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New Families of Binary Sequences with Optimal
Three-Level Autocorrelation

Cunsheng Ding, Member, IEEE, Tor Helleseth, Fellow, IEEE, and
Halvard Martinsen

Abstract—In this correspondence we give several new families of
binary sequences of period with optimal three-level autocorrelation,
where 2(mod 4). These sequences are either balanced or almost
balanced. Our construction is based on cyclotomy.

Index Terms—Almost difference sets, optimal autocorrelation, se-
quences.

I. INTRODUCTION

Given a binary sequencefs(t)g of periodN , the autocorrelation of
the sequence at shiftw is defined by

Cs(w) =

N�1

t=0

(�1)s(t+w)�s(t):

An important problem in sequence design is to find sequences with
optimal autocorrelation, i.e., whereCs(w) = �1 if N � 1(mod 2),
Cs(w) = �2 and 2 if N � 2(mod4), andCs(w) 2 f0; �4g
if N � 0(mod4) for anyw 6� 0(modN). For many applications,
such as code-division multiple access (CDMA) communications and
stream ciphering [3], [11], [13], [20], we are interested in constructing
sequences of periodN with optimal autocorrelation and wherek, the
number of1s in a periodic segment, is very close toN=2.

Sequences with optimal autocorrelation of odd period have been
studied for several decades and this has resulted in numerous construc-
tions. These are of considerable interest also because of their close con-
nections to difference sets.

For evenN there are only two constructions of binary sequences
with optimal autocorrelation. One is by Lempel, Cohn, and Eastman
[16], which gives balanced binary sequences of periodpm � 1 for odd
prime p. Recently, No, Chung, Song, Yang, Lee, and Helleseth [17]
gave a new construction of almost balanced binary sequences of period
pm � 1, p odd prime, with optimal autocorrelation. They also found
a new description and a simpler proof of the optimal autocorrelation
sequences by Lempel, Cohn, and Eastman [16].

In this correspondence, we will give several new families of binary
sequences of periodN = 2p with optimal autocorrelation, where
p � 5(mod8) is prime and has a quadratic partition of form either
p = x2 + 4 or p = 1 + 4y2. It is the first construction of families
with optimal autocorrelation whereN 6= pm � 1, for p prime. The
sequences will be either balanced or almost balanced, that is, two more
zeros than ones in each period. See Table I for all the lengthsN � 3000
our construction applies for. Note that every primep � 1(mod 4) has
a quadratic partitionp = x2 + 4y2, and that every quadratic form
x2 + by2 represents infinitely many primes [2], whereb 6= 0. Thus
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TABLE I
SEQUENCES OFLENGTHN WITH OPTIMAL AUTOCORRELATIONCOVERED BY

THEOREMS IN THIS PAPER (LENGTHN MARKED WITH SATISFIES

N 6= p � 1, p PRIME,m � 1)

the constructions of this correspondence give indeed several classes of
infinitely many binary sequences with optimal autocorrelation.

Our construction is based on cyclotomy. Essentially, we will find a
subsetC ofZZZN and define thecharacteristic sequencefs(t)g of C as

s(t) =
1; if t mod N 2 C

0; otherwise.

On the other hand, we will say thatC is thecharacteristic setor
supportof fs(t)g. The autocorrelation property is determined by the
difference function defined as

dC(w) = j(w + C)\ Cj

wherew+C denotes the setfw+c: c 2 Cg and “+” denotes addition
moduloN .

Lemma 1: [3, p. 143]: Let fs(t)g be a binary sequence of period
N . Then

Cs(w) = N � 4(k � dC(w))

wherek = jCj.

In the caseN � 1( mod 2), sequences with optimal autocorrelation
are heavily related to difference sets, see for example, [1], [12], [10],
[14], [15], [18], and [19]. For evenN , the sequences with optimal au-
tocorrelation are related toalmost difference sets. LetN > 1, jCj = k,
anddC(w) be defined as above. We callC an(N; k; �; t) almost dif-
ference set ofZZZN if dC(w) takes on the value� altogethert times and
the value�+1 altogetherN � 1� t times whenw ranges over all the
nonzero elements ofZZZN . The almost difference sets introduced here
are a generalization of the almost difference sets introduced by Ding
[6], [7] (see also [3, p. 140]) and the almost difference sets introduced
by Davis [4]. It is nice that this generalization unifies the two kinds of
existing almost difference sets.

For(N; k; �; t) almost difference sets ofZZZN we have the following
basic relation:

k(k� 1) = t�+ (N � 1� t)(�+ 1): (1)
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By Lemma 1, a binary sequencefs(t)g of periodN � 2(mod 4)
has optimal autocorrelation values2 and�2 if and only if its support
fi 2 ZZZN : si = 1g is an

(N; k; k � (N + 2)=4; (N � 1)(k� (N � 2)=4)� k(k� 1))

almost difference set ofZZZN . Hence the binary sequences obtained in
this correspondence give also several classes of new almost difference
sets ofZZZN with parameters(N; N=2� 1; (N � 6)=4; 3(N � 2)=4),
(N; N=2 + 1; (N + 2)=4; 3(N � 2)=4), and (N; N=2;
(N � 2)=4; (3N � 2)=4), respectively.

II. THE IDEA OF OURCONSTRUCTION

We will in this section present a general construction of a character-
istic setC for a sequencefs(t)g of periodN = 2p, wherep is an odd
prime. The difference function will be evaluated, such that it will be
easy to find the autocorrelation values for a given construction.

Since,N � 2(mod4), finding sequences with optimal autocorre-
lation will be equivalent to constructing almost difference sets, as made
clear at the end of the previous section.

By the Chinese Remainder Theorem,ZZZN
�= ZZZ2�ZZZp under the iso-

morphism�: w 7! (w mod 2; w mod p), see [9]. Construction of
almost difference sets overZZZN is, therefore, equivalent to construction
overZZZ2 � ZZZp.

LetC = f0g�C0[f1g�C1, whereCi � ZZZp, 0 � i � 1. Define
w = (w1; w2) 2 ZZZ2 � ZZZp. Then we may evaluate the difference
function as follows:

dC(w1; w2) = jC \ (C + (w1; w2))j

= jf0g \ fw1gjjC0 \ (C0 + w2)j

+ jf0g \ f1 + w1gjjC0 \ (C1 + w2)j

+ jf1g \ fw1gjjC1 \ (C0 + w2)j

+ jf1g \ f1 + w1gjjC1 \ (C1 + w2)j

=
jC0 \ (C0 + w2)j+ jC1 \ (C1 + w2)j; w1 = 0

jC0 \ (C1 + w2)j+ jC1 \ (C0 + w2)j; w1 = 1

=

jC0j+ jC1j; if w1 = 0; w2 = 0;

jC0 \ (C0 + w2)j+ jC1 \ (C1 + w2)j;

if w1 = 0; w2 6= 0

jC0 \ (C1 + w2)j+ jC1 \ (C0 + w2)j;

if w1 = 1; w2 6= 0

2jC0 \C1j; if w1 = 1; w2 = 0

(2)

wherek = jCj = jC0j + jC1j. If C is an almost difference set and
a characteristic set for an optimal autocorrelation sequencefs(t)g of
lengthN = 2p, then by Lemma 1

jC0 \ C1j =
2k � p� 1

4
:

Thus ifk = p, thenjC0\C1j =
p�1
4 . If k = p�1, thenjC0\C1j =

p�1
4

or p�3
4

. This gives us some hint about how we should choose our
Ci. In the following two sections, we shall use cyclotomic classes to
form ourCi and then look for conditions to ensure that ourC is an
almost difference set. Such an almost difference set will give a binary
sequence with optimal autocorrelation.

III. A LMOST BALANCED SEQUENCES WITHOPTIMAL THREE-LEVEL

AUTOCORRELATION

Let GF(q) be a finite field, and letd divide q � 1. For a primitive
element� of GF(q), defineD(d; q)

0 = (�d), the multiplicative group
generated by�d, and

D
(d; q)
i = �iD

(d; q)
0 ; for i = 1; 2; . . . ; d� 1:

TheseD(d; q)
i are calledcyclotomic classesof orderd. Thecyclotomic

numbersof orderd with respect to GF(q) are defined as

(i; j) = j(D
(d; q)
i + 1) \D

(d; q)
j j:

Clearly, there are at mostd2 different cyclotomic numbers of order
d. Let p = 4f + 1 be a prime. In the remainder of this section, we
consider cyclotomic classesD(4; p)

i with respect top and cyclotomic
numbers of order4. For simplicity, letDi denoteD(4; p)

i . Let p =
x2 + 4y2, wherex; y 2 ZZZ andx � 1 mod 4. Herey is two-valued,
depending on the choice of the primitive root� employed to define the
cyclotomic classes [5], [3]. There are at most five distinct cyclotomic
numbers whenf is odd, which are

(0; 0) = (2; 2) = (2; 0) = (p� 7 + 2x)=16

(0; 1) = (1; 3) = (3; 2) = (p+ 1 + 2x� 8y)=16

(1; 2) = (0; 3) = (3; 1) = (p+ 1 + 2x+ 8y)=16

(0; 2) = (p+ 1� 6x)=16

the rest=(p� 3� 2x)=16:

There is also a theory for cyclotomic numbers whenf is even. We
do not explicitly use these numbers, and they are therefore omitted.

Now we are ready to construct several classes of binary sequences
of periodN = 2p with optimal autocorrelation. Define

C0 = Di Dj ; C1 = Dl Dj

wherei; j; andl are pairwise distinct integers between0 and3.
It is then clear that

jC0j = jC1j =
p� 1

2
and jC0 \ C1j =

p� 1

4
:

We now define

C = f0g � C0 [ f1g � C1:

Then by (2)

dC(w1; w2) =

jC0j+ jC1j; if w1 = 0; w2 = 0

jC0 \ (C0 + w2)j+ jC1 \ (C1 + w2)j;

if w1 = 0; w2 6= 0

jC0 \ (C1 + w2)j+ jC1 \ (C0 + w2)j;

if w1 = 1; w2 6= 0

2jC0 \C1j; if w1 = 1; w2 = 0:

Notice that

jCi \ (Cj + w2)j = jw�1
2 Ci \ (w�1

2 Cj + 1)j:
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If w�12 2 Dh, then the above equation equals a sum of four cyclotomic
numbers. Using this relation, straightforward calculations give

dC(w1; w2) =

p� 1; if w1 = 0; w2 = 0;

(i+ h; i+ h) + 2(j + h; j + h)

+(l+ h; l+ h) + (j + h; i+ h)

+(i+ h; j + h) + (j + h; l+ h)

+(l+ h; j + h); if w1 = 0; w�12 2 Dh

(j + h; i+ h) + (l+ h; i+ h)

+2(j + h; j + h) + (l+ h; j + h)

+(i+ h; j + h) + (i+ h; l+ h)

+(j + h; l+ h); if w1 = 1; w�12 2 Dh

p�1

2
; if w1 = 1; w2 = 0:

(3)

We will include some results on the different choices of(i; j; l) cor-
responding to different symmetry relations on sequences. The triple
(i; j; l) will be called the defining set for the sequencefs(t)g given
by

s(t) =
1; if t 2 D = ��1(C)

0; otherwise.

Notice thatD in the above equation is the characteristic set forfs(t)g.
The definition ofD as��1(C) will be used in the remainder of the
correspondence.

Lemma 2: If (i; j; l) is a defining set forfs(t)g, then(l; j; i) is a
defining set forfs(t + N=2)g.

Proof: Observe thatC is given by

C = (f0g� (Di [Dj)) [ (f1g � (Dl [Dj))

and that shifting the corresponding sequence byN=2 is the same as
adding(1; 0) to the above expression. As a result, we get

C = (f1g� (Di [Dj)) [ (f0g � (Dl [Dj))

which proves the lemma.

Lemma 3: If (i; j; l) is a defining set forfs(t)g, then(i+ 2; j+2;
l+2) is a defining set forfs(N�t)g.

Proof: The characteristic sequencefs(t)g ofD with defining set
(i; j; l) hass(t) = 1 if and only if

�(t) 2 (f0g� (Di [Dj))[ (f1g� (Dl [Dj))

ands(N � t) = 1 if and only if

�(t) 2 (f�0g � (�Di [ �Dj))[ (f�1g � (�Dl [�Dj))

where� is the mapping in the Chinese Remainder Theorem given in
the beginning of Section II. Notice that�1 = � = �2f 2 D2,
such that the above equation reduces to

�(t) 2 (f0g� (Di+2 [Dj+2)) [ (f1g� (Dl+2 [Dj+2))

which proves the lemma.

Recall from Lemma 1 that the autocorrelation at shiftw was given
asCs(w) = N � 4(k � dC(w)). We are interested in the case where
Cs(w) = �2p + 4 + 4dC(w) 2 f�2; +2g, whenw 6= 0 andk =
p� 1. The autocorrelation values are only dependent on the difference
function. The next result gives us the evaluation of this function for a
certain defining set(i; j; l).

Lemma 4: For (i; j; l) = (0; 1; 3), we have

dC(w1; w2) =

p�2�y

2
; w1 = 0; w�12 2 D0 [D2

p�4+y

2
; w1 = 0; w�12 2 D1 [D3

p�1

2
; w1 = 1; w�12 2 D0 [D2

p�3

2
; w1 = 1; w�12 2 D1 [D3

p�1

2
; w1 = 1; w2 = 0.

Proof: Straightforward calculations using the cyclotomic num-
bers and (3) proves the lemma.

In the same manner, we may calculatedC(w1; w2) for possible
defining sets(i; j; l). We will use several distinct defining sets in the
following results. Since the evaluation ofdC(w1; w2) is straightfor-
ward, but tedious, we omit the results which are similar to Lemma 4.

Theorem 1: Letp = 4f+1 = x2+4y2, wherey = 1 andf is odd.
The lengthN = 2p characteristic sequencefs(t)g of D has optimal
autocorrelation if(i; j; l) = (0; 1; 3) or (0; 2; 1).

Proof: The difference function can be calculated for all choices
of (i; j; l) as in Lemma 4. For(i; j; l) = (0; 1; 3) and(0; 2; 1)when
y = 1 the value set ofdC(w1; w2) is

dC(w1; w2) =
p� 1

2
or

p� 3

2

whenever(w1; w2) 6= (0; 0). From Lemma 1 we obtain

Cs(w1; w2) =N � 4(k� dC(w1; w2))

= 2p� 4(p� 1� dC(w1; w2))

= � 2p+ 4 + 4dC(w1; w2) 2 f�2; +2g

when(w1; w2) 6= (0; 0).

Theorem 2: Letp = 4f+1 = x2+4y2, wherex = 1 andf is odd.
The lengthN = 2p characteristic sequencefs(t)g of D has optimal
autocorrelation if(i; j; l) = (1; 0; 3) or (0; 1; 2).

Proof: By (3) and cyclotomic numbers of order4, we have

dC(w1; w2) =

p�3

2
; w1 = 0; w2 6= 0

p�2�x

2
; w1 = 1; w�12 2 D0 [D2

p�2+x

2
; w1 = 1; w�12 2 D1 [D3

p�1

2
; w1 = 1; w2 = 0

for the defining set(i; j; l) = (0; 1; 2). For (i; j; l) = (1; 0; 3) the
same values will occur. As in Theorem 1

dC(w1; w2) =
p� 1

2
or

p� 3

2

whenever(w1; w2) 6= (0; 0). The results now follow from Lemma 1.

Example 1: To illustrate the sequences described in Theorem 2, we
consider the following example. Takep = 5 = 1 + 4� 12 = 5, and
defineN = 2p = 10. We use the primitive root2 modulo5 to define
the cyclotomic classes. ThenD0 = f1g, D1 = f2g, D2 = f4g,
andD3 = f3g. We take(i; j; l) = (1; 2; 3). ThenC0 = f2; 4g
andC1 = f3; 4g. Hence��1(C) = f2; 3; 4; 9g. The corresponding
characteristic sequence is

fs(t)g = 0011100001. . .

which has optimal autocorrelation.
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Remarks:

1) In each periodic segment of all the sequences of periodN in
this section, the number of1s and0s isN=2� 1 andN=2 + 1,
respectively. We say that such a sequence is almost balanced in
the caseN � 2 (mod 4).

2) The autocorrelation function of each binary sequence given in
this section takes on�2 altogether3(N � 2)=4 times and2
altogether(N + 2)=4 times. This conclusion follows from the
proofs of all the theorems in this section, and also the statement
about almost difference sets at the end of Section I.

3) The complement sequence of each sequence given in this section
also has optimal autocorrelation.

4) For each triple(i; j; l)we may calculate the difference function
and thereby the autocorrelation of the corresponding sequence.

IV. BALANCED SEQUENCES WITHOPTIMAL THREE-LEVEL

AUTOCORRELATION

The sequences with optimal three-level autocorrelation constructed
in the previous section are almost balanced. In this section, we modify
the construction and give several classes of balanced binary sequences
with optimal three-level autocorrelation.

In this section, we define the setsC in a slightly different way. Now
we complement the bit in position0 or p of the sequences given in the
previous section. As in the previous section, let

C0 = Di [Dj ; C1 = Dl [Dj

wherei; j; and l are pairwise distinct integers between0 and3. To
complement the bit in position0, define

C0 = (f0g � C0) [ (f1g� C1) [ f(0; 0)g

and to complement the bit in positionp, define

Cp = (f0g� C0) [ (f1g� C1) [ f(1; 0)g

and the corresponding characteristic set for the sequencefs(t)g as

D0 =��1(C0)

and

Dp =��1(Cp):

As we did for (3), we must calculate the difference function forC0

andCp. ForCp

dC (w1; w2)= jC
p \ (Cp+(w1; w2))j

= jC \ (C+(w1; w2))j+j(1; 0) \ (C+(w1; w2))j

+j(1; 0) \ (1+w1; w2)j+jC \ (1+w1; w2)j:

Clearly, if (w1; w2) 6= (0; 0), then

dC (w1; w2) = dC(w1; w2) + �(w1; w2)

wheredC(w1; w2) is as stated in (3) and

�(w1; w2) = j(1; 0) \ (w1; C0 + w2)j

+ j(1; 0) \ (1 + w1; C1 + w2)j

+ j(1 + w1; w2) \ (0; C0)j

+ j(1 + w1; w2) \ (1; C1)j

=

jfw2g \C1j+ jf0g \ (C1 + w2)j;

if w1 = 0; w2 6= 0

jfw2g \C0j+ jf0g \ (C0 + w2)j;

if w1 = 1; w2 6= 0;

0 otherwise

=

jC1 \ fw2; �w2gj; w1 = 0; w2 6= 0

jC0 \ fw2; �w2gj; w1 = 1; w2 6= 0

0; otherwise.

Similarly, forC0 we get for(w1; w2) 6= (0; 0)

dC (w1; w2)=dC(w1; w2)

+

jC0 \ fw2; �w2gj; w1=0; w2 6=0

jC1 \ fw2; �w2gj; w1=1; w2 6=0

0; otherwise.
(4)

The symmetry properties, similar to Lemma 2 and Lemma 3, are
given by the two following results.

Lemma 5: LetD0, defined by(i; j; l), be the characteristic set for
fs(t)g, then the characteristic set forfs(t+N=2)g isDp, defined by
(l; j; i).

Proof: Observer thatC0 is given by

C0 = (f0g� (Di [Dj [ f0g))[ (f1g� (Dl [Dj))

and that shifting the corresponding sequence byN=2 is the same as
adding(1; 0) to the above expression. As a result we get

C = (f1g� (Di [Dj [ f0g))[ (f0g � (Dl [Dj))

which proves the lemma.

Lemma 6: Let D0 (or Dp) be the characteristic set, defined by
(i; j; l) (resp.,(i; j; l)), for fs(t)g, then(i+ 2; j + 2; l+ 2) (resp.,
(i+ 2; j + 2; l + 2)) is a defining set forfs(N � t)g.

Proof: The characteristic sequencefs(t)g of C0 with defining
set(i; j; l) hass(t) = 1 if and only if

�(t) 2 (f0g� (Di [Dj [ f0g))[ (f1g� (Dl [Dj))

ands(N � t) = 1 if and only if

�(t) 2 (f0g � (�Di [�Dj [ f0g))[ (f1g� (�Dl [�Dj)):

Notice that�1 = � = �2f 2 D2, such that the above equation
reduces to

�(t) 2 (f0g� (Di+2 [Dj+2 [ f0g))[ (f1g� (Dl+2 [Dj+2)):

The result forDp is proven in the same manner.

Theorem 3: Let p = 4f + 1 = x2 + 4y2, wherey = 1 andf is
odd. Then the lengthN = 2p characteristic sequencefs(t)g of D0 is
balanced and has optimal autocorrelation if

(i; j; l) 2 f(0; 1; 3); (0; 2; 3); (1; 2; 0); (1; 3; 0)g:

Proof: We have givendC(w1; w2) by Lemma 4 for(i; j; l) =
(0; 1; 3). By (4)

dC (w1; w2) =

p�2�y

2
; w1 = 0; w�12 2 D0 [D2;

�w2 62 D0 [D1

p�y

2
; w1 = 0; w�12 2 D0 [D2;

�w2 2 D0 [D1

p�4+y

2
; w1 = 0; w�12 2 D1 [D3;

�w2 62 D0 [D1

p�2+y

2
; w1 = 0; w�12 2 D1 [D3;

�w2 2 D0 [D1

p�1

2
; w1 = 1; w�12 2 D0 [D2;

�w2 62 D1 [D3

p+1

2
; w1 = 1; w�12 2 D0 [D2;

�w2 2 D1 [D3

p�3

2
; w1 = 1; w�12 2 D1 [D3;

�w2 62 D1 [D3

p�1

2
; w1 = 1; w�12 2 D1 [D3;

�w2 2 D1 [D3

p�1

2
; w1 = 1; w2 = 0:
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Observe that the valuep+1
2

never will occur, since the condition

w�12 2 D0 [D2; �w2 2 D1 [D3

is impossible forw2 to satisfy. The other defining set is proved in a
similar manner. The conclusion then follows from Lemma 1.

Theorem 4: Let p = 4f + 1 = x2 + 4y2, wherex = 1 andf is
odd. Then the lengthN = 2p characteristic sequencefs(t)g of D0 is
balanced and has optimal autocorrelation if

(i; j; l) 2 f(0; 1; 2); (0; 3; 2); (1; 0; 3); (1; 2; 3)g:

Proof: The conclusion follows by using the same approach as in
Theorem 3.

Example 2: To illustrate one of the sequences described in The-
orem 4, we consider the following example. Takep=5=1+4�12=5,
and defineN = 2p = 10. We use the primitive root2 modulo5 to de-
fine the cyclotomic classes. ThenD0 = f1g, D1 = f2g, D2 = f4g,
andD3 = f3g. We take(i; j; l) = (1; 2; 3). ThenC0 = f2; 4g and
C1 = f3; 4g. HenceD0 = ��1(C0) = f0; 2; 3; 4; 9g. The corre-
sponding characteristic sequences ofD0 is

fs(t)g = 1011100001. . .

which has optimal autocorrelation and is balanced.

Remarks:

1) In each periodic segment of all the sequences of periodN in this
section, the number of1s and0s areN=2. So they are balanced.

2) The autocorrelation function of each binary sequence given in
this section takes on�2 altogether(3N�2)=4 times and2 alto-
gether(N�2)=4 times. This conclusion follows from the proofs
of all the theorems in this section, and also from the statement
about almost difference sets at the end of Section I.

3) The complement sequences of the sequences given in this section
also have optimal autocorrelation.

V. CONCLUDING REMARKS

All the sequences with optimal autocorrelation described in this cor-
respondence have period2p, wherep � 5 (mod8) is a prime. We
have not been able to construct any family of such sequences with pe-
riod 2p by using cyclotomic classes of order4, wherep � 1 (mod 8)
and is a prime. It is important to note that the families of sequences
constructed in this correspondence are different from those described
in [16] and [17], as some integers2p are not in the formqm�1, where
q is an odd prime, see Table I.

One may wonder whether it is possible to construct binary se-
quences of periodN � 2 (mod4) with cyclotomic classes of order
8 by defining

C0 =D(8; p)
m [D(8; p)

n [D
(8; p)
i [D

(8; p)
j

C1 =D(8; p)
u [D(8; p)

v [D
(8; p)
i [D

(8; p)
j

C = f0g � C0 [ f1g [C1

whereD(8; p)
h are cyclotomic classes of order8 andp � 1 (mod8).

We have tested many possible values form; n; i; j; u; andv; but have
not found any sequence with optimal autocorrelation.

As far as the construction of binary sequences with optimal autocor-
relation is concerned, there are many open problems. Below are some
of them.

1) Construct families of sequences of periodN � 3 (mod 4) with
optimal autocorrelation values�1 and3, wherek = (N�3)=2.
This problem is equivalent to finding

(N; (N � 3)=2; (N � 7)=4; N � 3)

almost difference sets ofZZZN .
2) In addition to the binary sequences of periodN � 1 (mod4)

constructed in [7], [3], [8], wherek = (N � 1)=2, construct
other families of sequences of such a period with optimal auto-
correlation. This is equivalent to finding

(N; (N � 1)=2; (N � 5)=4; (N � 1)=2)

almost difference sets ofZZZN .
3) Construct families of sequences of periodN � 1 (mod 4) with

optimal autocorrelation values�1 and3, wherek = (N�3)=2.
This problem is equivalent to finding

(N; (N � 3)=2; (N � 9)=4; (N � 5)=2

almost difference sets ofZZZN .
4) In addition to the binary sequences of periodN � 2 (mod4)

constructed in [16], [17], and this correspondence, wherek =
N=2�1 andN=2, construct other families of sequences of such a
period with optimal autocorrelation. This is equivalent to finding

(N; N=2� 1; (N � 6)=4; 3(N � 2)=4)

and

(N; N=2; (N � 2)=4; (3N � 2)=4)

almost difference sets ofZZZN .
5) In addition to the binary sequences of periodN � 0 (mod4)

constructed in [16] and [17], construct other families of binary
sequences of periodN � 0(mod 4).
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On Codes that Avoid Specified Differences
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Abstract—Certain magnetic recording applications call for a large
number of sequences whose differences do not include certain disallowed
binary patterns. We show that the number of such sequences increases
exponentially with their length and that the growth rate, or capacity, is
the logarithm of the joint spectral radius of an appropriately defined
set of matrices. We derive a new algorithm for determining the joint
spectral radius of sets of nonnegative matrices and combine it with
existing algorithms to determine the capacity of several sets of disallowed
differences that arise in practice.

Index Terms—Capacity, constrained coding, joint spectral radius, mag-
netic recording.

I. INTRODUCTION

The error probability of many magnetic-recording systems may be
characterized in terms of the differences between the sequences that
may be recorded [1]–[3]. In fact, the bit-error rate (BER) is often dom-
inated by a small set of potential difference patterns. Recently, binary
codes have been proposed which exploit this fact [4]–[9]. The codes
are designed to avoid the most problematic difference patterns by con-
straining the set of allowed recorded sequences and have been shown
to improve system performance.

In this correspondence, we study the largest number of sequences
whose differences exclude a given set of disallowed patterns. We show
that the number of such sequences increases exponentially with their
length and that the growth rate, or capacity, is the logarithm of the joint
spectral radius of an appropriately defined set of matrices. We derive
new algorithms for determining the joint spectral radius of sets of non-
negative matrices and combine them with existing algorithms to deter-
mine the capacity of several sets of disallowed differences that arise in
practice.

The correspondence is organized as follows. In the next section, we
motivate the problem by summarizing known results showing that the
error probability in models of magnetic recording systems is deter-
mined by the differences between recorded sequences. In Section III,
we formally describe the resulting combinatorial problem, introduce
the notation used, and present some simple examples. Section IV con-
tains the main result of the correspondence, deriving the connection to
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