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=0 the constructions of this correspondence give indeed several classes of

) . o . infinitely many binary sequences with optimal autocorrelation.
An important problem in sequence design is to find sequences withour construction is based on cyclotomy. Essentially, we will find a

optimal autocorrelation, i.e., wheté (w) = =1 if N = 1(mod2), subser of Zx and define theharacteristic sequencgs(t)} of C as
Cs(w) = =2 and2 if N = 2(mod4), andC,s(w) € {0, —4}

if N = 0(mod4) for anyw # 0(mod ). For many applications, 1 if t mod N € C

such as code-division multiple access (CDMA) communications and s(t) = {0’ otherwis;a

stream ciphering [3], [11], [13], [20], we are interested in constructing
sequences of perio with optimal autocorrelation and wheke the
number ofls in a periodic segment, is very closelXg'2.

Sequences with optimal autocorrelation of odd period have begfP S ¢
studied for several decades and this has resulted in numerous consff{ffgrence function defined as
tions. These are of considerable interest also because of their close con-
nections to difference sets. do(w) = [(w+ C)NC|

For evenN there are only two constructions of binary sequences
with opt_imal _autocorrelation._ One is by Lempel, Cohn, and EaStm%v%erew—l—C‘ denotes the sdtw +¢: ¢ € C'} and “+” denotes addition
[16], which gives balanced binary sequences of pepitd- 1 for odd odulo N
prime p. Recently, No, Chung, Song, Yang, Lee, and Helleseth [191 '
gave a new construction of almost balanced binary sequences of periodemma 1: [3, p. 143]: Let {s(¢)} be a binary sequence of period
p™ — 1, p odd prime, with optimal autocorrelation. They also foundV. Then
a new description and a simpler proof of the optimal autocorrelation
sequences by Lempel, Cohn, and Eastman [16]. Cs(w) =N —4(k —do(w))

In this correspondence, we will give several new families of binary
sequences of period = 2p with optimal autocorrelation, where wherek =
p = 5(mod8) is prime and has a quadratic partition of form either
p = x> +4orp =1+ 4y%. Itis the first construction of families
with optimal autocorrelation wher& # p™ — 1, for p prime. The
sequences will be either balanced or almost balanced, that is, two
zeros than ones in each period. See Table | for all the ledgtks3000
our construction applies for. Note that every prime 1(mod 4) has
a quadratic partitiony = 2 + 4y?, and that every quadratic form
x? 4 by? represents infinitely many primes [2], wheffe# 0. Thus

On the other hand, we will say thét is the characteristic sebr
portof {s(¢)}. The autocorrelation property is determined by the

Cl.

Inthe caseV = 1( mod 2), sequences with optimal autocorrelation
are heavily related to difference sets, see for example, [1], [12], [10],
n‘H’rAé [15], [18], and [19]. For evelV, the sequences with optimal au-
tocorrelation are related sdmost difference seteet NV > 1, |C| = %,
andd¢ (w) be defined as above. We céllan(N, k, A, ¢) almost dif-
ference set of v if d¢(w) takes on the valug altogether times and
the value\ + 1 altogetherV — 1 — ¢ times whenw ranges over all the
nonzero elements df . The almost difference sets introduced here
are a generalization of the almost difference sets introduced by Ding
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By Lemma 1, a binary sequenge(t)} of period N = 2(mod4)  Ill. ALMOST BALANCED SEQUENCES WITHOPTIMAL THREELEVEL
has optimal autocorrelation valu2sand —2 if and only if its support AUTOCORRELATION
{i € Zy: s = 1}isan Let GF(¢) be a finite field, and letl divide ¢ — 1. For a primitive
elementx of GF(g), defineng"” = (a"), the multiplicative group

(N, kyk— (N+2)/4, (N = 1)(k — (N —2)/4) — k(k — 1)) generated by, and

. . . DI = o pitD =1,2,...,d—1.
almost difference set & ». Hence the binary sequences obtained in : v Fo for: T .

this correspondence give also several classes of new almost difference
sets ofZ y with parameter$ N, N/2 — 1, (N — 6)/4, 3(N — 2)/4), TheseD!" * are callectyclotomic classesf orderd. Thecyclotomic

(N,N/2 + 1, (N + 2)/4,3(N — 2)/4), and (N, N/2, numbersof orderd with respect to GFq) are defined as
(N —2)/4, (3N — 2)/4), respectively.
(i, j) = (D" + 1) n D" |,

Clearly, there are at most different cyclotomic numbers of order
d. Letp = 4f + 1 be a prime. In the remainder of this section, we
We will in this section present a general construction of a characté@nsider cyclotomic classes!**’ with respect tg» and cyclotomic

istic setC' for a sequencés(t)} of period V' = 2p, wherep is an odd numbers of orde#. For simplicity, letD; denoteD!"”. Letp =

prime. The difference function will be evaluated, such that it will ba’ + 4y?, wherez, y € Z andx = 1 mod 4. Herey is two-valued,

easy to find the autocorrelation values for a given construction.  depending on the choice of the primitive reoemployed to define the
Since, N = 2(mod 4), finding sequences with optimal autocorrecyclotomic classes [5], [3]. There are at most five distinct cyclotomic

lation will be equivalent to constructing almost difference sets, as ma@démbers whery is odd, which are

clear at the end of the previous section.

Il. THE IDEA OF OUR CONSTRUCTION

By the Chinese Remainder Theorefly = Z, x Z, under the iso- (0,0)=(2,2)=(2,0)=(p— 7T+ 2x)/16
morphism¢: w — (w mod 2, w mod p), see [9]. Construction of (0,1) =(1,3) = (3,2) = (p+ 1 + 2z — 8y)/16
almost difference sets ovéry is, therefore, equivalent to construction ' - ,
overZs x Z,. (1,2)=(0,3)=(3,1) = (p+ 1 + 22+ 8y)/16

LetC' = {0} x Co U{1} x Cy, whereC; C Z,,0 < i < 1. Define (0,2) =(p+1-06x)/16
w = (wi, wy) € Zo x Z,. Then we may evaluate the difference the rest=(p — 3 — 2z)/16.

function as follows:

There is also a theory for cyclotomic numbers wtlfeis even. We
de(wi, wa) = |C N (C+ (wi, wa))| do not explicitly use these numbers, and they are therefore omitted.
. Now we are ready to construct several classes of binary sequences
= fw ) ) . . . . )
= {0} {wiH|Co N (Co + w2 of period N = 2p with optimal autocorrelation. Define
+ {0} N {1 4+ wi }H[Co N (Ch + w2)|

+ {1} N {w |G N (Co + wa)| Co = D, UD]./ Cy =D UD‘,-
+ {1} N {1 + w1 }|Cr N (CL + w2)
— { |Co N (Co+w2)| +]C1 N (Cr+w2)|, w1 =0 wherei, j, and! are pairwise distinct integers betwe@and3.

[Co N (Cr+w2)[ +|C10 (Co+ )|, wy =1 It is then clear that
|Col| + |Ch, if wy =0, ws =0,
|Co N (Co +w2)[ +]C1 0 (Cr +w2)], IGol =il =2=L and |concy =2t
. if w, =0, ws #0 @ 2 4
T ) |Co N (Ch 4 wo)| + |C1 0 (Co + w2, _
if w; = 1, ws £ 0 We now define
2|C(0 n 01 y If wp = ]., w2 = )
CI{O}XCOU{l}Xcl.
wherek = |C| = |Co| + |C4]. If C'is an almost difference set and
a characteristic set for an optimal autocorrelation sequér@gé’ of Then by (2)
lengthN = 2p, then by Lemma 1
|C’0|+|C’1|, ifwy =0, wy =0
i Co N (Co + w2)| + |C1 N(C1 + w2)|,
- pt1 |Co :
ConCy|=2=P=E2 ifws = 0. ws
[Co ! 4 de(wy, we) = if wy =0, wy # 0

|C() N (Cl + ?ll2)| =+ |Cl N (C(J + 11,’2)|,
if wy =1, ws £0

ifk = ¥ = E = p— ! , =
Thusifk = p, then|CoNCh | — . If k = p—1,then|ConC1| 2Co N Cl, if wi = 1. ws = 0.

b=t or 22 This gives us some hint about how we should choose our
C;. In the following two sections, we shall use cyclotomic classes to
form our C; and then look for conditions to ensure that @urs an

almost difference set. Such an almost difference set will give a binary
sequence with optimal autocorrelation. |C; N (Cf 4 wa)| = w3 " Ci N (w5 "C; + 1))

Notice that
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If wy' € Dy, thenthe above equation equals a sum of four cyclotomic Lemma 4: For (i, j, 1) = (0, 1, 3), we have
numbers. Using this relation, straightforward calculations give

2y, =0, w," € DyUD
p—1, if wy =0, we: =0, 2 o W2 €0 ?
”_;"'y, wy =0, wz_l € D1 UDyg
(i+hi+h)+2(+h, j+h) de(wr, we) = p;17 wy = 1, 'w;l € Do U Do
+(@+h, I4+h)+(j+h,i+h) p=3 wi =1, wy' € Dy UDs

+G@+h, j+h)+(G+N0I+R)

+(I4h, j+h), ifw =0,w;" €D,
do(wi, we) = (3)
G+h,i+h)+{(+h i+h)

| w

wyp =1, wy = 0.

¥

Proof: Straightforward calculations using the cyclotomic num-

) ; ] bers and (3) proves the lemma. O
+2(j4+h, j+h)+{U+h,j+h)
+(i4h, j+h)+ i+ h, I+0) In the same manner, we may calculate(w., w2) for possible
FG+h I+R),  ifw _ 1, wy' € Dy defining setg7, j, [). We will use several distinct defining sets in the

following results. Since the evaluation @f:(w:, wz) is straightfor-
ward, but tedious, we omit the results which are similar to Lemma 4.

pglv if wy =1, wy =0.

. . o Theorem 1: Letp = 4f+1 = «> +4y?, wherey = 1 andf is odd.
We will include some results on the different choicesiofj, [) cor- .o lengthV' = 2p characteristic sequende(t)} of D has optimal

responding to different symmetry relations on sequences. The tri%'ﬁtocorrelation iti, j. 1) = (0, 1, 3) or (0, 2, 1)

E:” J- 1) will be called the defining set for the sequenfed?)} given Proof: The difference function can be calculated for all choices
y of (i, j, I)asinLemma4. Fafi, 5, 1) = (0, 1, 3) and(0, 2, 1) when

=1th | t off . w .
s(t) = {1, ifteD=0o6""(C) y e value set ofl - (w1, ws) is

0, otherwise. ; —1 p—
: do(wi, we) = PT or pT3
Notice thatD in the above equation is the characteristic se{fat)}. , i )
The definition of D as¢~'(C') will be used in the remainder of the Whenever(w:, w2) # (0, 0). From Lemma 1 we obtain
correspondence.
L 2:1f (i, j., 1) is a defining set fof s(+)}, then(l, j, i) i Cs(wr, wa) =N — 4(k — do(wr, w2))
emma 2: If (i, j, 1) is a defining set fo{ s(¢)}, then(l, j, i) isa oy —d(p— 1 — de(uwr, ws))

defining set for{s(t + N/2)}.

Proof: Observe thaC is given by = —=2p+4+dde(wr, wy) € {-2, +2}

C= ({0} x (D:UD;))U ({1} x (DU D;)) when(w:, wa) # (0, 0). O
and that shifting the corresponding sequence\pi is the same as _ Theorem 2:Letp = 4f+1 = :7?2-1-4?12, wherer = 1 andf is odd.
adding(1, 0) to the above expression. As a result, we get The lengthV = 2p characteristic sequende(t)} of D has optimal

autocorrelation ifé, j, 1) = (1, 0, 3) or (0, 1, 2).
C= ({1} x(D;UD;))U({0} x (D1U D;)) Proof: By (3) and cyclotomic numbers of ordérwe have
which proves the lemma. | p3, w1 =0, wy £ 0
Lemma 3: If (i,4.1) is a defining set fof s(¢) }, then(i 4 2, j+2, P*é*ﬂ wy =1, wy' € Do U Dy
1+2) is a defining set fo s(N —#)}. do(wi, we) = L w'eD UD
Proof: The characteristic sequente(t)} of D with defining set > wi=Lw, €DiUDs
(i, j, 1) hass(¢) = 1 if and only if pz;l, wy =1, wy =0
o(t) € ({0} x (Di U D)) U ({1} x (D1 U D)) for the defining seti, j, 1) = (0, 1, 2). For(i, j. ) = (1, 0, 3) the

) . . same values will occur. As in Theorem 1
ands(N —t) = 1 if and only if
p—1 p—3
2 or 2

(1(7 (’LU] ) ’LL’Q) =

o(t) € {—0} x (=D; U—-D;)) U ({1} x (=D U —-D;))
where¢ is the mapping in the Chinese Remainder Theorem given f¥henever(w:. ws) # (0, 0). The results now follow from Lemma 1.
the beginning of Section Il. Notice thatl = ot = o2t € Do, U
such that the above equation reduces to Example 1: To illustrate the sequences described in Theorem 2, we

) ; ; consider the following example. Tae= 5 = 1 + 4 x 1 = 5, and

o(t) € ({0} X (Diyz2 U Dy12)) U ({1} X (Dig2 U Dyy2)) defineN = 2p = 10. We use the primitive rod modulo5 to define

which proves the lemma. O the cyclotomic classes. Thelo = {1}, D1 = {2}, D» = {4},
andDs; = {3}. We take(7, j, [) = (1, 2, 3). ThenC, = {2, 4}

Recall from Lemma 1 that the autocorrelation at shiftvas given andc, = {3, 4}. Hencep ! (C') = {2. 3, 4, 9}. The corresponding

asCs(w) = N — 4(k — dc(w)). We are interested in the case whereharacteristic sequence is

Cs(w) = =2p+ 4+ 4de(w) € {-2, +2}, whenw # 0 andk =

p — 1. The autocorrelation values are only dependent on the difference {s(t)} = 0011100001...

function. The next result gives us the evaluation of this function for a

certain defining seti, j, {). which has optimal autocorrelation.
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Remarks: Similarly, for C° we get for(w, w2) # (0, 0)
1) In each .periodic segment of all th.e sequences of pehioith deo(wa, wa)=de(wr, ws)
this sec_tlon, the number @k and0s isN/2 — 1 andN/2 + 1, _ ICo 0 {wsy —ws}], w1 =0, ws#0
respectively. We say that such a sequence is almost balanced in
the caseV = 2 (mod 4) +< |CL N H{we, —wa}], w1 _1, we#0 ()]
2) The autocorrelation function of each binary sequence given in 0, . o otherwise.
this section takes or-2 altogether3(N — 2)/4 times and? _The symmetry propgrtles, similar to Lemma 2 and Lemma 3, are
altogether( V + 2)/4 times. This conclusion follows from the 9iven by the two following results.

proofs of all the theorems in this section, and also the statemen{ emma 5: Let D°, defined by(s, j. 1), be the characteristic set for

about almost difference sets at the end of Section I. {s(1)}, then the characteristic set fos(# + N/2)} is D?, defined by
3) The complement sequence of each sequence given in this sectjory, i).
also has optimal autocorrelation. " Proof: Observer that” is given by

4) For eachtripléi, j, 1) we may calculate the difference function o
and thereby the autocorrelation of the corresponding sequence. C"= ({0} x (D;UD; U{0}) U ({1} x (D1 U Dy))
and that shifting the corresponding sequencehy? is the same as

IV. BALANCED SEQUENCES WITHOPTIMAL THREE-LEVEL adding(l, 0) to the above expression. As a result we get
AUTOCORRELATION — ({1} x (DU D; U {0}) U ({0} x (DU D))
The sequences with optimal three-level autocorrelation construcwglch proves the lemma. O

in the previous section are almost balanced. In this section, we modify
the construction and give several classes of balanced binary sequencé@mma 6: Let D° (or D”) be the characteristic set, defined by
with optimal three-level autocorrelation. (i, 4, 1) (resp. (4, 4, 1)), for {s(t)},then(i + 2, j + 2, 1 + 2) (resp.,
In this section, we define the sefsin a slightly different way. Now (i + 2, j + 2, I + 2)) is a defining set fof s(N — f)}.
we complement the bit in positidhor p of the sequences giveninthe ~ Proof: The characteristic sequen¢e(t)} of C° with defining

previous section. As in the previous section, let set(i, j, 1) hass(t) = 1 if and only if
Co=D;UD,, C, =D,UD; o(t) € ({0} x (D; UD; U{0}))U ({1} x (D1 U Dy))
wherei, j, andi are pairwise distinct integers betweerand3. To ands(N —t) = 1 if and only if
complement the bit in positiof, define o(t) € ({0} x (=D; U—=D,; U{0}))U ({1} x (=D; U —D;)).
= ({0} x Co) U ({1} x C1) U{(0, 0)} Notice that-1 = a“Z= = ' € D», such that the above equation
and to complement the bit in positign define reduces to
C? = ({0} x Co) U ({1} x C1) U {(1, 0)} o(t) € ({0} X (Di2 U Djy2 U{0})) U ({1} X (Diy2 U Djy2)).

b .
and the corresponding characteristic set for the sequigrieg} as The result forD” is proven in the same manner. =

D° =67 1(C") Theorem 3: Letp = 4f + 1 = 2 + 4y*, wherey = 1 andf is
odd. Then the lengttV = 2p characteristic sequenda(#)} of D° is
balanced and has optimal autocorrelation if

(i, j, 1) € {(0, 1, 3), (0, 2, 3), (1, 2, 0), (1, 3, 0)}.

Proof: We have givenlc (w1, wy) by Lemma 4 for(i, j, 1)
(0,1, 3). By (4)

and
DY =¢~H(CP).

As we did for (3), we must calculate the difference functiond®r
andC®. ForC?

dov(wi, w2)=|C? N (CP+(w1, w2))] P‘ﬁ—y, wy, =0, 'w;)_l € Do U Dy,
=[CN(CH (w1, w2))|+]|(1, 0) N (CH (w1, wa))| +wy & Do U Dy
HIL 00 At wn, wo)l +]CN L+ wr, w2)l. = w; =0, wy ' € Dy U Dy,
Clearly, if (w1, wz) # (0, 0), then Fws € Doy UD;
dor(wi, we2) = do(wi, w2) + A{wy, wa) pfzﬂ, wiy =0, wy l'e D, U Ds,
whered¢ (w1, ws) is as stated in (3) and tws € Do U D,
p—2+y = 0. wt
Awy, we) =|(1, 0) N (wr, Co + w2)| 2 7 11 EO’I;UQUEZ% U Ds,
Wa
+ (1, 0)N (14 wi, C1 + wy) ] . 1 0_1 lD B
+ (1 4+ w1, w2) N (0, Co)| co(wy, w2) = 3 wr =1, wy; " € Do U Dy,
:l:7_U2 g D1 U Dg
+ (14w, w2) N (1, Ci) vt
{2} N C1[ 4 10} 01 (Cl + )] . w=luy'€DoUD,
if wy =0, wy #0 :I:u,z € DIUDJ
=9 Hw2} NCol + {0} N (Co + w2)], 777_% wy, =1, w, " € Dy U D3,
if w; =1, we #0, +w, € D1 U D3
0 otherwise p1 41
|C1 N {'lUgv _uv.2}|7 wy = 07 wo 7& 0 2 il = la-l;UQU g Dl U DS?
= ¢ [Con{ws, —w2}], wi =1, ws #0 wa € Dy 3
0, otherwise. pl wy =1, wa = 0.

[N
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Observe that the valu&t never will occur, since the condition 1)
'LU;1 € Do U DQ, :l:’wz € D1 U D3

is impossible forw, to satisfy. The other defining set is proved in a
similar manner. The conclusion then follows from Lemma 1. [

N
-~

Theorem 4: Letp = 4f + 1 = 2® + 4y?, wherex = 1 andf is
odd. Then the lengt’ = 2p characteristic sequende(t)} of D° is
balanced and has optimal autocorrelation if

(ia ./a I) € {(07 17 2) (()v 3: 2)? (17 0: S)v (17 27 3)}

Proof: The conclusion follows by using the same approach as in 3)
Theorem 3. O

Example 2: To illustrate one of the sequences described in The-
orem 4, we consider the following example. Take 5 =1+4x1? =5,
and defineV = 2p = 10. We use the primitive rodt modulo5 to de-
fine the cyclotomic classes. Thdb = {1}, D1 = {2}, D> = {4},
andDs; = {3}. We take(i, j, ) = (1, 2, 3). ThenCy = {2, 4} and
Ci = {3, 4}. HenceD® = ¢~'(C°%) = {0, 2, 3, 4, 9}. The corre-
sponding characteristic sequencedXfis

4

~

{s(t)} = 1011100001. ..
—_—
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Construct families of sequences of peri§id= 3 (mod 4) with
optimal autocorrelation valuesl and3, wherek = (N —3)/2.
This problem is equivalent to finding

(N, (N =3)/2,(N=T7)/4, N = 3)

almost difference sets & .

In addition to the binary sequences of perl¥d= 1 (mod 4)
constructed in [7], [3], [8], wheré& = (N — 1)/2, construct
other families of sequences of such a period with optimal auto-
correlation. This is equivalent to finding

(N, (N =1)/2, (N =5)/4, (N = 1)/2)

almost difference sets & .

Construct families of sequences of periid= 1 (mod 4) with
optimal autocorrelation valuesl and3, wherek = (N —3)/2.
This problem is equivalent to finding

(N, (N —=3)/2, (N —9)/4, (N —5)/2

almost difference sets & .

In addition to the binary sequences of perlid= 2 (mod 4)
constructed in [16], [17], and this correspondence, wliere
N/2-1andN/2, construct other families of sequences of such a
period with optimal autocorrelation. This is equivalent to finding

(N, N/2 = 1, (N = 6)/4, 3(N = 2)/4)

and

which has optimal autocorrelation and is balanced.

Remarks:

1) In each periodic segment of all the sequences of péeYiadthis
section, the number dfs and0s areN/2. So they are balanced.

2) The autocorrelation function of each binary sequence given in
this section takes on2 altogethe(3.N —2)/4 times anc alto-
gether{ N —2) /4 times. This conclusion follows from the proofs
of all the theorems in this section, and also from the statement
about almost difference sets at the end of Section I.

5)

(N, N/2, (N —2)/4, (3N — 2)/4)

almost difference sets & .

In addition to the binary sequences of perl¥d= 0 (mod 4)
constructed in [16] and [17], construct other families of binary
sequences of perio = 0(mod 4).

ACKNOWLEDGMENT

The authors wish to thank the referee for helpful comments and sug-

3) The complement sequences of the sequences given in this secigitions that improved the presentation of this correspondence.

also have optimal autocorrelation.

V. CONCLUDING REMARKS [1]
All the sequences with optimal autocorrelation described in this cor-
respondence have peri@gp, wherep 5 (mod8) is a prime. We
have not been able to construct any family of such sequences with Pep)
riod 2p by using cyclotomic classes of ordérwherep = 1 (mod 8)
and is a prime. It is important to note that the families of sequences[3]
constructed in this correspondence are different from those described
in [16] and [17], as some intege?p are not in the formy™ — 1, where (4]
¢ is an odd prime, see Table I.
One may wonder whether it is possible to construct binary se-[5]
guences of periodv = 2 (mod4) with cyclotomic classes of order

8 by defining (6]
— p&p (8,p) (8 p) (8,p)
Co=D3PuDS? uD™ UD; 7
C, =D& ) yptEr D&y p&P)
U v 7 7 8
CI{O}XO()U{I}UC1 []
whereDﬁf"p) are cyclotomic classes of ord@randp = 1 (mod38). [9]

We have tested many possible valuesfarn, i, j, «, andv, but have
not found any sequence with optimal autocorrelation.

As far as the construction of binary sequences with optimal autocor[-lol
relation is concerned, there are many open problems. Below are somg]
of them.
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The error probability of many magnetic-recording systems may be
characterized in terms of the differences between the sequences that
may be recorded [1]-[3]. In fact, the bit-error rate (BER) is often dom-
inated by a small set of potential difference patterns. Recently, binary
codes have been proposed which exploit this fact [4]-[9]. The codes
are designed to avoid the most problematic difference patterns by con-
straining the set of allowed recorded sequences and have been shown
to improve system performance.

In this correspondence, we study the largest number of sequences
whose differences exclude a given set of disallowed patterns. We show
that the number of such sequences increases exponentially with their
length and that the growth rate, or capacity, is the logarithm of the joint
spectral radius of an appropriately defined set of matrices. We derive
new algorithms for determining the joint spectral radius of sets of non-
negative matrices and combine them with existing algorithms to deter-
mine the capacity of several sets of disallowed differences that arise in
practice.

The correspondence is organized as follows. In the next section, we
motivate the problem by summarizing known results showing that the
error probability in models of magnetic recording systems is deter-
mined by the differences between recorded sequences. In Section I,
we formally describe the resulting combinatorial problem, introduce
the notation used, and present some simple examples. Section IV con-
tains the main result of the correspondence, deriving the connection to
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