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Several Classes of Binary Sequences sequence™ has a two-level autocorrelation function if and only if its
with Three-Level Autocorrelation characteristic setf’ is a difference set. Thus finding binary sequences
with a two-level autocorrelation function is the same as searching for
Cunsheng Ding, Tor HellesetRellow, IEEE and Kwok Yan Lam  difference sets oZx.
Clearly, in many casef€~ has no difference sets. For instance,

] ) ] Zx has no(N,(N —1)/2,)) difference sets itV =1 (mod 4).
Abstract—in this correspondence we describe several classes of binary Thus as far as autocorrelation property is concerned, in such cases
sequences with three-level autocorrelation. Those classes of binary se- !

quences are based on cyclic almost difference sets. Some classes of binarY’e wish to get binary sequences with three-level autocorrelation. By
sequences have optimum autocorrelation. emma 1 a binary sequene& has three-level autocorrelation if and
only if the difference functionic(w) is three-valued.

Let D be a subset of an Abelian grogf¥, +) such thatV = |G|,
whereNN is odd.D is called an( NV, k, A) almost difference set (see [6]
. INTRODUCTION and [3, p. 140]), if for soméN — 1)/2 nonzero elements € Zn,
the equation

Index Terms—Almost difference set, cyclotomy, sequence.

Let D be a subset oZy. The characteristic sequeng& of D

is defined as .
r—y=a

. — 1, if imod N € D
70, otherwise. has exactly\ solutions(x, y) € D x D; and for the rest of N —1)/2
- - . . . nonzero elements there are exactly- 1 solutions. In other words,
Let s> and¢* be binary sequences of peridd (not necessarily : . . ; . .
. L . . D is an(N, k, A) almost difference set if and only if the difference
the least period). The periodic crosscorrelation function of the two " .
sequences™ and+> is defined b unctiondp (w) takes on the valug for half of the nonzero elements
q y w of Zn, and\+1 for the other half. Thé NV, £, \) almost difference
Csi(w) = Z (—1)Pitwt sets introduced here are different from the, n, k, A1, A2) almost
i€Zy difference sets introduced in [4] by Davis, but they are more or less
in the same sense.
The following lemma follows directly from Lemma 1 and the
definition of almost difference sets.

whereZx denotes the rind0, 1,---, N — 1} with integer multipli-
cation moduloN and integer addition moduld/.
The autocorrelation function of*° is defined as
Lemma 2: Let C' be an(N, k, \) almost difference set of v and

Cy(w) = Z (=) the characteristic set of a binary sequenceg, i.e., s; = 1 if and
ein only if imod N € C. Then
Pseudorandom sequences have wide applications in simulation, N 0
software testing, global positioning systems, ranging systems, code- o w= N
division multiple-access systems, radar systems, spread-spectrugs(w) = N -4k =), for half of thesew of Z

communication systems, and stream ciphers. Many applications re- N —dk—A-1), for the other half

quire binary sequences that have good autocorrelation properties [3],
[5], [8], [10], [11], [15]. Thus each(V, k, ) almost difference set ofy gives a binary
Let s> be a binary sequence of periad (not necessarily the sequence with three-level autocorrelation. Of special interest are the
least period), and lef = {0 <i < N —1:s, =1}. ThesetCis (N,(N—-1)/2,(N—-5)/4) almost difference sets which gives binary
called thecharacteristic sebf the sequence™. The autocorrelation sequences of periad with optimum balance amongs and1’s and
property ofs> is determined by the difference function defined aswith optimum autocorrelation, wher® =1 (mod 4).
. In this correspondence, we present several classes of binary se-
do(w) =|(w+C)NCJ. quences with three-level autocorrelation. They are based on cyclic
almost difference sets ¢~ , +), and some of them have optimum
Lemma 1 [3, p. 143]: Let s™ be the same as before. Then autocorrelation and optimum balance amdrsg and1’s.

Cs(w) =N —4(k —dc(w))
Il. ALMOST DIFFERENCE SETS OF Zx AND THEIR SEQUENCES
From the definition off N, k, A) almost difference sets of, it
Let D be a subset afx, and letk = |D|. D is called an(V, k, \)  follows immediately that the following necessary condition:
difference set ofZx if the equationz — y = w has ) solutions
(x,y) € D x D for each nonzero element &fy. By Lemma 1 the kE(k—1)=(2A\+ (N -1)/2 (1)

where k = |C]|.
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Theorem 1: Let D be an(N, k, A\) almost difference set of » . TABLE |
Then THE RELATIONS OF THE CycLoToMIC NUMBERS OF ORDER 4, f ODD
1) aD is also an(N,k,\) almost difference set ofZy if (hyE)tOo| 1123
ged(a,N) = 1; 0 A|{B|{C|D
2) D*isan(N,N — k, N — 2k + X) almost difference set of 1 E|E|D|B
Zn, whereD* is defined to beD* = Zy \ D and is called 9 AlETATE
the complement ofD. 3 EIDIB|E

Proof: The first part of this theorem is easy to see. We prove

the second part. Define TABLE 1l
THE RELATIONS OF THE CycLoToMIC NUMBERS OF ORDER 4, f EVEN
dp(w) =|D N (D + w)|. (hk)10|1]2)3
. e 0 A|B|Ci{D
It is not difficult to see that 1 BI{D|E|E
* 2 CiE|C|E
[(—w+D)ND"|=k—dp(w) 3 DIEIE|B

[(—w+D)ND|=k—dp(w)

|(=w+D")ND*| =N — 2k +dp(w). Proof: We consider the cyclotomic numbers of orderSince
_ N =1 (mod4), N can be expressed d§ = 2> + 4y*, 2 = 1
The conclusion of the second part then follows. U (mod 4), herey is two-valued, depending on the choice of the

To search for almost difference sets &f;, we need the help of Primitive root. LetD; be the cyclotomic classes defined before.
cyclotomic numbers. LelV = df + 1 be an odd prime and lét be When f is odd, the relation between the 16 cyclotomic numbers
a fixed primitive element of~ . Denote the multiplicative subgroup iS given by Table | [2], [16].

(#%) as Dy, then the coset decomposition Bf, with respect to the Thus there are five possible different cyclotomic numbers in the

subgroupD, is casef being odd; i.e.,
N —-T+42x
2% = Ui D, A=
' B_N—l—l—l—Qm—Sy
where D; = 6*'D, for 0 < i < d — 1. The cosetD; is called the - 16
index classl [1] or cyclotomic clasd [16]. Let (I,m )4 denote the C— N+1-6x
number of solutiongz, y) of the equation T 16
D= N +1+42x+8y
l=y—ux, (v,y) € Dy X D, - 16
_N-3-2z
or, equivalently, E= 16
When f is even, the relation between the 16 cyclotomic numbers
(I,m)a = [(Dr+ 1) N D] is given by Table Il [2], [16].

) Thus there are five possible different cyclotomic numbers in the
These constantd, m), are calleccyclotomic number<Clearly, there casef being even:; i.e.

are at mostd” distinct cyclotomic numbers of ordet and these N —11 — 62
numbers depend not only oW, d, I, andm, but also on which of the A= T
¢(N — 1) primitive elements o x is chosen. Cyclotomic numbers N — 3+ 22 + 8y
were introduced by Gauss [9], when he studied higher reciprocity, B = 16
cyclotomic equations, the constructibility of regular polygons, and N — 342
the quadratic partition of the ford¢ + 1 into =2 + 27y*. They were ¢= 16
used to study the Waring's problem by Dickson [2]. We now use N —3+2r—8y
them to search for almost difference sets. D= - 16
Itis known that if N = 4¢+1 is a prime, then the quadratic residues N4+1-22
modulo N form an (N, (N — 1)/2,(N — 5)/4) almost difference E= 16

set, which can be proved easily. For biquadratic residues we haveygie that|Do U {0}| = £+ 1. If Do U{0} is an almost difference
the following result. ’

set, then
“Theorem 2 (3], [7, p. 151]): Leta primeN = 4f+1 = ..772—1-4;.;2 N - 1(2)\ Y1) = (F+1)f
with x = 1 (mod 4). If f is odd, then the biquadratic residues 2

modulo N form an (N, f, (f — 3)/4) almost difference set if and which givesA = (f —1)/4. Hencef =1 (mod 4), which is odd.
only if x = 5 or —3. If f is even, they cannot form an almost We need only to consider

difference set. A, = |(Do U {0} +6') 1 (Do U {0})] @)
_ Anr?ther class of almost difference sets is described by the folloygr ; = 0,1,2,3. Note that
ing theorem.
? Ay =[(Ds—; U{0} +1)N (D U{0}]
Theorem 3:Let N = 4f+1 =2 +4y* withz =1 (mod 4), = |(Da—i + 1) N Day| + |{1} N Dy
and letD;’s be the cyclotomic classes defined before. Theu {0} R ;Z -
is an almost difference set if and onlyfif= 1 (mod 4) andz = 1 + |[(Da—i + 1) 0 {0}

orx = —7. = (4—i.4—i)+ {1} N Da_i| + |(Ds—i + 1) N {0}
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Since f is odd, it follows from TABLE I

) ) THE RELATIONS OF THE CycLoTomiC NUMBERS OF ORDER 6
0=0" 1= —1)(¥* +1)

(k)| 0 1] 2 ] 3] 475
that —1 = 6% = %2 ¢ D,, whered is the primitive root of N 0 (0,0) 1 (0.1) | (0.2) | (0,3) | (0,4) | (0,5)
used to defineD;. Thus (2) takes on only the following values: L 0.1 | (05) | (1,2) | (1,3) | (1,4) | (12)
2 [(0,2) | (1,2) | (04) | (1,4) | (24) | (1,3)
(0,0)+1=A4A4+1=(2,2)+1 (1,1)= E = (3,3). 3 1(03) 1 (1,3) | (1,4) 1 (03) | (1,3) | (1,4)
4 1004 (14 (24 | (13)[(02)](12)
Hence,Do U{0} is an almost difference set if and onlydf+1—F = 5 1(05)](1,2) | (1,3) | (14) | (1.2) | (0,1)

41, which are equivalent te = 1 andx = —7, respectively. O

Note that the binary sequences base_d on the above two classes E‘xample 1:Let N = 5% + 4 = 29. By Theorem 4
almost difference sets do not have optimum balance amon@’she
and 1's. We now describe a class ofV, (N — 1)/2,(N — 5)/4) DoUD;, ={1,2,3,7,11,14,16,17,19, 20, 21,23, 24,25}
almost difference sets which give binary sequences with optimum
balance of)’s and1’'s and with optimum autocorrelation. By Lemmais a(29, 14, 6) almost difference set df25. The corresponding binary
2 the sequences induced by the almost difference sets in the followseguence is
Theorems 4 and 5 have the following three autocorrelation values:

572 =01110001000100101101110111000- - -

N, w=20
Co(w) = ¢ =3, for half of thesew of Zx which is a binary sequence of peridél with optimum autocorrelation
1, for the other half and optimum balance betweé's and 1's.
Note that
Thus they have optimum autocorrelation.
. DiUDy;=60(DoUD
Theorem 4:Let N = 4f +1 =22 4+4y> witha =1 (mod 4). ! - g 0 1)
Let D;’s be the cyclotomic classes of order four defined before. Then DU Ds = 9_ (Do U Dy)
Dy U Dy is an(N,(N —1)/2,(N — 5)/4) almost difference set if D5 U Do = 6°(Do U Dy)
and only if f is odd andy = +£1. Dy UDs =6(DyU D).

Proof: As before, we need only to consider

v The proof of Theorem 4 has also proved the following result.
A =lDoU D460 D0 U D) Th S:iletN =4f+1=a?+4y° withz =1 (mod 4)

_ i i eorems:LletN =475+ 1=2"+4y" withz = mod 4).

= (Do +6 )iﬂ Do| +1(Do +6 )iﬂ Dil Let D;’s be the cyclotomic classes of order four defined before. Then
+ (D1 +6°) N Di| + [(Dy +6%) 0 Do D, UD,, of DU D3, of DsU Dy, is an(N, (N —1)/2, (N = 5)/4)

= (=i, =)+ (=4, —i+1)+(—i+1, —i+1+4(—i+1,—i). almost difference set if and only if is odd andy = +1.

Letp = 6f+1, and letD, = (#°) be the set of sixth powers with
respect top. By (1), a necessary condition fdp, to be a(p, f, \)
almost difference set is that

Suppose thatf is odd. By the cyclotomic numbers of orddr
described before, we have

4N — 12 -8y
AOZAQ:T f=4 (mod6) and A= (f—4)/6.

4N — 12+ 8y . ;
Al =Ag = — 1 Unfortunately,D, cannot be an almost difference set, as proved in

the following theorem.
Thus in this caséD, U D, is an almost difference set if and only if

A=Ay =y = +1 Theorem 6:Let p = 6f+ 1 and f = 4 (mod 6). Then Dy
Now suppose thaf is even. By the cyclotomic numbers of orderc@nnot be &p. 7. (f —4)/6) almost difference set. _
4 we have Proof: Note that|Do N (Do + )| is a constant for: in each
cyclotomic classD;. So we need only to considéP, N (Do + 6°)|
Ao=A+B+D+B fori =0,1,---,5. By definition we have as before

Ay=B+D+A+D

As=C+E+B+E
As=D+E+C+E. Thus Dy is an almost difference set if and only if among the six
cyclotomic constantsi,i), i = 0,1,---,5, three of them are equal
Note thatB is not equal taD. ThenDo U D, is an almost difference 1© A = (f = 4)/6, and the other three equal fo+ 1. _
set if and only if To prove this theorem, we need the above six cyclotomic constants.
It has been proven that, the 36 cyclotomic constdhts:) depend
Ao =22, A=Az, Ag—A; ==l solely upon the decompositiaa® + 3B? of the primep = 6f + 1
[2], [17]. In the casef even, there are three sets of cyclotomic
or numbers, depending on the choice of the primitive elerieoit Z,,.
Specifically, there are ten possible distinct cyclotomic numbers. The
Ao =Asz, Ay =A2, Ag—A; ==l relations of these numbers are given in Table III.
The values of the ten basic constants are expressible in terms of
It is easily checked that none of them has a solution. O p, A, B, and depend on the cubic character2omodulop. Select

|Do N (Do+6")|=(6—1i,6—1i).
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TABLE IV As = 9 —9
THE CycLoToMIC NUMBERS OF ORDER 6 FOR EVEN f 36
9p — 33+ 12B
m=0 (mod3) |m=1 (mod3) |m=2 (mod3) Ay = 36
36(00) [p—17-204 | p-17-8A+46B |p— 17 84 (B 9p — 39+ 64 — 6B
36(01) [ p—5+4A+18B | p-5+4A+12B {p—5+4A + 6B Ap = % .
36(0,2) | p—5+4A+6B |p—-5+4A—-6B |p—5—8A L .
36(0.3) | p— 5+ 44 P54+ 4A-68 |p—5+4A1 0B WhenA = 7 and B = 2, we obtain
36(04) [p—5+44—6B [p—5-84 p—5+4A+68B Ao =Ay = Ay = (9p — 45)/36
36(0,5) [p-5+4A—18B[p 5+4A-6B [p-5+4A-12B|
36(1,2) | p+1-24 p+1—-2A—6B |p+1-24+6B ,
36(13) | p+1-24 p+1-2A_6B |p+1-_24_198 Az = Ay = As = (9p—9)/36 = Ao + 1.
36(1,4) p+1—2A p+1—2A+123 p+1~2A+GB WhenA:_2 andB:—l, we haVe
36(2,4) | p+1— 24 p+1+10A+6B |p+1+104-6B
Al = AQ = Ag = (9p— 9)/36
and
the integ_erm so thatd™ = 2 _(mod p), then the three sets of Ap=Ay=As = (9p—45)/36 = A, — 1.
cyclotomic numbers are given in Table IV.
By Table Ill, we have Thus the two cases give such almost difference sets. It is checked
L _ that only the two cases lead to such almost difference sets. They
(1,1) = (0,5), (2,2) =(0,4), (3,3)=(0,3), correspond tep = 7°+3x2? = 61 andp = (—2)*4+3x(—1)* = 13,
(4,4) =(0,2), (5,5)=1(0,1). Since bothl3 and61 have primitive roo2, the corresponding: in
the two cases is. O

Now we consider the six cyclotomic numbefs ) according to the

three cases. When = 0 (mod 3), by Table VI, the six cyclotomic ~ Example 2: Let N = 13. Then by Theorem 7
numbers(0, 7) tak_e on at least four different values, & cannot DoUD, UD, = {1,2,4,9,11,12}
form an almost difference set. Whem=1 (mod 3), we have
is a (13,6,2) almost difference set. The corresponding binary se-
36(0,2) = 36(0,3) = 36(0,5) =p— 5+ 44 — 6B. quence is

Thus if Dy is an almost difference set, then s = 0110100001011---.

p—17T-8446B=p—-5+4A+12B=p—-5-84 The following two theorems can be similarly proved as Theorem 7.

which has the only solutiol = —2, B = 2. This givesp = 16, Theorem 8: Let N = 13. Then2 is a primitive root of N. Let 2

a contradiction to the primality of. Whenm = 2 (mod 3), we be the primitive root used to define the cyclotomic classes of order
can similarly prove that the six cyclotomic numbgfs:) take on at 6. Then Dy U D, U Dy is an (N, (N — 1)/2,(N — 5)/4) almost
least three different values. O difference set.

As mentioned earlier we are much interested( M, (N —1)/2, Theorem 9: Let N =73. ThenDyUD3UD4 is an(N, (N —1)/2,
(N —5)/4) almost difference sets, as they give binary sequences witlv —5)/4) almost difference set, whei®; are the cyclotomic classes
three-level autocorrelation and optimum balance am@agnd1’s.  of order 6 with respect to73.

One natural question is whether there @he (N —1)/2,(N —5)/4) . ) . . .
almost difference sets of fori?;UD ;U Dy, whereD; are cyclotomic Let ¥ = 8t + 1. It is possible for the set of octic residues

_ 8 f o
classes of ordes andi, j, andk are pairwise-distinct. ID,UD;UD; Dy = _(_a ) to forrr: an almost difference set df, w_h_erea is
is an (N, (N — 1)/2, (N — 5)/4) almost difference set, then the? primitive root of V. Since|Dy| = ¢, a necessary condition fdp,
necessafy condition ’ to be an almost difference setig — 1) = 2A+ 1)(N —1)/2. It

follows thatt = 8\ + 5 and, therefore,
T’ V9 — (N
(N=D/2x (N =3)/2=(N=1)/2x (2A+1) N =8t+1=064\+41 = 16(4\+2) + 0.

says thatf must be even. Under these necessary conditions the cyclotomic numbers of 8rder

Theorem 7: Let N = 6 +1 with f even, and le# be a primitive are given in two sets of formulas according to whethés a quartic
root of NV, which is used to define the cyclotomic classes of ofder residue or not, in terms oV, z,y,a, and b which are determined
Assume thatn =1 (mod 3), where¢™ = 2. ThenD, UD, UD, by [13]

?s an(N,(N —1)/2,(N — 5)/4) almost difference set if and only N =22 +4y° = a® + 207 (z=a=1 (mod4)). (3)
if N =13 or N = 61.
Proof: Define For the case is a quartic residue the following result is known.
Afa) =[(DoU D1 UDs+a)N (Do U Dy UDs)| Theorem 10 ([7, p. 55], [3, p. 152]):.Let N = 8t + 1 andt =

L ) . 8\ 4 5, where A is a positive integer. Assume thatis a quartic
wherea € Z. With the cyclotomic numbers of ordér described residue moduldV. Then the set of octic residud®, forms an almost
before, it is computed thah(a) takes on the following six values: itference set if and only iV admits the simultaneous representations

Ag = 91)3‘64'5 N=10% 4442 = 1427
A o 21128 or
T 36 N =132 +4y> = 1 + 2p°.

9p — 15— 6A + 6B

Ay = . . . . .
? 36 For the cas@ is not a quartic residue the following result is known.
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Theorem 11 ([7, p. 55], [3, p. 152]):.Let N = 8 + 1 andt =
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Independent of whethe$(/3) and T(3) take onl or 0, by (5)

8\ + 5, where ) is a positive integer such thatis not a quartic we have

residue. Then the set of octic residues forms an almost difference

set if and only if N = 41.

{j:S(#)=0,1<j<N—1} =2f.

The linear span (linear complexity) of a sequence is defined to B\éhence

the length of the shortest linear feedback shift register that produces

L= N1 No1_N-1

the sequence [8], [11]. The linear span of all the sequences defined 2 2
by the almost difference sets presented before can be computed. Feig proves the first part of this theorem.

example, we prove the following result.

Theorem 12:Let s*° be the sequence with characteristic set
Dy U D, defined before, wher®; are cyclotomic classes of order

4. If 2 € Dy, then
L(s™)=(N -1)/2.
If 2 ¢ Do, thenL(s*) = N — 1, where L(s*°) denotes the linear
span (also called linear complexity).
Proof: Define
SN(:E) =804 sixdeertosn_ray L
It is well known [8] that the linear complexity of*° is given by
N —deg (ged (2™ — 1, 8% (2))). 4
Let 5 be a primitive N'th root of unity over the field GR2™) that

is the splitting field of+™ — 1. Then by (4) we have
L(s)=N—-[{j:S(#)=0,0<j<N-1}

where S(«x) is defined by

S(z) = Z x'
i€DUD;
Define
T = Y, 8.

€D UDs
By definition, «D; = D, if « € D;. Note that
(Z+x+z+x)rn
i€EDg €Dy i€Dy i€Dg

It follows that

Z y‘/jl:s(ﬁj)- d € Do
i€DgUDY
ST B =T(8), d € D,
gty = J €Dy
S(87) 3 =S8(3)+1, de€ Ds ®)
i€DUDs
8 =T(B)+1, d € Ds.
i€DgUD3
Also we have
S(1)=0. (6)
We first consider the casee Dy. Note that2D; = D;, we have
(S(8)* = S(5%)
_ Z /320[
deDgUD,
= 3¢
de2Dgu2Dy
= Z 3
deDgUD,
= S5(3).

HenceS(3) € {0,1}. Similarly, we havel'(3) € {0,1}.

When2 € D;, we obtain that

S(8%) = S(8)* = T(3)
T(#)=T(8)" = S(3) + 1.

It follows that S(3) ¢ {0,1} andT'(3) ¢ {0,1}.
When2 € Ds, we obtain that

S(6%)=8(8)=S5(8)+1
T8 =T(8)° =T(3)+ 1.

It follows that S(3) ¢ {0,1} andT'(3) ¢ {0,1}.
When2 € D3, we obtain that

S(BH =88 =T(8) +1
T(8%) =T(3)” = S(8).

It follows that S(3) ¢ {0,1} andT'(3) ¢ {0,1}.
Thus when2 ¢ D, we have that

S(B8)¢{0,1} and T(3) ¢ {0,1}.
It then follows from (5) and (6) that

L(s®)= N —1. O
Theorem 12 shows that the sequence with characteristiDgét
D; has good linear span.

In this correspondence, we have presented several classes of almost
difference sets oZy. Those(N, (N — 1)/2,(N — 5)/4) almost
difference sets give binary sequences of periddwith optimum
autocorrelation and optimum balance betw8&nand1’s. They have
also good linear span.

As mentioned earlier, finding binary sequences with some three-
level autocorrelation values is equivalent to finding almost difference
sets of Zy with corresponding parameters. It turns out that finding
almost difference sets is as hard as finding difference sets. Cyclotomy
is a helpful tool in finding both difference sets and almost difference
sets. However, it is quite limited. It is possible to construct almost
difference sets ofZy with cyclotomic classes of ordete, where
e > 4. We have tried this for cyclotomic classes of or8ebut were
unable to obtain anyN, (N — 1)/2,(N — 5)/2) almost difference
sets.

It would be interesting to point out whether the almost difference
sets in this correspondence are related to difference sets and partial
difference sets. Since we are interested only in cyclic almost differ-
ence sets for the constructions of sequences, we will mention the
connections only under the context of the almost difference sets of
ZN.

As pointed out in Section I, iZy has an almost difference set,
thenN =1 (mod 4). If N =3 (mod 4), thenZx could have
difference sets, but not almost difference setsVli=E 1  (mod 4),
then Zy may have both difference sets and almost difference sets.
Certain difference sets with special parameters can be used to
construct almost difference sets, avide versa Details about these

CONCLUDING REMARKS
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TABLE V
KNowN CycLoTomIiC ALMOST DIFFERENCE SETS OF Z

cyclotomic ADS conditions references
D) N=1 (mod4) Paley PDS
D) N=zl+42 z=50orz=-3|[7,3]
D(()4’N) u {0} N =z?44y% z=1o0r z = —7 | this paper
p*™My pM N=z+4,z=1 (mod4) | this paper
D&M N =64t + 41 and 7, 3]

N=12+4y2 =1+2b% or
N =132+ 4y =1+2p2

D((]G’IS) U D§6’13) U Dgﬁ’m this paper
D(()G’Gl) U Dgﬁ’ﬁl) U Dgﬁ’ﬁl) this paper
D(()S’la) u Dgﬁ’ls) U D§6’13) this paper
D(()G’73) U D§6’73) ] fo’”) this paper
TABLE VI
KNowN CycLoTomIC DIFFERENCE SETS OF Z

cyclotomic DS conditions references
D&M N=3 (mod4) Paley DS
DM N=4t241,t0dd [12]
DMy {0} N=42+9,t odd [12]
pBM N =8t +1=64u? +9, [12]

where t and u odd
DE™M U {0} N =82 +49 = 64u? + 441, | [12]

where t odd, u even
DM uDPM upPM | N =424 27, N=1 (mod 6) | Hall DS [12]

connections will be given in a future paper by Arasu and the first For some applications (e.g., stream ciphering), binary sequences
two coauthors of this correspondence. with good balance between the number0& and that ofl’'s may

Cyclotomic classes can be used to construct both difference degésbetter. However, in other applications it may not be necessary to
and almost difference sets #fy, whereNV is a prime. All the almost require a balance between them. So almost differencelsets Zy
difference sets described in this correspondence are cyclotomicWith |D| being not far away fromV/2 could also have important
would be interesting to make a comparison between the Cydotonﬁeplications. On the other hand, in the definition of almost difference
difference sets and cyclotomic almost difference sets. This is dorfeS the condition that; — d» = g hasA solutions for half of
by summarizing them in Tables V and VI, wheMeis a prime, ADS the nonzero glements may be wgakened and such sets could give
stands for almost difference sets, DS denotes difference sets, and pp/ences with good autocorrelation.
stands for partial difference sets (definition will be given below). The
two tables illustrate the connections and differences.

Let G be an Abelian group of ordar and D a subset of7 with The authors wish to thank the referee for his detailed and con-
|D| = k. Then D is called a(v, k, \, u)-partial difference sets if structive comments and suggestions that considerably improved this
for every nonidentity elemens of D, the equationd; — d» = g correspondence.
has exactly\ solutions(d:,d>) € D x D; and for every nonidentity
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In [3] Elias proposes to use a prefix code of integers for run-length
coding. Elias has constructed three new universal binary represen-
tations of integers and by using them has constructed universal
codeword sets. For the best representation of integers from [3] the
redundancy of it the given code reach@sp loglog (1/p), where

Fast Coding of Low-Entropy Sources C2 is a constant. _
An effective run-length coding method was offered by Golomb [4].
Boris Ya. Ryabko and Marina P. Sharova In [5] it was shown that for particular values of a run-length coding

scheme Golomb’s code is optimal.
However, the known methods of coding low-entropy sources
Abstract—The problem of coding low-entropy information sources is [1], [3]-[5] do not allow reaching the given redundancy. In this
considered. Since the run-length code was offered about 50 years ago bycorrespondence, a new method of coding low-entropy sources is
Shannqn, it is known that for such sources there exist coding methpds offered. It permits reaching a given redundancyith almost the
much simpler than for sources of a general type. However, known coding . . .
methods of low-entropy sources do not reach the given redundancy. In this Sa8Me encodgr and de(_:Oder memory size as obtained in [6] for general
correspondence, a new method of coding low-entropy sources is offered. It methods, while encoding and decoding is much faster.
permits a given redundancyr with almost the same encoder and decoder ~ Here we consider a problem of coding a Bernoulli source with
memory size as that obtained by Ryabko for general methods, while nown statistics. Note that the offered code construction is applicable
encoding and decoding much faster. - . .
also for the Bernoulli sources with unknown statistics and for more
Index Terms— Complexity of coding, fast algorithm, low-entropy complex models.
sources, redundancy, run-length coding.

Il. ALGORITHM OF CODING LOW-ENTROPY SOURCES

Let a Bernoulli source generating a sequence of zeros and ones
) ) with probabilities ¢ and p, respectively, wherp — 0, be given.
We consider the problem of low-entropy source coding whos& ;- - ( be the given redundancy of a code. Our problem is to

elementary example is a Bernoulli source generating a sequeggRstruct a method of source coding permitting us to reach the given
of zeros and ones with probabilities and p, respectively, when redundancyr.

p — 0. This problem has attracted attention of many researchersyy oyr method encoding is implemented in two stages: first, a
as for coding of such sources there exist simpler methods than ify@ssage is compressed by a simple code and an output sequence
general case. The efficiency of a code is measured by redundapCihen encoded by a fast and effective code. After the first stage the
and by complexity of encoding and decoding. The redundantsy |ength of the input sequence is essentially reduced, and applying a
complex fast algorithm at the second stage provides little total time of
T%ncoding and decoding per letter of the initial message. At the second
e L . . .
Slgge it is possible to use many codes, for example, the arithmetic

|. INTRODUCTION
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