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Several Classes of Binary Sequences
with Three-Level Autocorrelation

Cunsheng Ding, Tor Helleseth,Fellow, IEEE, and Kwok Yan Lam

Abstract—In this correspondence we describe several classes of binary
sequences with three-level autocorrelation. Those classes of binary se-
quences are based on cyclic almost difference sets. Some classes of binary
sequences have optimum autocorrelation.

Index Terms—Almost difference set, cyclotomy, sequence.

I. INTRODUCTION

Let D be a subset ofZN . The characteristic sequences1 of D
is defined as

si =
1; if imodN 2 D
0; otherwise.

Let s1 and t1 be binary sequences of periodN (not necessarily
the least period). The periodic crosscorrelation function of the two
sequencess1 and t1 is defined by

Cs;t(w) =
i2Z

(�1)s �t

whereZN denotes the ringf0; 1; � � � ; N � 1g with integer multipli-
cation moduloN and integer addition moduloN .

The autocorrelation function ofs1 is defined as

Cs(w) =
i2Z

(�1)s �s :

Pseudorandom sequences have wide applications in simulation,
software testing, global positioning systems, ranging systems, code-
division multiple-access systems, radar systems, spread-spectrum
communication systems, and stream ciphers. Many applications re-
quire binary sequences that have good autocorrelation properties [3],
[5], [8], [10], [11], [15].

Let s1 be a binary sequence of periodN (not necessarily the
least period), and letC = f0 � i � N � 1 : si = 1g. The setC is
called thecharacteristic setof the sequences1. The autocorrelation
property ofs1 is determined by the difference function defined as

dC(w) = j(w + C)\ Cj:

Lemma 1 [3, p. 143]: Let s1 be the same as before. Then

Cs(w) = N � 4(k � dC(w))

where k = jCj.

LetD be a subset ofZN , and letk = jDj. D is called an(N; k; �)
difference set ofZN if the equationx � y = w has � solutions
(x; y) 2 D �D for each nonzero element ofZN . By Lemma 1 the
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sequences1 has a two-level autocorrelation function if and only if its
characteristic setC is a difference set. Thus finding binary sequences
with a two-level autocorrelation function is the same as searching for
difference sets ofZN .

Clearly, in many casesZN has no difference sets. For instance,
ZN has no(N; (N � 1)=2; �) difference sets ifN � 1 (mod 4).
Thus as far as autocorrelation property is concerned, in such cases
we wish to get binary sequences with three-level autocorrelation. By
Lemma 1 a binary sequences1 has three-level autocorrelation if and
only if the difference functiondC(w) is three-valued.

Let D be a subset of an Abelian group(G;+) such thatN = jGj,
whereN is odd.D is called an(N; k; �) almost difference set (see [6]
and [3, p. 140]), if for some(N � 1)=2 nonzero elementsa 2 ZN ,
the equation

x� y = a

has exactly� solutions(x; y) 2 D�D; and for the rest of(N�1)=2
nonzero elements there are exactly� + 1 solutions. In other words,
D is an (N; k; �) almost difference set if and only if the difference
functiondD(w) takes on the value� for half of the nonzero elements
w of ZN , and�+1 for the other half. The(N; k; �) almost difference
sets introduced here are different from the(m;n; k; �1; �2) almost
difference sets introduced in [4] by Davis, but they are more or less
in the same sense.

The following lemma follows directly from Lemma 1 and the
definition of almost difference sets.

Lemma 2: Let C be an(N; k; �) almost difference set ofZN and
the characteristic set of a binary sequences1, i.e., si = 1 if and
only if imodN 2 C. Then

Cs(w) =
N; w = 0
N � 4(k� �); for half of thesew of Z�N
N � 4(k� �� 1); for the other half:

Thus each(N; k; �) almost difference set ofZN gives a binary
sequence with three-level autocorrelation. Of special interest are the
(N; (N�1)=2; (N�5)=4) almost difference sets which gives binary
sequences of periodN with optimum balance among0’s and1’s and
with optimum autocorrelation, whereN � 1 (mod 4).

In this correspondence, we present several classes of binary se-
quences with three-level autocorrelation. They are based on cyclic
almost difference sets of(ZN ;+), and some of them have optimum
autocorrelation and optimum balance among0’s and1’s.

II. A LMOST DIFFERENCESETS OFZN AND THEIR SEQUENCES

From the definition of(N; k; �) almost difference sets ofZN , it
follows immediately that the following necessary condition:

k(k� 1) = (2�+ 1)(N � 1)=2 (1)

holds for all(N; k; �) almost difference sets ofZN . It is obvious that
every odd integer(�3) must be of one of the two forms4t+ 1 and
4t�1 for somet. If N = 4t�1 for somet, then(N�1)=2 = 2t�1
is odd, it follows that(2�+1)(N�1)=2must be odd. Thus ifZN has
an(N; k; �) almost difference set, thenN must be of the form4t+1.

For any subsetA of ZN and a 2 A, we definea + A to be
fa+ x : x 2 Ag, andaA to befax : x 2 Ag. Similar to difference
sets [1], almost difference sets have the following basic properties.
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Theorem 1: Let D be an(N; k; �) almost difference set ofZN .
Then

1) aD is also an (N; k; �) almost difference set ofZN if
gcd (a;N) = 1;

2) D� is an (N;N � k;N � 2k + �) almost difference set of
ZN , whereD� is defined to beD� = ZN n D and is called
the complement ofD.

Proof: The first part of this theorem is easy to see. We prove
the second part. Define

dD(w) = jD \ (D + w)j:

It is not difficult to see that

j(�w +D) \D�j = k � dD(w)

j(�w +D�) \Dj = k � dD(w)

j(�w +D�) \D�j = N � 2k + dD(w):

The conclusion of the second part then follows.

To search for almost difference sets ofZN , we need the help of
cyclotomic numbers. LetN = df + 1 be an odd prime and let� be
a fixed primitive element ofZN . Denote the multiplicative subgroup
(�d) asD0, then the coset decomposition ofZ�

N with respect to the
subgroupD0 is

Z�

N = [d�1i=0Di;

whereDi = �iD0 for 0 � i � d � 1. The cosetDl is called the
index classl [1] or cyclotomic classl [16]. Let (l;m)d denote the
number of solutions(x; y) of the equation

1 = y � x; (x; y) 2 Dl �Dm

or, equivalently,

(l;m)d = j(Dl + 1) \Dmj:

These constants(l;m)d are calledcyclotomic numbers. Clearly, there
are at mostd2 distinct cyclotomic numbers of orderd and these
numbers depend not only onN; d; l; andm; but also on which of the
�(N � 1) primitive elements ofZN is chosen. Cyclotomic numbers
were introduced by Gauss [9], when he studied higher reciprocity,
cyclotomic equations, the constructibility of regular polygons, and
the quadratic partition of the form3t+1 into x2+27y2. They were
used to study the Waring’s problem by Dickson [2]. We now use
them to search for almost difference sets.

It is known that ifN = 4t+1 is a prime, then the quadratic residues
moduloN form an (N; (N � 1)=2; (N � 5)=4) almost difference
set, which can be proved easily. For biquadratic residues we have
the following result.

Theorem 2 ([3], [7, p. 151]): Let a primeN = 4f+1 = x2+4y2

with x � 1 (mod 4). If f is odd, then the biquadratic residues
moduloN form an (N; f; (f � 3)=4) almost difference set if and
only if x = 5 or �3. If f is even, they cannot form an almost
difference set.

Another class of almost difference sets is described by the follow-
ing theorem.

Theorem 3: Let N = 4f +1 = x2 +4y2 with x � 1 (mod 4),
and letDi’s be the cyclotomic classes defined before. ThenD0[f0g
is an almost difference set if and only iff � 1 (mod 4) andx = 1
or x = �7.

TABLE I
THE RELATIONS OF THE CYCLOTOMIC NUMBERS OF ORDER 4, f ODD

TABLE II
THE RELATIONS OF THE CYCLOTOMIC NUMBERS OF ORDER 4, f EVEN

Proof: We consider the cyclotomic numbers of order4. Since
N � 1 (mod 4), N can be expressed asN = x2 + 4y2; x � 1

(mod 4), here y is two-valued, depending on the choice of the
primitive root. LetDi be the cyclotomic classes defined before.

When f is odd, the relation between the 16 cyclotomic numbers
is given by Table I [2], [16].

Thus there are five possible different cyclotomic numbers in the
casef being odd; i.e.,

A =
N � 7 + 2x

16

B =
N + 1 + 2x� 8y

16

C =
N + 1� 6x

16

D =
N + 1 + 2x+ 8y

16

E =
N � 3� 2x

16
:

Whenf is even, the relation between the 16 cyclotomic numbers
is given by Table II [2], [16].

Thus there are five possible different cyclotomic numbers in the
casef being even; i.e.,

A =
N � 11� 6x

16

B =
N � 3 + 2x+ 8y

16

C =
N � 3 + 2x

16

D =
N � 3 + 2x� 8y

16

E =
N + 1� 2x

16
:

Note thatjD0 [f0gj = f +1. If D0 [f0g is an almost difference
set, then

N � 1

2
(2�+ 1) = (f + 1)f

which gives� = (f � 1)=4. Hencef � 1 (mod 4), which is odd.
We need only to consider

�i =: j(D0 [ f0g+ �i) \ (D0 [ f0g)j (2)

for i = 0; 1; 2; 3. Note that

�i = j(D4�i [ f0g+ 1) \ (D4�i [ f0gj

= j(D4�i + 1) \D4�ij+ jf1g \D4�ij

+ j(D4�i + 1) \ f0gj

= (4� i; 4� i) + jf1g \D4�ij+ j(D4�i + 1) \ f0gj:
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Sincef is odd, it follows from

0 = �4f � 1 = (�2f � 1)(�2f + 1)

that�1 = �2f = �8�+2 2 D2, where� is the primitive root ofN
used to defineDi. Thus (2) takes on only the following values:

(0; 0) + 1 = A+ 1 = (2; 2) + 1 (1; 1) = E = (3; 3):

Hence,D0[f0g is an almost difference set if and only ifA+1�E =
�1, which are equivalent tox = 1 andx = �7, respectively.

Note that the binary sequences based on the above two classes of
almost difference sets do not have optimum balance among the0’s
and 1’s. We now describe a class of(N; (N � 1)=2; (N � 5)=4)
almost difference sets which give binary sequences with optimum
balance of0’s and1’s and with optimum autocorrelation. By Lemma
2 the sequences induced by the almost difference sets in the following
Theorems 4 and 5 have the following three autocorrelation values:

Cs(w) =
N; w = 0

�3; for half of thesew of Z�

N

1; for the other half:

Thus they have optimum autocorrelation.

Theorem 4: Let N = 4f +1 = x2 +4y2 with x � 1 (mod 4).
LetDi’s be the cyclotomic classes of order four defined before. Then
D0 [D1 is an (N; (N � 1)=2; (N � 5)=4) almost difference set if
and only if f is odd andy = �1.

Proof: As before, we need only to consider

�i : = j(D0 [D1 + �i) \ (D0 [D1)j

= j(D0 + �i) \D0j+ j(D0 + �i) \D1j

+ j(D1 + �i) \D1j+ j(D1 + �i) \D0j

= (�i;�i)+(�i;�i+1)+(�i+1;�i+1+(�i+1;�i):

Suppose thatf is odd. By the cyclotomic numbers of order4
described before, we have

�0 = �2 =
4N � 12� 8y

16

�1 = �3 =
4N � 12 + 8y

16
:

Thus in this caseD0 [D1 is an almost difference set if and only if
�1 � �0 = y = �1.

Now suppose thatf is even. By the cyclotomic numbers of order
4 we have

�0 = A +B +D +B

�1 = B +D +A +D

�2 = C +E +B + E

�3 = D + E + C +E:

Note thatB is not equal toD. ThenD0[D1 is an almost difference
set if and only if

�0 = �2; �1 = �3; �0 ��1 = �1

or

�0 = �3; �1 = �2; �0 ��1 = �1:

It is easily checked that none of them has a solution.

TABLE III
THE RELATIONS OF THE CYCLOTOMIC NUMBERS OF ORDER 6

Example 1: Let N = 52 + 4 = 29. By Theorem 4

D0 [D1 = f1; 2; 3; 7; 11; 14; 16; 17; 19; 20; 21; 23; 24; 25g

is a(29; 14; 6) almost difference set ofZ29. The corresponding binary
sequence is

s1 = 01110001000100101101110111000� � �

which is a binary sequence of period29 with optimum autocorrelation
and optimum balance between0’s and 1’s.

Note that

D1 [D2 = �(D0 [D1)

D2 [D3 = �2(D0 [D1)

D3 [D0 = �3(D0 [D1)

D1 [D3 = �(D0 [D2):

The proof of Theorem 4 has also proved the following result.

Theorem 5: Let N = 4f +1 = x2 +4y2 with x � 1 (mod 4).
LetDi’s be the cyclotomic classes of order four defined before. Then
D1[D2, orD2[D3, orD3[D0, is an(N; (N�1)=2; (N�5)=4)
almost difference set if and only iff is odd andy = �1.

Let p = 6f+1, and letD0 = (�6) be the set of sixth powers with
respect top. By (1), a necessary condition forD0 to be a(p; f; �)
almost difference set is that

f � 4 (mod 6) and � = (f � 4)=6:

Unfortunately,D0 cannot be an almost difference set, as proved in
the following theorem.

Theorem 6: Let p = 6f + 1 and f � 4 (mod 6). ThenD0

cannot be a(p; f; (f � 4)=6) almost difference set.
Proof: Note thatjD0 \ (D0 + x)j is a constant forx in each

cyclotomic classDi. So we need only to considerjD0 \ (D0 + �i)j
for i = 0; 1; � � � ; 5. By definition we have as before

jD0 \ (D0 + �i)j = (6� i; 6� i):

ThusD0 is an almost difference set if and only if among the six
cyclotomic constants(i; i); i = 0; 1; � � � ; 5; three of them are equal
to � = (f � 4)=6, and the other three equal to� + 1.

To prove this theorem, we need the above six cyclotomic constants.
It has been proven that, the 36 cyclotomic constants(k; h) depend
solely upon the decompositionA2 + 3B2 of the primep = 6f + 1
[2], [17]. In the casef even, there are three sets of cyclotomic
numbers, depending on the choice of the primitive element� of Zp.
Specifically, there are ten possible distinct cyclotomic numbers. The
relations of these numbers are given in Table III.

The values of the ten basic constants are expressible in terms of
p; A; B; and depend on the cubic character of2 modulo p. Select
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TABLE IV
THE CYCLOTOMIC NUMBERS OF ORDER 6 FOR EVEN f

the integerm so that �m � 2 (mod p), then the three sets of
cyclotomic numbers are given in Table IV.

By Table III, we have

(1; 1) = (0; 5); (2; 2) = (0; 4); (3; 3) = (0; 3);

(4; 4) = (0; 2); (5; 5) = (0; 1):

Now we consider the six cyclotomic numbers(0; i) according to the
three cases. Whenm � 0 (mod 3), by Table VI, the six cyclotomic
numbers(0; i) take on at least four different values, soD0 cannot
form an almost difference set. Whenm � 1 (mod 3), we have

36(0;2) = 36(0;3) = 36(0;5) = p� 5 + 4A� 6B:

Thus if D0 is an almost difference set, then

p� 17� 8A+ 6B = p� 5 + 4A+ 12B = p� 5� 8A

which has the only solutionA = �2, B = 2. This givesp = 16,
a contradiction to the primality ofp. Whenm � 2 (mod 3), we
can similarly prove that the six cyclotomic numbers(0; i) take on at
least three different values.

As mentioned earlier we are much interested in(N; (N�1)=2;
(N�5)=4) almost difference sets, as they give binary sequences with
three-level autocorrelation and optimum balance among0’s and1’s.
One natural question is whether there are(N; (N�1)=2; (N�5)=4)
almost difference sets of formDi[Dj[Dk, whereDi are cyclotomic
classes of order6 andi; j; andk are pairwise-distinct. IfDi[Dj[Dk

is an (N; (N � 1)=2; (N � 5)=4) almost difference set, then the
necessary condition

(N � 1)=2� (N � 3)=2 = (N � 1)=2� (2�+ 1)

says thatf must be even.

Theorem 7: Let N = 6f+1 with f even, and let� be a primitive
root ofN , which is used to define the cyclotomic classes of order6.
Assume thatm � 1 (mod 3), where�m = 2. ThenD0[D1[D2

is an (N; (N � 1)=2; (N � 5)=4) almost difference set if and only
if N = 13 or N = 61.

Proof: Define

�(a) = j(D0 [D1 [D2 + a) \ (D0 [D1 [D2)j

wherea 2 Z�

N . With the cyclotomic numbers of order6 described
before, it is computed that�(a) takes on the following six values:

�0 =
9p� 45

36

�1 =
9p� 21� 12B

36

�2 =
9p� 15� 6A+ 6B

36

�3 =
9p� 9

36

�4 =
9p� 33 + 12B

36

�5 =
9p� 39 + 6A� 6B

36
:

WhenA = 7 andB = 2, we obtain

�0 = �1 = �2 = (9p� 45)=36

and

�3 = �4 = �5 = (9p� 9)=36 = �0 + 1:

WhenA = �2 andB = �1, we have

�1 = �2 = �3 = (9p� 9)=36

and

�0 = �4 = �5 = (9p� 45)=36 = �1 � 1:

Thus the two cases give such almost difference sets. It is checked
that only the two cases lead to such almost difference sets. They
correspond top = 72+3�22 = 61 andp = (�2)2+3�(�1)2 = 13.
Since both13 and61 have primitive root2, the correspondingm in
the two cases is1.

Example 2: Let N = 13. Then by Theorem 7

D0 [D1 [D2 = f1; 2; 4; 9; 11; 12g

is a (13;6; 2) almost difference set. The corresponding binary se-
quence is

s1 = 0110100001011� � � :

The following two theorems can be similarly proved as Theorem 7.

Theorem 8: Let N = 13. Then2 is a primitive root ofN . Let 2
be the primitive root used to define the cyclotomic classes of order
6. ThenD0 [ D2 [ D3 is an (N; (N � 1)=2; (N � 5)=4) almost
difference set.

Theorem 9: Let N=73. ThenD0[D3[D4 is an(N; (N�1)=2;
(N�5)=4) almost difference set, whereDi are the cyclotomic classes
of order 6 with respect to73.

Let N = 8t + 1. It is possible for the set of octic residues
D0 = (�8) to form an almost difference set ofZN , where� is
a primitive root ofN . SincejD0j = t, a necessary condition forD0

to be an almost difference set ist(t� 1) = (2�+ 1)(N � 1)=2. It
follows that t = 8� + 5 and, therefore,

N = 8t+ 1 = 64�+ 41 = 16(4�+ 2) + 9:

Under these necessary conditions the cyclotomic numbers of order8
are given in two sets of formulas according to whether2 is a quartic
residue or not, in terms ofN; x; y; a; and b which are determined
by [13]

N = x2 + 4y2 = a2 + 2b2 (x � a � 1 (mod 4)): (3)

For the case2 is a quartic residue the following result is known.

Theorem 10 ([7, p. 55], [3, p. 152]):Let N = 8t + 1 and t =
8� + 5, where� is a positive integer. Assume that2 is a quartic
residue moduloN . Then the set of octic residuesD0 forms an almost
difference set if and only ifN admits the simultaneous representations

N = 192 + 4y2 = 1+ 2b2

or

N = 132 + 4y2 = 1+ 2b2:

For the case2 is not a quartic residue the following result is known.
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Theorem 11 ([7, p. 55], [3, p. 152]):Let N = 8t + 1 and t =
8� + 5, where� is a positive integer such that2 is not a quartic
residue. Then the set of octic residuesD0 forms an almost difference
set if and only ifN = 41.

The linear span (linear complexity) of a sequence is defined to be
the length of the shortest linear feedback shift register that produces
the sequence [8], [11]. The linear span of all the sequences defined
by the almost difference sets presented before can be computed. For
example, we prove the following result.

Theorem 12: Let s1 be the sequence with characteristic set
D0 [D1 defined before, whereDi are cyclotomic classes of order
4. If 2 2 D0, then

L(s1) = (N � 1)=2:

If 2 62 D0, thenL(s1) = N � 1, whereL(s1) denotes the linear
span (also called linear complexity).

Proof: Define

SN(x) = s0 + s1x+ � � �+ sN�1x
N�1:

It is well known [8] that the linear complexity ofs1 is given by

N � deg (gcd (xN � 1; SN(x))): (4)

Let � be a primitiveN th root of unity over the field GF(2m) that
is the splitting field ofxN � 1. Then by (4) we have

L(s1) = N � jfj : S(�j) = 0; 0 � j � N � 1gj

whereS(x) is defined by

S(x) =
i2D [D

xi:

Define

T (�) =
i2D [D

�i:

By definition, aDi = Di+j if a 2 Dj . Note that

i2D

+
i2D

+
i2D

+
i2D

�i = 1:

It follows that

S(�d) =

i2D [D

�i = S(�); d 2 D0

i2D [D

�i = T (�); d 2 D1

i2D [D

�i = S(�) + 1; d 2 D2

i2D [D

�i = T (�) + 1; d 2 D3:

(5)

Also we have

S(1) = 0: (6)

We first consider the case2 2 D0. Note that2Di = Di, we have

(S(�))2 = S(�2)

=
d2D [D

�2d

=
d22D [2D

�d

=
d2D [D

�d

= S(�):

HenceS(�) 2 f0; 1g. Similarly, we haveT (�) 2 f0; 1g.

Independent of whetherS(�) and T (�) take on1 or 0, by (5)
we have

jfj : S(�j) = 0; 1 � j � N � 1gj = 2f:

Whence

L(s1) = N � 1�
N � 1

2
=

N � 1

2
:

This proves the first part of this theorem.
When 2 2 D1, we obtain that

S(�2) = S(�)2 = T (�)

T (�2) = T (�)2 = S(�) + 1:

It follows that S(�) 62 f0; 1g andT (�) 62 f0; 1g.
When 2 2 D2, we obtain that

S(�2) = S(�)2 = S(�) + 1

T (�2) = T (�)2 = T (�) + 1:

It follows that S(�) 62 f0; 1g andT (�) 62 f0; 1g.
When 2 2 D3, we obtain that

S(�2) = S(�)2 = T (�) + 1

T (�2) = T (�)2 = S(�):

It follows that S(�) 62 f0; 1g andT (�) 62 f0; 1g.
Thus when2 62 D0 we have that

S(�) 62 f0; 1g and T (�) 62 f0; 1g:

It then follows from (5) and (6) that

L(s1) = N � 1:

Theorem 12 shows that the sequence with characteristic setD0 [
D1 has good linear span.

III. CONCLUDING REMARKS

In this correspondence, we have presented several classes of almost
difference sets ofZN . Those(N; (N � 1)=2; (N � 5)=4) almost
difference sets give binary sequences of periodN with optimum
autocorrelation and optimum balance between0’s and1’s. They have
also good linear span.

As mentioned earlier, finding binary sequences with some three-
level autocorrelation values is equivalent to finding almost difference
sets ofZN with corresponding parameters. It turns out that finding
almost difference sets is as hard as finding difference sets. Cyclotomy
is a helpful tool in finding both difference sets and almost difference
sets. However, it is quite limited. It is possible to construct almost
difference sets ofZN with cyclotomic classes of order2e, where
e � 4. We have tried this for cyclotomic classes of order8, but were
unable to obtain any(N; (N � 1)=2; (N � 5)=2) almost difference
sets.

It would be interesting to point out whether the almost difference
sets in this correspondence are related to difference sets and partial
difference sets. Since we are interested only in cyclic almost differ-
ence sets for the constructions of sequences, we will mention the
connections only under the context of the almost difference sets of
ZN .

As pointed out in Section II, ifZN has an almost difference set,
thenN � 1 (mod 4). If N � 3 (mod 4), thenZN could have
difference sets, but not almost difference sets. IfN � 1 (mod 4),
thenZN may have both difference sets and almost difference sets.
Certain difference sets with special parameters can be used to
construct almost difference sets, andvice versa. Details about these
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TABLE V
KNOWN CYCLOTOMIC ALMOST DIFFERENCE SETS OF ZN

TABLE VI
KNOWN CYCLOTOMIC DIFFERENCE SETS OF ZN

connections will be given in a future paper by Arasu and the first
two coauthors of this correspondence.

Cyclotomic classes can be used to construct both difference sets
and almost difference sets ofZN , whereN is a prime. All the almost
difference sets described in this correspondence are cyclotomic. It
would be interesting to make a comparison between the cyclotomic
difference sets and cyclotomic almost difference sets. This is done
by summarizing them in Tables V and VI, whereN is a prime, ADS
stands for almost difference sets, DS denotes difference sets, and PDS
stands for partial difference sets (definition will be given below). The
two tables illustrate the connections and differences.

Let G be an Abelian group of orderv andD a subset ofG with
jDj = k. ThenD is called a(v; k; �; �)-partial difference sets if
for every nonidentity elementg of D, the equationd1 � d2 = g

has exactly� solutions(d1; d2) 2 D�D; and for every nonidentity
elementg0 of GnD, the equationd1�d2 = g0 has exactly� solutions
[14]. Here we are concerned with only Abelian partial difference sets.

The (v; k; �) almost difference sets and(v; k; �; � + 1) partial
difference sets are in general quite different. For the former we have
less restriction ong and more restriction on the number of elements
g such thatd1�d2 = g has� solutions, while for the latter we have
more restriction ong and less restriction on the number of elements
g such thatd1 � d2 = g has � solutions. Among all the known
cyclotomic almost difference sets in Table V there is one that is also
a partial difference set, as stated in the following theorem.

Theorem 13: WhenN � 1 (mod 4) is a prime, the setD(2;N)
0

of quadratic residues moduloN is both an almost difference set and
a partial difference set, called the Paley partial difference set.

Proof: It is very easy to prove the two conclusions by using
cyclotomic numbers of order2 [3], [16].

For some applications (e.g., stream ciphering), binary sequences
with good balance between the number of0’s and that of1’s may
be better. However, in other applications it may not be necessary to
require a balance between them. So almost difference setsD of ZN
with jDj being not far away fromN=2 could also have important
applications. On the other hand, in the definition of almost difference
sets the condition thatd1 � d2 = g has � solutions for half of
the nonzero elements may be weakened and such sets could give
sequences with good autocorrelation.
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Fast Coding of Low-Entropy Sources

Boris Ya. Ryabko and Marina P. Sharova

Abstract—The problem of coding low-entropy information sources is
considered. Since the run-length code was offered about 50 years ago by
Shannon, it is known that for such sources there exist coding methods
much simpler than for sources of a general type. However, known coding
methods of low-entropy sources do not reach the given redundancy. In this
correspondence, a new method of coding low-entropy sources is offered. It
permits a given redundancyr with almost the same encoder and decoder
memory size as that obtained by Ryabko for general methods, while
encoding and decoding much faster.

Index Terms— Complexity of coding, fast algorithm, low-entropy
sources, redundancy, run-length coding.

I. INTRODUCTION

We consider the problem of low-entropy source coding whose
elementary example is a Bernoulli source generating a sequence
of zeros and ones with probabilitiesq and p, respectively, when
p ! 0. This problem has attracted attention of many researchers,
as for coding of such sources there exist simpler methods than in a
general case. The efficiency of a code is measured by redundancy
and by complexity of encoding and decoding. The redundancyr is
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the difference between the average codeword length and the Shannon
entropy. Complexity is estimated by the memory size of the encoder
and decoder (in bits) and by the average time of encoding and
decoding one symbol measured by the number of binary operations
on single-bit word when they are implemented on a computer with
random-access memory (see the definition in [2]).

One of the well-known compression schemes of low-entropy
sources is run-length coding [1]. In this method, a sequence of
symbols generated by a source is broken into runs of zeros between
two sequential ones:1, 01, 001, etc., then the lengths of the runs are
encoded by the binary codewords. The length of a run can thus be
both limited and unlimited.

In coding with unlimited length of runs the scheme offered by
Shannon [1] can be used. According to this scheme, one codeword
is selected for the least probable symbol1. For encoding lengths of
runs binary words are picked in ascending order, bypassing the word
selected for1. Shannon has proved that by increasing the length of the
codeword designating1 whenp! 0 the redundancy of coding tends
to zero. It is possible to show that it does not exceedC1p log (1=p),
whereC1 � 1 is a constant.

In [3] Elias proposes to use a prefix code of integers for run-length
coding. Elias has constructed three new universal binary represen-
tations of integers and by using them has constructed universal
codeword sets. For the best representation of integers from [3] the
redundancy of it the given code reachesC2p log log (1=p), where
C2 is a constant.

An effective run-length coding method was offered by Golomb [4].
In [5] it was shown that for particular values of a run-length coding
scheme Golomb’s code is optimal.

However, the known methods of coding low-entropy sources
[1], [3]–[5] do not allow reaching the given redundancy. In this
correspondence, a new method of coding low-entropy sources is
offered. It permits reaching a given redundancyr with almost the
same encoder and decoder memory size as obtained in [6] for general
methods, while encoding and decoding is much faster.

Here we consider a problem of coding a Bernoulli source with
known statistics. Note that the offered code construction is applicable
also for the Bernoulli sources with unknown statistics and for more
complex models.

II. A LGORITHM OF CODING LOW-ENTROPY SOURCES

Let a Bernoulli source generating a sequence of zeros and ones
with probabilities q and p, respectively, whenp ! 0, be given.
Let r > 0 be the given redundancy of a code. Our problem is to
construct a method of source coding permitting us to reach the given
redundancyr.

In our method encoding is implemented in two stages: first, a
message is compressed by a simple code and an output sequence
is then encoded by a fast and effective code. After the first stage the
length of the input sequence is essentially reduced, and applying a
complex fast algorithm at the second stage provides little total time of
encoding and decoding per letter of the initial message. At the second
stage it is possible to use many codes, for example, the arithmetic
code [7], [8] or the code from [6]. We shall use the code from [6]
since it has the estimates of the average time and memory. Note,
however, that the use of some versions of the universal arithmetic
code gives the same result. For code from [6] the dependence of the
memory sizeV and the average timeT of encoding and decoding
of one letter on the redundancyr0 asr0

! 0 satisfies the following
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