let (q, m, r, ℓ) = (5, 3, 2, 5). Let β be the
primitive element of GF(53) with β3 + 3β + 3 = 0. Then
the constacyclic code C(5, 3, 2, 5) over GF(5) has parameters
[62, 31, 10] and is self-dual.

According to [28, Chapter 6], d ≥
√

n is a good lower on
the minimum distance of an infinite class of linear codes over
GF(q) with length n and dimension n/2, where n is a positive
even integer. To the best knowledge of the authors, known
infinite classes of self-dual codes with unbounded length n
and minimum distance d ≥

√
n are the following:

1) The extended codes of odd-like quadratic residue
codes [28].

2) The Pless symmetry codes [21], [43].
3) The generalized Reed-Muller code of order [m(q−1)−

1]/2 is a self-dual code over GF(q) with parameters
[qm, qm/2, [(q + 2)/2]q(m−1)/2], where m is odd and
q = 2s with a positive integer s [2, Theorem 5.8,
Theorem 5.25].

Therefore, Theorem 66 constructs a new class of self-dual
codes of length n = (qm − 1)/2 over GF(q) with minimum
distance d >

√
n. Below we will apply this class of self-

dual codes to construct quantum codes. The quantum codes
and classical linear codes have the following relationship. For
more information on quantum codes, the reader is referred to
[32], [46], [47] and the references therein.

Theorem 68 (CSS Construction): [32] If C is an [n, k, d]
linear code over GF(q) with C⊥ ⊆ C, then there exists an
[[n, 2k − n,≥ d]]q quantum code.
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Using the negacyclic self-dual codes in Theorem 66 via
the CSS construction in Theorem 68, we obtain the following
quantum codes.

Corollary 69: Let q be an odd prime power, m ≥ 2 be an
integer and qm ≡ 1 (mod 4). Then there exists a quantum
code with parameters [[(qm − 1)/2, 0,≥ d]]q , where

d =

{
qm/2 if m is even,

[(q + 3)/4]q(m−1)/2 if m is odd.

More examples of the code C(q, m, r, ℓ) and its dual are the
following.

Example 70: Let (q, m, r, ℓ) = (4, 3, 3, 5). Let β be
the primitive element of GF(43) with β6 + β4 + β3 +
β + 1 = 0. Then the constacyclic code C(4, 3, 3, 5) over
GF(4) has parameters [21, 18, 3] and is distance-optimal
[27], and C(4, 3, 3, 5)⊥ has parameters [21, 3, 16] and is
distance-optimal [27].

Example 71: Let (q, m, r, ℓ) = (4, 3, 3, 4). Let β be
the primitive element of GF(43) with β6 + β4 + β3 +
β + 1 = 0. Then the constacyclic code C(4, 3, 3, 4) over
GF(4) has parameters [21, 6, 12] and is distance-optimal [27],
C(4, 3, 3, 4)⊥ has parameters [21, 15, 4].

Example 72: Let (q,m, r, ℓ) = (5, 3, 4, 3). Let β be the
primitive element of GF(53) with β3 + 3β + 3 = 0. Then the
constacyclic code C(5, 3, 4, 3) over GF(5) has the best-known
parameters [31, 10, 15] [27] and C(5, 3, 4, 3)⊥ has parameters
[31, 21, 5].

Example 73: Let (q, m, r, ℓ) = (5, 3, 4, 7). Let β be the
primitive element of GF(53) with β3 + 3β + 3 = 0. Then
the constacyclic code C(5, 3, 4, 7) over GF(5) has parameters
[30, 28, 3] and is distance-optimal [27], and C(5, 3, 4, 7)⊥ has
parameters [31, 3, 25] and is distance-optimal [27].

These examples above show that the code C(q, m, r, ℓ) could
be optimal in some cases. Thus, the code C(q, m, r, ℓ) is
interesting in terms of its error-correcting capability.

C. Some Differences Between the Codes C(q, m, r, ℓ) and the
Nonprimitive Generalized Reed-Muller Codes
NGRM(q, m, r, h)

On one hand, by Corollary 41, the constacyclic code
C(q, m, 2, ℓ) over GF(q) has minimum distance

d1 = [(q − ℓ0)/2]qm−1−ℓ1 ,

where ℓ = (q − 1)ℓ1 + ℓ0, ℓ1 ≥ 0, 0 ≤ ℓ0 ≤ q −
2 and ℓ0 ≡ 1 (mod 2). According to Theorem 1, the code
NGRM(q, m, r, h) has minimum distance

d2 =
(q − h0)qm−1−h − 1

2
,

where (q− 1)h+h0 < (q− 1)m, 0 ≤ h0 ≤ q− 2 and h0 ≡ 0
(mod 2). It is easily checked that d1 = d2 if and only if ℓ1 =
h = m − 1 and ℓ0 = h0 + 1. Consequently, the constacyclic
code C(q, m, 2, ℓ) and the nonprimitive generalized Reed-
Muller codes NGRM(q, m, 2, h) are different in general.

On the other hand, by Corollary 48, the constacyclic code
C(q, m, q − 1, (q − 1)ℓ1 + q − 2) over GF(q) has minimum
distance d3 = 3 · qm−2−ℓ1 , where 0 ≤ ℓ1 ≤ m− 2. According

to Theorem 1, the code NGRM(q, m, q − 1, h) over GF(q)
has minimum distance d4 = (qm−h − 1)/(q − 1), where 0 ≤
h ≤ m− 1. Note that q ≥ 3, we have d3 ̸= d4. Consequently,
the constacyclic code C(q, m, q−1, (q−1)ℓ1 + q−2) and the
nonprimitive generalized Reed-Muller codes NGRM(q, m, q−
1, h) are different.

VI. SUMMARY AND CONCLUDING REMARKS

The main contributions of this paper are the constructions
and analysis of the two classes of constacyclic codes
C′(q, m, r, ℓ) and C(q, m, r, ℓ) of length n = (qm − 1)/r over
GF(q). These codes are quite interesting in theory as they
contain optimal codes and codes with best known parameters
(see the examples presented in this paper). An infinite class
of distance-optimal constacyclic codes was obtained (see
Corollary 21). A new infinite class of distance-almost-optimal
constacyclic codes was constructed (see Corollary 24). A new
infinite class of negacyclic self-dual codes of length n =
(qm − 1)/2 over GF(q) with minimum distance d >

√
n was

obtained (see Theorem 66). Since the codes presented in this
paper are constacyclic, their efficient decoding algorithms may
be obtained by modifying some efficient decoding algorithms
of cyclic codes. For example, Boztas [10] discussed the
encoding/decoding of constacyclic codes by means of a
constacyclic DFT. Hence, the codes presented in this paper
would also be interesting in practice.

The automorphism group of the code PRM(q,m, ℓ) was
settled in [6]. Hence, the automorphism group of the code
C(q, m, r, ℓ) is known when r = q − 1 but is open if r <
q − 1. Note that C(q, 2, q − 1, q − 2) is MDS. It follows from
Lemma 8 in [6] that the codewords of each fixed nonnzero
weight in C(q, m, q− 1, (q− 1)ℓ1 + q− 2) support a 2-design
for m ≥ 3 and 0 ≤ ℓ1 ≤ m − 2 [21]. Hence, the codes
C(q, m, q− 1, (q− 1)ℓ1 + q− 2) are also interesting from the
viewpoint of combinatorics.

The two classes of constacyclic codes C′(q, m, r, ℓ) and
C(q, m, r, ℓ) treated in this paper are new in the sense that the
parameters of some codes in the two classes are not covered
by the codes available in the literature. The constacyclic
code C(q,m, q − 1, ℓ1(q − 1) + q − 2) is scalar-equivalent
to the linear code PRM(q, m, ℓ1(q − 1) + q − 2) and gives a
constacyclic-code construction of the code PRM(q, m, ℓ1(q−
1) + q − 2). Hence, another contribution of this paper is the
proof of the fact that the subclass of projective Reed-Muller
codes PRM(q, m, ℓ1(q − 1) + q − 2) are constacyclic up to
equivalence. However, it is open if the code PRM(q,m, ℓ) is
monomially-equivalent to a constacyclic code when ℓ is not
of the form ℓ = ℓ1(q − 1) + q − 2.

It would be very interesting to settle the open problems
presented in this paper and determine the automorphism
groups of the two classes of constacyclic codes.
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