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Abstract 
The embedding of positioning capabilities in mobile 
devices and the emergence of location-based applications 
have created novel opportunities for utilizing several types 
of multi-dimensional data through spatial outsourcing. In 
this setting, a data owner (DO) delegates its data 
management tasks to a location-based service (LBS) that 
processes queries originating from several clients/ 
subscribers. Because the LBS is not the real owner of the 
data, it must prove (to each client) the correctness of query 
output using an authenticated structure signed by the DO. 
Currently there is very narrow selection of multi-
dimensional authenticated structures, among which the 
VR-tree is the best choice. Our first contribution is the MR-
tree, a novel index suitable for spatial outsourcing. We 
show, analytically and experimentally, that the MR-tree 
outperforms the VR-tree, usually by orders of magnitude, 
on all performance metrics, including construction cost, 
index size, query and verification overhead. Motivated by 
the fact that successive queries by the same mobile client 
exhibit locality, we also propose a synchronized caching 
technique that utilizes the results of previous queries to 
reduce the size of the additional information sent to the 
client for verification purposes.  

1. Introduction 
The embedding of positioning capabilities (e.g., GPS) in 
mobile devices has triggered several types of location-
based services. Such services provide fresh opportunities 
for data sharing and utilization. Consider a data owner 
(DO) that possesses a proprietary spatial dataset, such as a 
specialized map overlay or a set of points of interest (e.g., 
local businesses). The DO can profit by allowing access to 
the dataset. However, the cost of setting up the 
infrastructure, hiring qualified personnel and advertising an 
online service may be prohibitive. Moreover, the value of 
the dataset will increase if it is combined with the 
functionality (e.g., driving directions, aerial photos, etc.) of 
a general-purpose online map. These reasons provide 
strong motivation for outsourcing the dataset to a 
specialized location-based service (LBS), which achieves 
economy of scale by servicing multiple owners.  

Outsourcing of relational databases was first proposed 
in [HIM02]. In this paper, we focus on spatial outsourcing, 
motivated by the large availability of spatial data from 
various sources (e.g., satellite imagery, land surveys, 
environmental monitoring, traffic control). Often, agencies 
collecting such data (e.g., government departments, 
nonprofit organizations) are not able to support advanced 
query services; outsourcing to a LBS is the only option for 
utilizing the data. Furthermore, even if a DO possesses the 
necessary functionality, it may be beneficial in terms of 
cost, visibility, ease of access etc., to replicate the data in a 
LBS. The importance of spatial outsourcing is expected to 
soar with the increasing appearance of data sources and the 
emergence of novel mobile computing applications.  

Our solutions follow the framework of Figure 1.1, 
adopted from relational database outsourcing. The DO 
obtains, through a key distribution center, a private and a 
public key. In addition to the initial data, the owner 
transmits to the LBS a set of signatures required for 
authentication. Whenever updates occur, the relevant data 
and signatures are also forwarded to the LBS. The LBS 
receives and processes spatial queries, (e.g., ranges, k-
nearest-neighbors) from clients. Since the LBS is not the 
real owner of the data, the client must be able to verify the 
soundness and completeness of the results. Soundness 
means that every record in the result set is present in the 
owner's database and not modified. Completeness means 
that no valid result is missing.   

initial data 
& signatures

data updates
& signature updates

query

query results
 & VO

LBS ClientDO  
Figure 1.1 Database outsourcing framework 

In order to process authenticated queries efficiently, the 
LBS indexes the data with an authenticated data structure 
(ADS). Each incoming query initiates the computation of a 
verification object (VO) using the ADS. The VO (which 
includes the query result) is returned to the client that can 
establish soundness and completeness using the public key 
of the DO. A crucial part in this framework concerns the 
ADS. Specifically, the ADS must consume little space, 
support efficient query processing, and lead to small VOs 
that can be easily transferred and verified. In addition, it 
must be able to handle updates.  
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Most disk-based ADSs focus on 1D ranges. The only 
work dealing with multi-dimensional ranges is [CPT06], 
which applies the signature chain concept [PJRT05] to 
KD-trees and R-trees. Although the R-tree based ADS, 
called VR-tree, is the best between the two options, it still 
has some serious drawbacks: large space and query 
processing overhead for the LBS, high initial construction 
cost for the data owner, and considerable verification 
burden for the clients. Motivated by these problems, we 
propose the MR-tree, an index based on the R*-tree 
[BKSS90], capable of authenticating arbitrary spatial 
queries. We show, analytically and experimentally, that the 
MR-tree outperforms the VR-tree significantly on all 
performance metrics. 

Typically, successive queries from the same client focus 
on a small part of the data space (e.g., a moving client 
asking about its surroundings). Thus, the VOs of these 
queries have significant overlap. Our second contribution is 
a synchronized caching technique that utilizes this overlap 
in order to reduce the size of the VO. Elegant algorithms 
continuously update the cache contents of the LBS and the 
client, so that they are always identical and up-to-date, 
without requiring any additional communication overhead. 
Furthermore, the space overhead for the service provider is 
relatively small, so that a LBS with a realistic amount of 
main memory (1-2 Gbytes) can support synchronized 
caching for millions of clients. 

The rest of the paper is organized as follows. Section 2 
surveys related work. Section 3 describes the basic MR-
tree structure, discusses query processing, and offers cost 
models for its performance. Section 4 focuses on the 
synchronized cache and its maintenance. Section 5 contains 
a comprehensive experimental evaluation, and Section 6 
concludes the paper. 

2. Related Work 
Query authentication was first studied in the Cryptography 
literature. The Merkle Hash Tree (MH-tree) [M89] is a 
main-memory binary tree that hierarchically organizes 
hash1 values. Figure 2.1 illustrates a MH-tree covering 8 
data records d1-d8, each assigned to a leaf. A node N 
contains a hash value hN computed as follows: if N is a leaf 
node, hN = H(dN), and dN is the assigned record of N, e.g., 
h1 = H(d1); otherwise (N is an internal node), hN = H(hN.lc | 
hN.rc), where N.lc (N.rc) is the left (right) child of N 
respectively, and “|” concatenates two binary strings, e.g., 
h1-4 = H(h1-2 | h3-4). After building the tree, the data owner 
signs the hash value hRoot, stored in the root of the MH-tree, 
using a public key digital signature scheme (e.g., RSA 
[MOV96]). 

                                                                 
1 Throughout the paper, the term hash function (H) implies a one-

way, collision-resistant hash function. In this work we employ 
SHA1 [MOV96].  
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Figure 2.1 Example of Merkle Hash Tree 

To authenticate one-dimensional range queries, Devanbu et 
al. [DGMS03] sort the database records on the query 
attribute and index them by a MH-tree. Figure 2.1 shows 
an example, where the DSP receives query Q covering 
records d4 and d5. The LBS first determines the boundary 
records of Q, i.e., d3 and d6 which bound Q’s result. Then, 
it follows the root-to-leaf path (Root, N1-4, N3-4, N3) to the 
left boundary record d3. For each node visited, the hash 
value (h1-2) of its left sibling is inserted into the VO. 
Records d3, d4, d5, d6 are added to the VO. Similarly, the 
hash values (h7-8) of all right-siblings on the path from the 
root to the right boundary d6 are also appended. The LBS 
sends the VO and the signature of hRoot to the client. To 
verify the sequence, the client re-constructs the hash value 
at the root of the MHT using d3, d4, d5, d6 and the hash 
values in the VO (h1-2, h7-8): hRoot= H(H{h1-2 | H[H(d3) | 
(H(d4)]} | H{H[H(d5)| (H(d6)] | h7-8}). If the reconstructed 
hRoot matches the owner's signature, the result is sound. The 
boundary records also guarantee that no records are 
omitted from the query endpoints (completeness). 

A combination of the MH-tree and the range search tree 
[BKOS97] is exploited in [DGMS03] to authenticate multi-
dimensional range queries. Martel et al. [MND+04] extend 
the MH-tree concept to arbitrary search DAGs (Directed 
Acyclic Graphs), including dictionaries, tries, and 
optimized range search trees. Goodrich et al. [GTTC03] 
present ADSs for graph and geometric searching. These 
techniques, however, focus on main-memory and are 
highly theoretical in nature. For example, the range search 
tree is rarely used in practice due to its high space 
requirements: O(nlogd-1n), where n and d are the size and 
dimensionality of the data respectively. 

The first disk-based ADS in the Database literature is 
the VB-tree [PT04], which authenticates the soundness, but 
not the completeness, of 1D range results. A subsequent 
signature chaining approach [PJRT05, NT06] authenticates 
both soundness and completeness. Figure 2.2 illustrates an 
example, assuming that the database contains four tuples 
d1-d4, sorted on the search attribute. The data owner inserts 
two special records d0, d5 with values –∞ and +∞, and 
creates four signatures s012, s123, s234, s345, one for each 
triplet of adjacent tuples; s012 corresponds to d1, s123 to d2 
and so on. The data and signatures are then transferred to 
the service provider.  

Let the result of a range query contain d1, d2 and d3. The 
service provider inserts into the VO: the result (d1, d2, d3), 
the signature for each tuple in the result (s012, s123, s234), and 
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the boundary records d0 and d4. Given the VO, the client 
checks that (i) the two boundary records fall outside the 
query range, and (ii) all signatures are valid. The first 
condition ensures that no results are missing at the range 
boundaries, i.e., d1 and d3 are indeed the first and last 
records of the result. The second guarantees that all results 
are correct. The boundary records can be hidden through an 
encryption scheme [PJRT05].  

d2 d3 d4d1 +-

s012 s123 s234

d0 d5

s345  
Figure 2.2 Example of signature chaining 

The Merkle B-tree (MB-tree) [LHKR06] is a disk-based 
adaptation of the MH-tree. Each internal node stores entries 
E of the form (E.p, E.k, E.h), where E.p points to a child 
node Nc, E.k is the search key and E.h is a hash value 
computed on the concatenation of the hash values of the 
entries in Nc. Leaf nodes store records and their respective 
hash values. The DO signs the hash of the concatenation of 
the hashes contained in the root of the tree. Compared to 
signature chaining, the MB-tree incurs less space overhead 
since hash values are smaller than signatures and less 
verification effort because only the root is signed.  

The only multi-dimensional ADSs in the database 
literature are the VKD-tree and VR-tree [CPT06]. These 
structures apply the signature chain concept to KD-trees 
[BKOS97] and R-trees [G84], respectively. We focus on 
the VR-tree since, as shown in [CPT06], it outperforms the 
VKD-tree. All points in a leaf node are sorted according to 
their x-coordinates. Two fictitious points are added before 
the first and after the last point of the node. Following 
[PJRT05], the VR-tree creates one signature for each 
sequence of three points and stores it along with each entry, 
e.g., in Figure 2.3a, the entry for P8 contains s789. For 
internal nodes, the minimum bounding rectangles (MBRs) 
of child nodes are sorted on their left side and a signature 
chain is formed in a similar way. For instance, in Figure 
2.3b, the signature of N4 is s345.  

The processing of range queries is similar to the R-tree, 
except for the additional VO construction. Consider query 
Q in Figure 2.3a, which retrieves P9 and P11. For each 
index node visited, all MBRs in this node are inserted into 
the VO. The corresponding signatures participate in the 
incremental construction of an aggregated 2  signature s. 
When a leaf node of the VR-tree is reached, all points 
whose x-coordinates fall in the query range (P8-P12) and the 
two boundary points (P7, P13) are inserted into the VO. The 
corresponding signatures are aggregated in s, which is 
included in the VO.  
                                                                 
2 Signature aggregation [MNT04] condenses multiple signatures 

into a single one, thus significantly reducing the total size. 
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(a) Leaf Node (b) Internal Node 
Figure 2.3 Signature chains in the VR-tree 

To verify results, the client starts from the root and 
compares all MBRs against the query. Then, it reads the 
content of each node whose MBR overlaps the query from 
the VO and recursively checks all its children. Finally, at 
the leaf level, it can extract the query results. During this 
procedure, the client incrementally constructs an 
aggregated digest from the MBRs and points included in 
the VO, which is eventually verified against the aggregated 
signature. As we show, analytically and experimentally, the 
VR-tree has some serious shortcomings: large space and 
query processing overhead, high initial construction cost, 
and considerable verification burden for the clients. The 
MR-tree, discussed next, aims at solving these problems. 

3. MR-tree 
Section 3.1 presents the structure of the MR-tree, and 
describes query processing and authentication. Section 3.2 
contains cost models for various performance metrics, and 
compares the MR-tree and the VR-tree analytically.  

3.1 Structure and Query Processing 
The MR-tree combines concepts from MB- [LHKR06] and 
R*-trees [BKSS90]. Figure 3.1 illustrates the node 
structure. Leaf nodes are identical to those of the R*-tree: 
each entry Ri corresponds to a data object. Note that 
although our examples use points, the MR-tree is 
applicable to objects with arbitrary shapes. A hash value is 
computed on the concatenation of the binary representation 
of all objects in the node. Internal nodes contain entries of 
the form (pi, MBRi, hi), signifying the pointer, minimum 
bounding rectangle and hash value of the ith child, 
respectively. The hash value summarizes child nodes’ 
MBRs (MBR1-MBRf), in addition to their hash values (h1-
hf). The hash value of the root node hroot is signed by the 
data owner and stored with the tree. The MR-tree supports 
updates based on the corresponding algorithms of the R*-
tree. When a node changes (due to an insertion or deletion), 
the corresponding hash value in the parent entry is updated 
recursively, until reaching the root. The owner then signs 
the new root and transmits the changes to the LBS.     

...

h=hash(R1 | R2 | ... |Rf)

RfR1 R2 p1 MBR1h1 p2MBR2h2 pf MBRf hf...

h=hash(MBR1|h1|MBR2|h2|…|MBRf|hf)

(a) Leaf Node (b) Internal Node 
Figure 3.1 MR-tree node structure 
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To process a range query Q, the LBS invokes 
RangeQuery(root, Q), shown in Figure 3.2. The algorithm 
computes the verification object by following a depth-first 
traversal of the MR-tree. The VO contains three types of 
data: (i) all objects in each leaf node visited (Line 4), (ii) 
the MBR and hash values of pruned nodes (Line 7), and 
(iii) special tokens [ and ] that mark the scope of a node 
(Lines 1 and 8). New entries are always appended to the 
end of the VO.  

RangeQuery (Query Q, MR_Node N) // LBS 
1. Append [ to VO 
2. For each entry e in N // entries must be enumerated in original order 
3.  If N is leaf   
4.   Append e.data to VO 
5.     Else // N is internal node 
6.   If e.MBR overlaps Q,   RangeQuery(Q, e.pointer) 
7.   Else append e.MBR, e.hash to VO // a pruned child node 
8. Append ] to VO 

Figure 3.2 Range query processing with the MR-tree 

Consider, for instance, query Q in the example tree of 
Figure 3.3. Similar to conventional R-trees, RangeQuery 
starts from the root and visits recursively all entries that 
overlap the shaded rectangle: N1, N4, N2, N5. After 
termination, the verification object is: [[(MBR_N3, 
hash_N3), [P4, P5, P6]]], [[P7, P8, P9], (MBR_N6, 
hash_N6)]]. The tokens signify the contents of a node; for 
instance, the component [[(MBR_N3, hash_N3), [P4, P5, 
P6]]] corresponds to the first root entry (N1), and the rest of 
the VO to the second one (N2). The LBS transmits the VO 
and the root signature sroot to the client. Note that the actual 
result (e.g., P4, P7) is part of the VO. 

P1

P2

P4
P5

P6

P3

P7

P8

P9
P10

P11

P12

N1

N2

N3

N4

N6

N5

Q
P7 P9P8P4 P6P5

N3 N4 N5 N6

N1 N2

P10 P12P11P1 P3P2

(a) Points and Node MBRs (b) MR-tree 
Figure 3.3 Example range query 

To verify the query results, the client first scans the VO to 
check that: (i) each data point in the VO is either outside Q, 
or included in the result set, (ii) no MBR (of a pruned 
node) in the VO overlaps Q, and (iii) the computed hroot 
from the VO agrees with sroot. Figure 3.4 shows the 
recursive procedure RootHash that computes hroot. The 
main idea is to simulate the MR-tree traversal performed by 
the LBS, and calculate the MBR and hash values bottom-
up. In the example of Figure 3.3, RootHash computes the 
MBR and hash value of nodes N4 (from P4-P6), N1 (from N3, 
N4), N5 (from P7-P9), N2 (from N5, N6), root (from N1, N2), 
in this order. Note that all entries in the VO, from the [ of 
the root to its ], must be used. Furthermore, the algorithm is 
online, meaning that it performs a single sequential scan of 

the VO. During the verification, the actual results (P4, P7) 
are extracted in Line 6. In addition, the client receives some 
objects (P5, P6, P8, P9) in the VO, which are not part of the 
result. Pang et. al. [PJRT05] propose a solution for 
avoiding disclosure of such objects, when the outsourced 
database must comply with certain access control policies. 
In this work, we consider that clients can issue queries 
freely without constraints. Nevertheless, the solution of 
[PJRT05] can be applied in conjunction with the proposed 
methods to hide the additional objects, if necessary.  

(MBRValue, HashValue) RootHash(VO) // Client 
1.  Initialize str , MBR to empty string and MBR value respectively 
2.  While VO still has entries 
3.    Get next entry eV from VO 
4.   If eV is ], go to Line 13 // break the while-loop 
5.    If eV is a data object R 
6.    If R overlaps the query, Add R to the result set 
7.      MBR_c = the MBR of R 
8.     str_c = the binary representation of R 
9.       If eV is [, (MBR_c, hash_c) = RootHash(VO) 
10.     If eV is a pair of MBR/hash value (MBR_eV, hash_eV) 
11.    MBR_c, str_c = (MBR_eV, hash_eV) 
12.     Enlarge MBR to include MBR_c    
13.     Concatenate str with str_c 
14. Return (MBR, hash (str)) 

Figure 3.4 Algorithm for re-computing hroot 

Proof of soundness: Assume that an object P in the result 
set is bogus or modified. Because the hash function is 
collision-resistant and P must be used by RootHash, the re-
computed hroot can not be verified against sroot, which is 
detected by the client.     

Proof of completeness. Let P be an object satisfying Q. 
Consider the leaf node Nl containing P. For the re-
computed hroot to match sroot, either Nl’s true contents or 
MBR/hash must be in the VO. In the former case P is in the 
VO, and extracted in Line 6 of RootHash. In the latter case, 
Nl’s MBR overlaps Q, which alarms the client about 
potential violation of completeness.    

In addition to range search, the MR-tree can 
authenticate other common spatial queries, including k 
nearest neighbors (kNN) and skylines. Given a point Q, a 
kNN query retrieves the k points from the data set that are 
closest to Q [HS99]. In the example of Figure 3.5a, the 
three NNs of Q are P1, P2 and P3, in increasing order of 
distance from Q. A key observation is that the kNN of Q lie 
in a circular area C centered at Q that contains exactly k 
data points. Therefore, the LBS can prove the kNN results 
by sending to the client the VO corresponding to C. 
Specifically, it first finds the k neighbors, then it computes 
C, and finally executes RangeQuery treating C as the range. 
The verification process of the client is identical to the one 
performed for range queries.  

A skyline query retrieves all points that are not 
dominated by others in the dataset [PTFS05]. A point Pi 
dominates another Pj, if and only if, the co-ordinate of Pi 
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on each dimension is no larger than the corresponding co-
ordinate of Pj. The skyline in Figure 3.5b contains P1, P2 
and P7. To prove it, the LBS processes a range query that 
contains the area of the data space not dominated by any 
skyline point. This area (shaded in Figure 3.5b) can be 
divided into multiple rectangles. The result contains only 
the skyline points, and can again be verified according to 
the methodology of range search.  

QP6
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P2

P3

P4

P7
 

P1

P2
P3

P4

P5

P6

P7

x

y
 

(a) kNN (b) Skyline 
Figure 3.5 Alternative queries 

3.2 Cost Models 

The important performance metrics for authenticated 
structures are (i) index construction time, (ii) index size, (iii) 
query processing cost, (iv) size of the VO, and (v) 
verification time. The first metric affects the party that 
builds the index, i.e., depending on the system, the DO or 
the LBS. The second one burdens the LBS and, in some 
cases, the DO (if it also has to maintain the index). 
Furthermore, it affects the communication cost between the 
two. Metric (iii) is important only for the LBS. The size of 
the VO influences the network overhead between the LBS 
and the client. Finally, the verification time burdens 
exclusively the client. In the sequel we compare 
analytically the MR-tree and the VR-tree on the above 
metrics. Table 3.1 summarizes the symbols used in the 
analysis, as well as their typical values (1msec = 10-3 
seconds, 1μsec = 10-6 seconds). These values were obtained 
based on the hardware and software settings of our 
experiments, using the Crypto++ library. Our 
measurements are similar to those of the library 
benchmarks [Crypto] and the values suggested in 
[LHKR06]. 

Symbol Meaning Typical Value 
Cs CPU cost of sign operation 3.4 msec 
Cv CPU cost of verify operation 160 μsec 
Ch CPU cost of hash operation 28 μsec 
Cm CPU cost of multiply operation 43 μsec 
CNA CPU cost of a random node access  15 msec 
Ss size of a signature 128 bytes 
Sh size of a hash value 20 bytes 
SM size of an MBR 32 bytes 
Sp size of a data point 16 bytes 
n data cardinality 2,000,000 
d data dimensionality 2 
Ql query extent on one dimension 10% of space 
b block size 4096 bytes 
fl fanout of leaf node VR 19 MR 179
fn fanout of internal node VR 17 MR 51
h height of the tree VR 5 MR 4 

Table 3.1 Symbols and values in the analysis 

We first establish a simple cost model for the R-tree, based 
on the fact that in d-dimensional unit space [0,1]d, the 
probability that two random rectangles r1, r2 overlap is: 

1 2 1 2
1

( , ) ( . . )
d

overlap j j
j

P r r r l r l
=

= +∏  (3.1)

where r.lj denotes rectangle r’s extent along the jth 
dimension [PSTW03]. For simplicity, we assume that the 
data set contains points (rectangular data are discussed in 
[TS96]) uniformly distributed in the unit space and query 
Q has equal length Ql on all dimensions. Let fl (fn) be the 
average fanout of a leaf (internal) node, and n be the data 
cardinality. The number of leaf nodes is n/fl, and the 
height of the R-tree is 1 log ( / )

nf lh n f⎡ ⎤= + ⎢ ⎥ . The number of 

internal nodes at depth i of the tree (assuming a complete 
tree where the root has depth 0) is i

nf , each containing 

/ i
nn f  data points in its sub-tree. Because of the uniform 

distribution, the number of points in a node is proportional 
to the space covered by this node. Following [TS96], we 
assume that all nodes at the same level are squares with 
similar sizes. Therefore, a node at depth i covers 1/ i

nf  

space, and has length 1/ id
nf on each dimension. Applying 

Equation 3.1, the total cost of processing Q using the VR- 
or the MR-tree is: 

( ) ( )
2

0

1/ /
h d d

i id d
Q NA n n l l l l

i

C C f f Q f f n Q
−

=

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠
∑ (3.2)

where CNA is the cost of a node access. Similarly, the 
storage overhead of both the VR- and the MR-tree can be 
estimated by: 

2

1

h
i

index n l
i

S b f n f
−

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑  (3.3)

where b is the block size. The difference between the two 
structures regards the authentication information, leading to 
different fanouts (fl, fn). The VR-tree maintains one 
signature (128 bytes) per entry in every node (leaf or 
internal). In contrast, the MR-tree adds hash values (20 
bytes each) only to internal nodes. Assuming a page of 
4KBytes, 70% average storage utilization and double 
precision, the VR-tree has a fanout of fl=19 (leaf) and fn=17 
(internal), while for the MR-tree fl = 179 and fn = 51. The 
lower fanout of the VR-tree increases its height. 

Besides R-tree generation, the VR-tree requires a 
signature for each object and node. The MR-tree only 
involves cheap computations of hash values for nodes (but 
not objects). If the cost of a sign / verify / hash operation is 
Cs, Cv, Ch respectively, the initial construction overhead of 
the VR-tree (MR-tree) is given by equation 3.4 (3.5):  

1

1

h
VR i
init s n

i

C C f n
−

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑  (3.4)

1

0

h
MR i
init s h n

i

C C C f
−

=

= + ∑  (3.5)

Let the size of a signature, an MBR, a hash value and a 
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data point be Ss, SM, Sh and Sp, respectively. Then, the VO 
of the VR-tree with signature aggregation consumes space: 

( ) ( )
2

1

0

1/ /
h d d

VR i id d
VO s n n l M l l p

i

S S f f Q S n f n Q S
−

+

=

= + + + +∑  
(3.6)

where the last two terms estimate MBRs and points for 
visited internal and leaf nodes respectively. Note that with 
signature aggregation, there is a single signature, thus the 
VO size is relatively small. To prepare this VO, however, 
the LBS must perform modular multiplications, whose cost 
is: 

( ) ( )
2

1

0

1/ /
h d d

VR i id d
VO m n n l l l

i

C C f f Q n f n Q
−

+
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⎝ ⎠
∑  

(3.7)

Thus, the total query processing overhead for the VR-tree 
is the sum of the two costs expressed in Equations 3.2 and 
3.7. The VO size of the MR-tree is given by Equation 3.8. 
The complicated part is to analyze the total number of 
pruned nodes during query processing. PN(i) estimates the 
number of pruned nodes at depth i, by computing the 
number of nodes outside Q, subtracted by descendents of 
higher pruned nodes.  

( ) ( )
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(3.8)

Finally we estimate the verification time for the client, 
which is dominated by modular multiplications (VR-tree) 
or computing hash values (MR-tree). The costs of the VR-
tree (with signature aggregation) and the MR-tree are given 
by Equations 3.9-3.10. The MR-tree has a clear advantage 
because (i) for each node, the MR-tree invokes the hash 
function once, whereas the VR-tree performs modular 
multiplication for each entry, and (ii) Ch < Cm. 
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i
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(3.9)
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Table 3.2 shows the costs calculated by the above 
equations using the typical values of Table 3.1. The VR-
tree incurs about 30 times the overhead of the MR-tree for 
computing the authentication information (in the entire 
tree), and is 8 times larger. The MR-tree is also 
significantly better in terms of query processing and 
verification cost. The latter is particularly important 
because the clients are mobile devices with limited 
computing power. The only aspect where the two structures 
are similar is VO size. Next, we present an optimization for 
reducing the VO. 

Costs MR-tree VR-tree 
Time for Computing Authentication Data 4 sec 2 hours 

Index Size 57 MBytes 511 MBytes 
Query Processing Time 2 sec 22 sec 

VO size (bytes) 390 KBytes 398 KBytes 
Verification (CPU time) 41 ms 991 ms 

Table 3.2 Comparison of estimated costs 

4. Synchronized Caching for the MR-tree 
Each client is expected to issue numerous queries at 
different times. The VO of these queries always share 
common entries, specifically, sroot and the MBR/hash 
values of the root nodes (since the root is always accessed). 
In practice, the overlap is significantly larger because most 
queries focus on a small part of the data space. For 
instance, a moving client is likely to ask about its 
surroundings at successive locations that are close to each 
other. Assume that the client maintains the VO of previous 
queries in a cache. When the LBS processes a new query, it 
needs to send only the part of the VO that is not already in 
the cache. However, in order for this optimization to 
become possible, the LBS must have complete knowledge 
of the client’s cache. We propose a synchronized cache 
(SC) scheme, where the LBS maintains, for each client, an 
abstract copy of its cache. The term abstract means that 
concrete hash values and records are replaced with 
placeholders (to be discussed shortly). As shown in the 
experimental evaluation, a LBS with a reasonable amount 
of main memory can support synchronized caching for 
millions of clients.  
  Figure 4.1 summarizes the proposed framework for 
synchronized caching. Given a query from the client, the 
LBS computes the (uncompressed) VOraw. Then, it applies 
an algorithm (ReduceVO) that utilizes the contents of the 
SC to derive a compressed VOreduced, i.e., the part of VOraw 
that is not in SC. VOreduced, which is usually much smaller 
than VOraw, is sent to the client. The client restores VOraw 
(using the reverse process of ReduceVO) and uses it to 
verify the query result. Both the LBS and the client 
incorporate the content of VOreduced to the SC through 
MergeVO algorithm. The addition of new content may 
increase the size of the SC beyond a predefined limit. In 
this case, PurgeSC frees space by expunging "old" data. It 
is easy to verify that if the LBS and the client start with an 
empty SC and have the same space limit, then their cache 
contents are identical at all times. Thus, there is no 
additional communication overhead for cache 
synchronization. On the other hand, this optimization 
minimizes the VO size and the associated transmission cost. 

 LBS Client
Compute 

result, VOraw

ReduceVO

query

RestoreVO

VOraw

VOreduced

Verify result

SC

MergeVO

VOreducedSCold

SCnew

MergeVO

SC

VOraw

SCold

SCnew

SCold SCnew

PurgeSC

SCold SCnew

PurgeSC

 
Figure 4.1 Framework of synchronized caching  

Section 4.1 describes the VO minimization process (i.e., 
ReduceVO), while Section 4.2 focuses on the SC 
maintenance (i.e., MergeVO and PurgeSC). In our 
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discussion, we distinguish between value and token entries 
in the VO. A value entry is a data point, a pair of 
MBR/hash values, or the signature sroot. A token is [ or ]. 

4.1 Minimizing the Size of the VO 

Similar to the VO, the SC is a linked list of value and token 
entries except that the copy maintained by the LBS uses a 
placeholder (i) for each (MBR, hash value) pair and (ii) for 
all records in a leaf node. Moreover, each token [ is 
associated with a timestamp to be discussed later. We use 
the running example of Figure 4.2, where a client asks two 
queries Q1, Q2. The SC is initialized to be empty. When the 
first query is processed, its VO is copied to the caches of 
both the LBS and the client. After this step, the SC equals 
VO(Q1) = [[[P1, P2, P3], (MBR_N4, hash_N4)], (MBR_N2, 
hash_N2)], sroot. When later the LBS processes Q2, it 
compares VO(Q2) = [[(MBR_N3, hash_N3), [P5, P6]],  
(MBR_N2, hash_N2)], sroot with the SC. (MBR_N2, 
hash_N2) and sroot are in the SC and replaced with a token 
SC_hit, reducing the VO size from 5 to 3 value entries. 
Moreover, the entire sub-tree of N3 (P1-P3) is in the SC, 
meaning that the client is able to compute MBR_N3 and 
hash_N3. Therefore, the LBS substitutes the entry 
(MBR_N3, hash_N3) with a token SC_compute, leading to a 
VO(Q2) with only 2 value entries P5 and P6. 

P1
P2

P4P5

P6
P3 P7

P8
P9

P10

P11

P12

N1

N2

N3

N4

N5

N6

Q1

Q2

 

 Query VO 

 

Q1 

[[[P1, P2, P3],  
(MBR_N4, hash_N4)], 
(MBR_N2, hash_N2)], 

sroot 

 
Q2 

[[(MBR_N3, hash_N3), 
[P5, P6]],  (MBR_N2, 

hash_N2)], sroot 

Reduced VO(Q2): [[SC_compute, 
[P5, P6]], SC_hit], SC_hit 

(a) Queries (b) VOs  
Figure 4.2 Queries with overlapping VOs 

Figure 4.3 shows ReduceVO, which utilizes the SC to 
minimize the verification object. Let VOraw (VOreduced) be 
the VO before (after) the shrinking process. ReduceVO 
scans the SC and VOraw in parallel, computing VOreduced. 
Each step retrieves an entry eV (eS) from VOraw (SC). An 
important invariant is that eV and eS must always 
correspond to the same node (or data record) in the MR-
tree. We illustrate the algorithm using the example of 
Figure 4.2 and assuming SC = VO(Q1) and VOraw = VO(Q2). 
In the first two steps, eS and eV are both [ (Case 4), and the 
LBS simply appends two [ into VOreduced. Then, eS becomes 
[ and eV = (MBR_N3, hash_N3) (Case 2). Both eS and eV 
refer to the same node N3: the SC contains details about N3, 
whereas the VO only contains aggregates (i.e., MBR and 
hash). Therefore, it is possible to compute eV with SC 
entries starting from eS until its corresponding ], i.e., [P1, P2, 
P3]. Thus the LBS appends an SC_compute token to 
VOreduced. Note that we must adjust the current entry of SC 

accordingly (Line 8-10) to ensure the invariant stated 
above. Next, eV becomes [ (before P5) and eS is (MBR_N4, 
hash_N4) (Case 3). Conversely to Case 2, now the VOraw 
contains details (i.e., [P5, P6]) while the SC contains 
aggregates. Starting from this [, the LBS copies everything 
from VOraw to VOreduced, until the corresponding ] is reached. 
Then, both eV and eS become successively [ (Case 4), and 
(MBR_N2, hash_N2) (Case 1). The token SC_hit is 
appended to VOreduced. Finally, for sroot, SC_hit is appended 
to VOreduced. VOreduced is sent to the client, which restores 
the original VOraw (following the reverse process of 
ReduceVO) and uses it to verify the query results. 
 

VOreduced ReduceVO (SC, VOraw) // LBS 
1.  Initialize VOreduced to empty 
2.  While VOraw still has entries 
3.     Get next entry eV of VOraw and eS of SC 
4.     If eV and eS are the same value entry                         // Case 1 
5.         Append SC_hit to VOreduced 
6.     If eV is a MBR/hash value pair and eS is [            // Case 2 
7.          Append SC_compute to VOreduced  
8.          Let ebegin = eS 
9.          While eS is not the matching ] of ebegin 
10.              Get next entry from SC as the new value for eS 
11.   If eV is [ and eS is a MBR/hash value pair           // Case 3 
12.        Append eV to VOreduced 
13.        Let ebegin = eV 
14.        While eV is not the matching ] of ebegin        
15.              Get next entry from VO as the new value for eV 
16.              Append eV to VOreduced 
17.   If eS and eV are the same token entry                        // Case 4 
18.       Append eV to VOreduced          

Figure 4.3 ReduceVO algorithm 

4.2 Updating the SC 
Every new VOreduced updates the SC at the LBS and the 
client.  Specifically, both LBS/client integrate VOreduced into 
the SC using MergeVO, shown in Figure 4.4. The SC 
before (after) this operation is called SCold (SCnew). Initially, 
SCnew is empty. Each step of MergeVO retrieves pairs of 
entries eV ∈ VOreduced and eS ∈  SCold in parallel. Depending 
on the type of these entries, we have 4 cases, similar to 
ReduceVO. Case 1 occurs when eV is a hit for eS; eS is 
added to SCnew and its [ receives a timestamp equal to the 
current time. As we discuss shortly, timestamps are used to 
expunge old entries according to an LRU policy. Case 2 
happens when eV can be computed by eS. MergeVO inserts 
to SCnew all entries between the [ and ] tokens of eS. The 
recency of these entries is not updated, because 
SC_compute implies that only the aggregates, but not the 
actual contents, of eS are required for the query. Case 3 
incorporates new information from the VO into SCnew. 
Specifically, when the VO contains details of an MR-tree 
node while SCold has only aggregates, we append these 
details into SCnew. In the example of Figure 4.2, if the client 
has SCold = VO(Q1) and receives the reduced VO(Q2), 
MergeVO updates the timestamps and replaces the 
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MBR/hash value of N4 with [P5, P6]. Conceptually, SCnew 
becomes the VO for query Q = (Q1 or Q2). Case 4 simply 
appends token entries. 
 
SCnew MergeVO (SCold, VO) // VO is already reduced 
1.  Initialize SCnew to empty 
2.  While VO has entries 
3.     Get next entry eV of VO and eS of SC 
4.     If eV is SC_hit                                                                // Case 1 
5.        Append eS to SCnew  
6.         Set the timestamp of the [ of eS to now 
7.     If eV is SC_compute                                                       // Case 2 
8.          Append eS to SCnew 
9.          Let ebegin = eS 
10.        While eS is not the matching ] of ebegin 
11.              Get next entry from SCold as the new value for eS 
12.              Append eS to SCnew 
13.   If eV is [ and eS is an MBR/hash value pair               // Case 3 
14.         Let ebegin = eV 
15.         While eV is not the matching ] of ebegin        
16.              Get next entry from SCold as the new value for eS 
17.   If eS and eV are the same token entry                             // Case 4 
18.       Append eS to SCnew          

Figure 4.4 MergeVO algorithm 

In our implementation, we assign a limit L to the size of the 
SC at the client side. L may depend on the memory of the 
client, or it may be decided by the LBS. In either case, the 
LBS and the client agree on the value of L, which may be 
different for each client (e.g., the LBS may charge clients 
according to their cache size).  If the SC exceeds L (after an 
application of MergeVO), PurgeSC (Figure 4.5) removes 
the oldest entries to free space. Specifically, PurgeSC 
performs the opposite of operation MergeVO, i.e., it 
replaces the details of an MR-node (a sequence of entries 
bounded by [ and ]) with a single entry that contains the 
MBR and hash value of the node. The process is applied 
repeatedly until the size of the SC drops below L. At each 
step, the node to be replaced is chosen according to an 
LRU policy based on the timestamp stored with each [. 
Recall that these timestamps are maintained by MergeVO.  
 
PurgeSC (SC) 
1. While the size of the SC exceeds the limit L 
2.   Scan SC to find the oldest [ that is not enclosed by other tokens. 

Let ebegin be this [  
3.       Let eend be the corresponding ] of ebegin 
4.       Compute the MBR and hash of all SC entries from ebegin to eend  
5.       Replace all SC entries from ebegin to eend with a single entry  
          (MBR, hash) 

Figure 4.5 PurgeSC algorithm 

5. Experimental Evaluation 
We implemented the MR-tree and the VR-tree in C++, 
using the Crypto++ library [Crypto] and executed all 
experiments on a P4 3GHz CPU. Both MR-tree and VR-
tree implementations are based on R*-trees using 4Kbytes 
page size. Each experiment is repeated on two datasets: (i) 
UNI that contains 2 million uniformly distributed data 

points, and (ii) CAR that contains 2 million points taken 
from road segments in California [R-portal]. In cases where 
we want to set a specific cardinality, we randomly sample 
from these datasets using an appropriate sampling rate. 
Section 5.1 compares the initial construction cost and size 
of MR-trees and VR-trees. Section 5.2 evaluates the query 
processing and verification overhead of the two structures. 
Section 5.3 assesses the benefits of synchronized caching.  

5.1 Initial Construction 

Figure 5.1 illustrates the construction cost for VR- and 
MR- trees as a function of the data cardinality. This cost 
includes both the time to create the trees and the time to 
compute the hash values (MR-tree) or the signatures (VR-
tree). The VR-tree is 1-2 orders of magnitude more 
expensive to build due to the numerous signatures. Figure 
5.2 shows the CPU time for computing the necessary 
authentication information. The MR-tree outperforms the 
VR-tree by 3-4 orders of magnitude on this metric. 
Comparing Figures 5.2 and 5.1, the computation of 
signatures dominates the total construction cost of the VR-
tree. On the other hand, the MR-tree involves cheap 
hashing operations, only for the nodes (and not the data 
points). Consequently, the overhead of the additional 
information (with respect to the R*-tree) constitutes a small 
fraction (less than 1%) of the total construction cost. Figure 
5.3 illustrates the size of the indexes in MBytes. The VR-
tree is much larger since it stores one signature (128 bytes) 
for each data point and node, where the MR-tree stores one 
digest (20 bytes) for every node. 
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Figure 5.1 Total construction time vs. data cardinality 
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Figure 5.2 CPU time for authentication data vs. cardinality 
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5.2 Query Processing and Verification 

This section evaluates the query and verification cost of the 
two structures. All queries are ranges (recall from Section 3, 
that other query types, such as NN, can be converted to 
ranges), covering 1% of the entire (2D) space. For every 
experiment, we execute 100 ranges at random locations and 
illustrate the average cost. This cost burdens the LBS and 
includes both the result retrieval and the construction of the 
verification object. The data cardinality (N) varies between 
0.4⋅106 and 2 ⋅106. We do not include synchronized 
caching since it is evaluated separately in Section 5.3. 

Figure 5.4 illustrates the query cost (in seconds) as a 
function of the data cardinality (Ql = 10%). The MR-tree is 
fast because it creates the VO by simply appending MBRs 
and hash values for each pruned node. The VR-tree is 
about 2 orders of magnitude slower due to the modular 
multiplications required to create the aggregated signature. 
Recall that signature aggregation is unavoidable because, 
otherwise, the VO would be extremely large.  

VR-tree MR- tree  
 

0.4 0.8 1.2 1.6 2.010-3
10-2
10-1

1
10 seconds

milions

 

 

10-3
10-2
10
1
10

0.4 0.8 1.2 1.6 2.0
milions

seconds
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Figure 5.4 Query cost vs. data cardinality 

Next we measure the verification object. Figure 5.5 depicts 
the VO size versus the data cardinality. For small datasets, 
the VO of MR-trees and VR-trees have similar sizes. 
However, as the cardinality rises, the VO grows faster for 
the VR-tree because more intermediate MBRs are included 
in the VO (due to the smaller fanout). For comparison, the 
diagrams also illustrate the result size. The verification 
object (of VR-trees and MR-trees) is larger than the 
corresponding result, because the result is always part of 
the VO.  

Result SetVR-tree MR-tree  
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Figure 5.5 VO size vs. data cardinality 

Finally, Figure 5.6 investigates the verification time (at the 
client) versus the data cardinality. The VR-tree leads to 
high cost since verification involves a number of modular 
multiplications, which is proportional to the output size. On 
the other hand, verification in the MR-tree invokes 
relatively cheap hash operations. Minimization of 
verification time is crucial for clients (e.g., PDAs) with 
limited computational resources.  
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Figure 5.6 Verification time vs. data cardinality 

Summarizing, the MR-tree is considerably faster to build 
and consumes less space than the VR-tree. At the same 
time it is much more efficient for query processing and 
verification. The only aspect where the MR- and VR-tree 
have similar performance is the size of the VO. Next, we 
evaluate the impact of synchronized caching on the 
verification object. 

5.3 Synchronized Caching 

Recall that synchronized caching entails two caches at the 
LBS and the client. The VO of each processed query is 
incorporated in the caches and utilized to reduce the VO of 
subsequent queries. This optimization is expected to have 
considerable benefits in cases where successive queries 
exhibit locality. In our experiments we simulate a moving 
client that enquires about its surroundings. Specifically, the 
first query is a range centered at a random location. The 
user chooses a direction, moves a certain distance and 
issues another range search (with a fixed extent). The 
process is repeated 100 times. The VOs of the first 50 
queries are used to warm up the cache. For the remaining 
ones we measure the average reduction achieved per VO. 
The average reduction is defined as (|VOraw|-
|VOreduced|)/|VOraw|, where |VOreduced| (|VOraw|) is the size of 
the VO with (without) synchronized caching.  

We investigate the effect of the cache size, and the 
distance traveled between two consecutive queries using 
the CAR dataset. The results for UNI are similar and 
omitted due to the lack of space. The data cardinality is set 
to 2⋅106, and the query extent to 10% per axis. Figure 5.7a 
illustrates the average VO reduction as a function of the 
cache size (at the client), after fixing the distance between 
two consecutive queries to 3% of the axis length. Even 100 
KBytes of cache result in a reduction of about 10%. The 
reduction increases with the cache size and stabilizes at 
around 500 KBytes. After this point, more cache does not 
have a significant impact on performance, because the new 
parts of the tree have to be included in the VO anyway.  

The LBS stores, for each client, placeholders for the 
corresponding hash values and records. Therefore, the 
cache copy at the LBS consumes much less space than that 
of the client. The memory consumption per client at the 
LBS is shown at the bottom of the x-axis. Assuming a 
cache of 500Kbytes per client (i.e., 1.7Kbytes at the LBS), 
a LBS with 1 Gbyte of main memory can support up to 
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558⋅103 clients. If the cache size is 300 Kbytes per client, 
the LBS can support 833⋅103 clients. 
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Figure 5.7 Average VO reduction (CAR) 

Figure 5.7b illustrates the average reduction as a function 
of the distance between successive queries, after setting the 
cache size to 300 KBytes. As expected, the effect of the 
cache diminishes with the increasing distance, since the 
stored VO becomes irrelevant faster. Nevertheless, the 
distances that we use in these experiments are rather large 
compared to the locality exhibited in most practical 
applications.  

In conclusion, synchronized caching achieves 
significant reduction of the VO size, even for small caches 
and relatively infrequent (or distant) queries. Most potential 
clients of spatial outsourcing systems (e.g., PDAs) already 
include flash memory that reaches several Mbytes and 
could devote part of this memory for caching purposes. 
The minimization of the verification object, on the other 
hand, leads to savings in the communication cost, which is 
very important for wireless networks. Finally, recall that 
the update algorithms of Section 4 eliminate the need to 
transfer cache information between the LBS and the client.   

6. Conclusion 
Recent advances in location based services and sensor 
networks, as well as the popularity of web-based access to 
spatial data (e.g., MapQuest, GoogleEarth, etc.), 
necessitate query authentication for outsourced and 
replicated multidimensional data. In this paper, we propose 
the MR-tree, an authenticated index based on the Merkle 
Hash tree and the R*-tree. Our method outperforms the 
best current solution by orders of magnitude in many 
important metrics such as construction cost, index size and 
verification overhead. Furthermore, we develop a novel 
synchronized caching protocol, which significantly reduces 
the communication overhead of the verification step. We 
conclude our contributions with an extensive experimental 
study that validates the effectiveness and efficiency of the 
proposed structure.  
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