
 1

Spatial Outsourcing for Location-based Services
Yin Yang 1 Stavros Papadopoulos 1 Dimitris Papadias1 George Kollios2

1Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{yini, stavros, dimitris}@cse.ust.hk

2Department of Computer Science
Boston University

Boston, MA, 02215
gkollios@cs.bu.edu

Abstract
The embedding of positioning capabilities in mobile
devices and the emergence of location-based applications
have created novel opportunities for utilizing several types
of multi-dimensional data through spatial outsourcing. In
this setting, a data owner (DO) delegates its data
management tasks to a location-based service (LBS) that
processes queries originating from several clients/
subscribers. Because the LBS is not the real owner of the
data, it must prove (to each client) the correctness of query
output using an authenticated structure signed by the DO.
Currently there is very narrow selection of multi-
dimensional authenticated structures, among which the
VR-tree is the best choice. Our first contribution is the MR-
tree, a novel index suitable for spatial outsourcing. We
show, analytically and experimentally, that the MR-tree
outperforms the VR-tree, usually by orders of magnitude,
on all performance metrics, including construction cost,
index size, query and verification overhead. Motivated by
the fact that successive queries by the same mobile client
exhibit locality, we also propose a synchronized caching
technique that utilizes the results of previous queries to
reduce the size of the additional information sent to the
client for verification purposes.

1. Introduction
The embedding of positioning capabilities (e.g., GPS) in
mobile devices has triggered several types of location-
based services. Such services provide fresh opportunities
for data sharing and utilization. Consider a data owner
(DO) that possesses a proprietary spatial dataset, such as a
specialized map overlay or a set of points of interest (e.g.,
local businesses). The DO can profit by allowing access to
the dataset. However, the cost of setting up the
infrastructure, hiring qualified personnel and advertising an
online service may be prohibitive. Moreover, the value of
the dataset will increase if it is combined with the
functionality (e.g., driving directions, aerial photos, etc.) of
a general-purpose online map. These reasons provide
strong motivation for outsourcing the dataset to a
specialized location-based service (LBS), which achieves
economy of scale by servicing multiple owners.

Outsourcing of relational databases was first proposed
in [HIM02]. In this paper, we focus on spatial outsourcing,
motivated by the large availability of spatial data from
various sources (e.g., satellite imagery, land surveys,
environmental monitoring, traffic control). Often, agencies
collecting such data (e.g., government departments,
nonprofit organizations) are not able to support advanced
query services; outsourcing to a LBS is the only option for
utilizing the data. Furthermore, even if a DO possesses the
necessary functionality, it may be beneficial in terms of
cost, visibility, ease of access etc., to replicate the data in a
LBS. The importance of spatial outsourcing is expected to
soar with the increasing appearance of data sources and the
emergence of novel mobile computing applications.

Our solutions follow the framework of Figure 1.1,
adopted from relational database outsourcing. The DO
obtains, through a key distribution center, a private and a
public key. In addition to the initial data, the owner
transmits to the LBS a set of signatures required for
authentication. Whenever updates occur, the relevant data
and signatures are also forwarded to the LBS. The LBS
receives and processes spatial queries, (e.g., ranges, k-
nearest-neighbors) from clients. Since the LBS is not the
real owner of the data, the client must be able to verify the
soundness and completeness of the results. Soundness
means that every record in the result set is present in the
owner's database and not modified. Completeness means
that no valid result is missing.

initial data
& signatures

data updates
& signature updates

query

query results
 & VO

LBS ClientDO
Figure 1.1 Database outsourcing framework

In order to process authenticated queries efficiently, the
LBS indexes the data with an authenticated data structure
(ADS). Each incoming query initiates the computation of a
verification object (VO) using the ADS. The VO (which
includes the query result) is returned to the client that can
establish soundness and completeness using the public key
of the DO. A crucial part in this framework concerns the
ADS. Specifically, the ADS must consume little space,
support efficient query processing, and lead to small VOs
that can be easily transferred and verified. In addition, it
must be able to handle updates.

To appear in ICDE 2008

 2

Most disk-based ADSs focus on 1D ranges. The only
work dealing with multi-dimensional ranges is [CPT06],
which applies the signature chain concept [PJRT05] to
KD-trees and R-trees. Although the R-tree based ADS,
called VR-tree, is the best between the two options, it still
has some serious drawbacks: large space and query
processing overhead for the LBS, high initial construction
cost for the data owner, and considerable verification
burden for the clients. Motivated by these problems, we
propose the MR-tree, an index based on the R*-tree
[BKSS90], capable of authenticating arbitrary spatial
queries. We show, analytically and experimentally, that the
MR-tree outperforms the VR-tree significantly on all
performance metrics.

Typically, successive queries from the same client focus
on a small part of the data space (e.g., a moving client
asking about its surroundings). Thus, the VOs of these
queries have significant overlap. Our second contribution is
a synchronized caching technique that utilizes this overlap
in order to reduce the size of the VO. Elegant algorithms
continuously update the cache contents of the LBS and the
client, so that they are always identical and up-to-date,
without requiring any additional communication overhead.
Furthermore, the space overhead for the service provider is
relatively small, so that a LBS with a realistic amount of
main memory (1-2 Gbytes) can support synchronized
caching for millions of clients.

The rest of the paper is organized as follows. Section 2
surveys related work. Section 3 describes the basic MR-
tree structure, discusses query processing, and offers cost
models for its performance. Section 4 focuses on the
synchronized cache and its maintenance. Section 5 contains
a comprehensive experimental evaluation, and Section 6
concludes the paper.

2. Related Work
Query authentication was first studied in the Cryptography
literature. The Merkle Hash Tree (MH-tree) [M89] is a
main-memory binary tree that hierarchically organizes
hash1 values. Figure 2.1 illustrates a MH-tree covering 8
data records d1-d8, each assigned to a leaf. A node N
contains a hash value hN computed as follows: if N is a leaf
node, hN = H(dN), and dN is the assigned record of N, e.g.,
h1 = H(d1); otherwise (N is an internal node), hN = H(hN.lc |
hN.rc), where N.lc (N.rc) is the left (right) child of N
respectively, and “|” concatenates two binary strings, e.g.,
h1-4 = H(h1-2 | h3-4). After building the tree, the data owner
signs the hash value hRoot, stored in the root of the MH-tree,
using a public key digital signature scheme (e.g., RSA
[MOV96]).

1 Throughout the paper, the term hash function (H) implies a one-

way, collision-resistant hash function. In this work we employ
SHA1 [MOV96].

h1 h2 h3 h4 h5 h6 h7 h8

h1-2 h3-4 h5-6 h7-8

h1-4 h5-8

hRoot signed by the owner

d1 d2 d3 d4 d5 d6 d7 d8

N1-4

N3-4

N4

N1-2

N3

sent to the client

Q

Figure 2.1 Example of Merkle Hash Tree

To authenticate one-dimensional range queries, Devanbu et
al. [DGMS03] sort the database records on the query
attribute and index them by a MH-tree. Figure 2.1 shows
an example, where the DSP receives query Q covering
records d4 and d5. The LBS first determines the boundary
records of Q, i.e., d3 and d6 which bound Q’s result. Then,
it follows the root-to-leaf path (Root, N1-4, N3-4, N3) to the
left boundary record d3. For each node visited, the hash
value (h1-2) of its left sibling is inserted into the VO.
Records d3, d4, d5, d6 are added to the VO. Similarly, the
hash values (h7-8) of all right-siblings on the path from the
root to the right boundary d6 are also appended. The LBS
sends the VO and the signature of hRoot to the client. To
verify the sequence, the client re-constructs the hash value
at the root of the MHT using d3, d4, d5, d6 and the hash
values in the VO (h1-2, h7-8): hRoot= H(H{h1-2 | H[H(d3) |
(H(d4)]} | H{H[H(d5)| (H(d6)] | h7-8}). If the reconstructed
hRoot matches the owner's signature, the result is sound. The
boundary records also guarantee that no records are
omitted from the query endpoints (completeness).

A combination of the MH-tree and the range search tree
[BKOS97] is exploited in [DGMS03] to authenticate multi-
dimensional range queries. Martel et al. [MND+04] extend
the MH-tree concept to arbitrary search DAGs (Directed
Acyclic Graphs), including dictionaries, tries, and
optimized range search trees. Goodrich et al. [GTTC03]
present ADSs for graph and geometric searching. These
techniques, however, focus on main-memory and are
highly theoretical in nature. For example, the range search
tree is rarely used in practice due to its high space
requirements: O(nlogd-1n), where n and d are the size and
dimensionality of the data respectively.

The first disk-based ADS in the Database literature is
the VB-tree [PT04], which authenticates the soundness, but
not the completeness, of 1D range results. A subsequent
signature chaining approach [PJRT05, NT06] authenticates
both soundness and completeness. Figure 2.2 illustrates an
example, assuming that the database contains four tuples
d1-d4, sorted on the search attribute. The data owner inserts
two special records d0, d5 with values –∞ and +∞, and
creates four signatures s012, s123, s234, s345, one for each
triplet of adjacent tuples; s012 corresponds to d1, s123 to d2
and so on. The data and signatures are then transferred to
the service provider.

Let the result of a range query contain d1, d2 and d3. The
service provider inserts into the VO: the result (d1, d2, d3),
the signature for each tuple in the result (s012, s123, s234), and

 3

the boundary records d0 and d4. Given the VO, the client
checks that (i) the two boundary records fall outside the
query range, and (ii) all signatures are valid. The first
condition ensures that no results are missing at the range
boundaries, i.e., d1 and d3 are indeed the first and last
records of the result. The second guarantees that all results
are correct. The boundary records can be hidden through an
encryption scheme [PJRT05].

d2 d3 d4d1 +-

s012 s123 s234

d0 d5

s345
Figure 2.2 Example of signature chaining

The Merkle B-tree (MB-tree) [LHKR06] is a disk-based
adaptation of the MH-tree. Each internal node stores entries
E of the form (E.p, E.k, E.h), where E.p points to a child
node Nc, E.k is the search key and E.h is a hash value
computed on the concatenation of the hash values of the
entries in Nc. Leaf nodes store records and their respective
hash values. The DO signs the hash of the concatenation of
the hashes contained in the root of the tree. Compared to
signature chaining, the MB-tree incurs less space overhead
since hash values are smaller than signatures and less
verification effort because only the root is signed.

The only multi-dimensional ADSs in the database
literature are the VKD-tree and VR-tree [CPT06]. These
structures apply the signature chain concept to KD-trees
[BKOS97] and R-trees [G84], respectively. We focus on
the VR-tree since, as shown in [CPT06], it outperforms the
VKD-tree. All points in a leaf node are sorted according to
their x-coordinates. Two fictitious points are added before
the first and after the last point of the node. Following
[PJRT05], the VR-tree creates one signature for each
sequence of three points and stores it along with each entry,
e.g., in Figure 2.3a, the entry for P8 contains s789. For
internal nodes, the minimum bounding rectangles (MBRs)
of child nodes are sorted on their left side and a signature
chain is formed in a similar way. For instance, in Figure
2.3b, the signature of N4 is s345.

The processing of range queries is similar to the R-tree,
except for the additional VO construction. Consider query
Q in Figure 2.3a, which retrieves P9 and P11. For each
index node visited, all MBRs in this node are inserted into
the VO. The corresponding signatures participate in the
incremental construction of an aggregated 2 signature s.
When a leaf node of the VR-tree is reached, all points
whose x-coordinates fall in the query range (P8-P12) and the
two boundary points (P7, P13) are inserted into the VO. The
corresponding signatures are aggregated in s, which is
included in the VO.

2 Signature aggregation [MNT04] condenses multiple signatures

into a single one, thus significantly reducing the total size.

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15
Q

N1

N2

N3

N4

N5

N6

N7

N8

N9

(a) Leaf Node (b) Internal Node
Figure 2.3 Signature chains in the VR-tree

To verify results, the client starts from the root and
compares all MBRs against the query. Then, it reads the
content of each node whose MBR overlaps the query from
the VO and recursively checks all its children. Finally, at
the leaf level, it can extract the query results. During this
procedure, the client incrementally constructs an
aggregated digest from the MBRs and points included in
the VO, which is eventually verified against the aggregated
signature. As we show, analytically and experimentally, the
VR-tree has some serious shortcomings: large space and
query processing overhead, high initial construction cost,
and considerable verification burden for the clients. The
MR-tree, discussed next, aims at solving these problems.

3. MR-tree
Section 3.1 presents the structure of the MR-tree, and
describes query processing and authentication. Section 3.2
contains cost models for various performance metrics, and
compares the MR-tree and the VR-tree analytically.

3.1 Structure and Query Processing
The MR-tree combines concepts from MB- [LHKR06] and
R*-trees [BKSS90]. Figure 3.1 illustrates the node
structure. Leaf nodes are identical to those of the R*-tree:
each entry Ri corresponds to a data object. Note that
although our examples use points, the MR-tree is
applicable to objects with arbitrary shapes. A hash value is
computed on the concatenation of the binary representation
of all objects in the node. Internal nodes contain entries of
the form (pi, MBRi, hi), signifying the pointer, minimum
bounding rectangle and hash value of the ith child,
respectively. The hash value summarizes child nodes’
MBRs (MBR1-MBRf), in addition to their hash values (h1-
hf). The hash value of the root node hroot is signed by the
data owner and stored with the tree. The MR-tree supports
updates based on the corresponding algorithms of the R*-
tree. When a node changes (due to an insertion or deletion),
the corresponding hash value in the parent entry is updated
recursively, until reaching the root. The owner then signs
the new root and transmits the changes to the LBS.

...

h=hash(R1 | R2 | ... |Rf)

RfR1 R2 p1 MBR1h1 p2MBR2h2 pf MBRf hf...

h=hash(MBR1|h1|MBR2|h2|…|MBRf|hf)

(a) Leaf Node (b) Internal Node
Figure 3.1 MR-tree node structure

 4

To process a range query Q, the LBS invokes
RangeQuery(root, Q), shown in Figure 3.2. The algorithm
computes the verification object by following a depth-first
traversal of the MR-tree. The VO contains three types of
data: (i) all objects in each leaf node visited (Line 4), (ii)
the MBR and hash values of pruned nodes (Line 7), and
(iii) special tokens [and] that mark the scope of a node
(Lines 1 and 8). New entries are always appended to the
end of the VO.

RangeQuery (Query Q, MR_Node N) // LBS
1. Append [to VO
2. For each entry e in N // entries must be enumerated in original order
3. If N is leaf
4. Append e.data to VO
5. Else // N is internal node
6. If e.MBR overlaps Q, RangeQuery(Q, e.pointer)
7. Else append e.MBR, e.hash to VO // a pruned child node
8. Append] to VO

Figure 3.2 Range query processing with the MR-tree

Consider, for instance, query Q in the example tree of
Figure 3.3. Similar to conventional R-trees, RangeQuery
starts from the root and visits recursively all entries that
overlap the shaded rectangle: N1, N4, N2, N5. After
termination, the verification object is: [[(MBR_N3,
hash_N3), [P4, P5, P6]]], [[P7, P8, P9], (MBR_N6,
hash_N6)]]. The tokens signify the contents of a node; for
instance, the component [[(MBR_N3, hash_N3), [P4, P5,
P6]]] corresponds to the first root entry (N1), and the rest of
the VO to the second one (N2). The LBS transmits the VO
and the root signature sroot to the client. Note that the actual
result (e.g., P4, P7) is part of the VO.

P1

P2

P4
P5

P6

P3

P7

P8

P9
P10

P11

P12

N1

N2

N3

N4

N6

N5

Q
P7 P9P8P4 P6P5

N3 N4 N5 N6

N1 N2

P10 P12P11P1 P3P2

(a) Points and Node MBRs (b) MR-tree
Figure 3.3 Example range query

To verify the query results, the client first scans the VO to
check that: (i) each data point in the VO is either outside Q,
or included in the result set, (ii) no MBR (of a pruned
node) in the VO overlaps Q, and (iii) the computed hroot
from the VO agrees with sroot. Figure 3.4 shows the
recursive procedure RootHash that computes hroot. The
main idea is to simulate the MR-tree traversal performed by
the LBS, and calculate the MBR and hash values bottom-
up. In the example of Figure 3.3, RootHash computes the
MBR and hash value of nodes N4 (from P4-P6), N1 (from N3,
N4), N5 (from P7-P9), N2 (from N5, N6), root (from N1, N2),
in this order. Note that all entries in the VO, from the [of
the root to its], must be used. Furthermore, the algorithm is
online, meaning that it performs a single sequential scan of

the VO. During the verification, the actual results (P4, P7)
are extracted in Line 6. In addition, the client receives some
objects (P5, P6, P8, P9) in the VO, which are not part of the
result. Pang et. al. [PJRT05] propose a solution for
avoiding disclosure of such objects, when the outsourced
database must comply with certain access control policies.
In this work, we consider that clients can issue queries
freely without constraints. Nevertheless, the solution of
[PJRT05] can be applied in conjunction with the proposed
methods to hide the additional objects, if necessary.

(MBRValue, HashValue) RootHash(VO) // Client
1. Initialize str , MBR to empty string and MBR value respectively
2. While VO still has entries
3. Get next entry eV from VO
4. If eV is], go to Line 13 // break the while-loop
5. If eV is a data object R
6. If R overlaps the query, Add R to the result set
7. MBR_c = the MBR of R
8. str_c = the binary representation of R
9. If eV is [, (MBR_c, hash_c) = RootHash(VO)
10. If eV is a pair of MBR/hash value (MBR_eV, hash_eV)
11. MBR_c, str_c = (MBR_eV, hash_eV)
12. Enlarge MBR to include MBR_c
13. Concatenate str with str_c
14. Return (MBR, hash (str))

Figure 3.4 Algorithm for re-computing hroot

Proof of soundness: Assume that an object P in the result
set is bogus or modified. Because the hash function is
collision-resistant and P must be used by RootHash, the re-
computed hroot can not be verified against sroot, which is
detected by the client.

Proof of completeness. Let P be an object satisfying Q.
Consider the leaf node Nl containing P. For the re-
computed hroot to match sroot, either Nl’s true contents or
MBR/hash must be in the VO. In the former case P is in the
VO, and extracted in Line 6 of RootHash. In the latter case,
Nl’s MBR overlaps Q, which alarms the client about
potential violation of completeness.

In addition to range search, the MR-tree can
authenticate other common spatial queries, including k
nearest neighbors (kNN) and skylines. Given a point Q, a
kNN query retrieves the k points from the data set that are
closest to Q [HS99]. In the example of Figure 3.5a, the
three NNs of Q are P1, P2 and P3, in increasing order of
distance from Q. A key observation is that the kNN of Q lie
in a circular area C centered at Q that contains exactly k
data points. Therefore, the LBS can prove the kNN results
by sending to the client the VO corresponding to C.
Specifically, it first finds the k neighbors, then it computes
C, and finally executes RangeQuery treating C as the range.
The verification process of the client is identical to the one
performed for range queries.

A skyline query retrieves all points that are not
dominated by others in the dataset [PTFS05]. A point Pi
dominates another Pj, if and only if, the co-ordinate of Pi

 5

on each dimension is no larger than the corresponding co-
ordinate of Pj. The skyline in Figure 3.5b contains P1, P2
and P7. To prove it, the LBS processes a range query that
contains the area of the data space not dominated by any
skyline point. This area (shaded in Figure 3.5b) can be
divided into multiple rectangles. The result contains only
the skyline points, and can again be verified according to
the methodology of range search.

QP6

P5
P1

P2

P3

P4

P7

P1

P2
P3

P4

P5

P6

P7

x

y

(a) kNN (b) Skyline
Figure 3.5 Alternative queries

3.2 Cost Models

The important performance metrics for authenticated
structures are (i) index construction time, (ii) index size, (iii)
query processing cost, (iv) size of the VO, and (v)
verification time. The first metric affects the party that
builds the index, i.e., depending on the system, the DO or
the LBS. The second one burdens the LBS and, in some
cases, the DO (if it also has to maintain the index).
Furthermore, it affects the communication cost between the
two. Metric (iii) is important only for the LBS. The size of
the VO influences the network overhead between the LBS
and the client. Finally, the verification time burdens
exclusively the client. In the sequel we compare
analytically the MR-tree and the VR-tree on the above
metrics. Table 3.1 summarizes the symbols used in the
analysis, as well as their typical values (1msec = 10-3
seconds, 1μsec = 10-6 seconds). These values were obtained
based on the hardware and software settings of our
experiments, using the Crypto++ library. Our
measurements are similar to those of the library
benchmarks [Crypto] and the values suggested in
[LHKR06].

Symbol Meaning Typical Value
Cs CPU cost of sign operation 3.4 msec
Cv CPU cost of verify operation 160 μsec
Ch CPU cost of hash operation 28 μsec
Cm CPU cost of multiply operation 43 μsec
CNA CPU cost of a random node access 15 msec
Ss size of a signature 128 bytes
Sh size of a hash value 20 bytes
SM size of an MBR 32 bytes
Sp size of a data point 16 bytes
n data cardinality 2,000,000
d data dimensionality 2
Ql query extent on one dimension 10% of space
b block size 4096 bytes
fl fanout of leaf node VR 19 MR 179
fn fanout of internal node VR 17 MR 51
h height of the tree VR 5 MR 4

Table 3.1 Symbols and values in the analysis

We first establish a simple cost model for the R-tree, based
on the fact that in d-dimensional unit space [0,1]d, the
probability that two random rectangles r1, r2 overlap is:

1 2 1 2
1

(,) (. .)
d

overlap j j
j

P r r r l r l
=

= +∏ (3.1)

where r.lj denotes rectangle r’s extent along the jth
dimension [PSTW03]. For simplicity, we assume that the
data set contains points (rectangular data are discussed in
[TS96]) uniformly distributed in the unit space and query
Q has equal length Ql on all dimensions. Let fl (fn) be the
average fanout of a leaf (internal) node, and n be the data
cardinality. The number of leaf nodes is n/fl, and the
height of the R-tree is 1 log (/)

nf lh n f⎡ ⎤= + ⎢ ⎥ . The number of

internal nodes at depth i of the tree (assuming a complete
tree where the root has depth 0) is i

nf , each containing

/ i
nn f data points in its sub-tree. Because of the uniform

distribution, the number of points in a node is proportional
to the space covered by this node. Following [TS96], we
assume that all nodes at the same level are squares with
similar sizes. Therefore, a node at depth i covers 1/ i

nf

space, and has length 1/ id
nf on each dimension. Applying

Equation 3.1, the total cost of processing Q using the VR-
or the MR-tree is:

() ()
2

0

1/ /
h d d

i id d
Q NA n n l l l l

i

C C f f Q f f n Q
−

=

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠
∑ (3.2)

where CNA is the cost of a node access. Similarly, the
storage overhead of both the VR- and the MR-tree can be
estimated by:

2

1

h
i

index n l
i

S b f n f
−

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ (3.3)

where b is the block size. The difference between the two
structures regards the authentication information, leading to
different fanouts (fl, fn). The VR-tree maintains one
signature (128 bytes) per entry in every node (leaf or
internal). In contrast, the MR-tree adds hash values (20
bytes each) only to internal nodes. Assuming a page of
4KBytes, 70% average storage utilization and double
precision, the VR-tree has a fanout of fl=19 (leaf) and fn=17
(internal), while for the MR-tree fl = 179 and fn = 51. The
lower fanout of the VR-tree increases its height.

Besides R-tree generation, the VR-tree requires a
signature for each object and node. The MR-tree only
involves cheap computations of hash values for nodes (but
not objects). If the cost of a sign / verify / hash operation is
Cs, Cv, Ch respectively, the initial construction overhead of
the VR-tree (MR-tree) is given by equation 3.4 (3.5):

1

1

h
VR i
init s n

i

C C f n
−

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ (3.4)

1

0

h
MR i
init s h n

i

C C C f
−

=

= + ∑ (3.5)

Let the size of a signature, an MBR, a hash value and a

 6

data point be Ss, SM, Sh and Sp, respectively. Then, the VO
of the VR-tree with signature aggregation consumes space:

() ()
2

1

0

1/ /
h d d

VR i id d
VO s n n l M l l p

i

S S f f Q S n f n Q S
−

+

=

= + + + +∑
(3.6)

where the last two terms estimate MBRs and points for
visited internal and leaf nodes respectively. Note that with
signature aggregation, there is a single signature, thus the
VO size is relatively small. To prepare this VO, however,
the LBS must perform modular multiplications, whose cost
is:

() ()
2

1

0

1/ /
h d d

VR i id d
VO m n n l l l

i

C C f f Q n f n Q
−

+

=

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
∑

(3.7)

Thus, the total query processing overhead for the VR-tree
is the sum of the two costs expressed in Equations 3.2 and
3.7. The VO size of the MR-tree is given by Equation 3.8.
The complicated part is to analyze the total number of
pruned nodes during query processing. PN(i) estimates the
number of pruned nodes at depth i, by computing the
number of nodes outside Q, subtracted by descendents of
higher pruned nodes.

() ()
()

1

0
1

0

() /

() 1 1/ ()

h d
MR d

VO h M l l p
i

id
i i i jd

n n l n
i

S PN i S S n f n Q S

PN i f f Q PN j f

−

=
−

−

=

= + + +

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

∑

∑

(3.8)

Finally we estimate the verification time for the client,
which is dominated by modular multiplications (VR-tree)
or computing hash values (MR-tree). The costs of the VR-
tree (with signature aggregation) and the MR-tree are given
by Equations 3.9-3.10. The MR-tree has a clear advantage
because (i) for each node, the MR-tree invokes the hash
function once, whereas the VR-tree performs modular
multiplication for each entry, and (ii) Ch < Cm.

() ()
2

1

0

1/ /
h d d

VR i id d
Client v m n n l l l

i

C C C f f Q n f n Q
−

+

=

⎛ ⎞
= + + + +⎜ ⎟

⎝ ⎠
∑

(3.9)

()
1

0

1/
h d

MR i id
Client n n l h v

i

C f f Q C C
−

=

= + +∑ (3.10)

Table 3.2 shows the costs calculated by the above
equations using the typical values of Table 3.1. The VR-
tree incurs about 30 times the overhead of the MR-tree for
computing the authentication information (in the entire
tree), and is 8 times larger. The MR-tree is also
significantly better in terms of query processing and
verification cost. The latter is particularly important
because the clients are mobile devices with limited
computing power. The only aspect where the two structures
are similar is VO size. Next, we present an optimization for
reducing the VO.

Costs MR-tree VR-tree
Time for Computing Authentication Data 4 sec 2 hours

Index Size 57 MBytes 511 MBytes
Query Processing Time 2 sec 22 sec

VO size (bytes) 390 KBytes 398 KBytes
Verification (CPU time) 41 ms 991 ms

Table 3.2 Comparison of estimated costs

4. Synchronized Caching for the MR-tree
Each client is expected to issue numerous queries at
different times. The VO of these queries always share
common entries, specifically, sroot and the MBR/hash
values of the root nodes (since the root is always accessed).
In practice, the overlap is significantly larger because most
queries focus on a small part of the data space. For
instance, a moving client is likely to ask about its
surroundings at successive locations that are close to each
other. Assume that the client maintains the VO of previous
queries in a cache. When the LBS processes a new query, it
needs to send only the part of the VO that is not already in
the cache. However, in order for this optimization to
become possible, the LBS must have complete knowledge
of the client’s cache. We propose a synchronized cache
(SC) scheme, where the LBS maintains, for each client, an
abstract copy of its cache. The term abstract means that
concrete hash values and records are replaced with
placeholders (to be discussed shortly). As shown in the
experimental evaluation, a LBS with a reasonable amount
of main memory can support synchronized caching for
millions of clients.
 Figure 4.1 summarizes the proposed framework for
synchronized caching. Given a query from the client, the
LBS computes the (uncompressed) VOraw. Then, it applies
an algorithm (ReduceVO) that utilizes the contents of the
SC to derive a compressed VOreduced, i.e., the part of VOraw
that is not in SC. VOreduced, which is usually much smaller
than VOraw, is sent to the client. The client restores VOraw
(using the reverse process of ReduceVO) and uses it to
verify the query result. Both the LBS and the client
incorporate the content of VOreduced to the SC through
MergeVO algorithm. The addition of new content may
increase the size of the SC beyond a predefined limit. In
this case, PurgeSC frees space by expunging "old" data. It
is easy to verify that if the LBS and the client start with an
empty SC and have the same space limit, then their cache
contents are identical at all times. Thus, there is no
additional communication overhead for cache
synchronization. On the other hand, this optimization
minimizes the VO size and the associated transmission cost.

 LBS Client
Compute

result, VOraw

ReduceVO

query

RestoreVO

VOraw

VOreduced

Verify result

SC

MergeVO

VOreducedSCold

SCnew

MergeVO

SC

VOraw

SCold

SCnew

SCold SCnew

PurgeSC

SCold SCnew

PurgeSC

Figure 4.1 Framework of synchronized caching

Section 4.1 describes the VO minimization process (i.e.,
ReduceVO), while Section 4.2 focuses on the SC
maintenance (i.e., MergeVO and PurgeSC). In our

 7

discussion, we distinguish between value and token entries
in the VO. A value entry is a data point, a pair of
MBR/hash values, or the signature sroot. A token is [or].

4.1 Minimizing the Size of the VO

Similar to the VO, the SC is a linked list of value and token
entries except that the copy maintained by the LBS uses a
placeholder (i) for each (MBR, hash value) pair and (ii) for
all records in a leaf node. Moreover, each token [is
associated with a timestamp to be discussed later. We use
the running example of Figure 4.2, where a client asks two
queries Q1, Q2. The SC is initialized to be empty. When the
first query is processed, its VO is copied to the caches of
both the LBS and the client. After this step, the SC equals
VO(Q1) = [[[P1, P2, P3], (MBR_N4, hash_N4)], (MBR_N2,
hash_N2)], sroot. When later the LBS processes Q2, it
compares VO(Q2) = [[(MBR_N3, hash_N3), [P5, P6]],
(MBR_N2, hash_N2)], sroot with the SC. (MBR_N2,
hash_N2) and sroot are in the SC and replaced with a token
SC_hit, reducing the VO size from 5 to 3 value entries.
Moreover, the entire sub-tree of N3 (P1-P3) is in the SC,
meaning that the client is able to compute MBR_N3 and
hash_N3. Therefore, the LBS substitutes the entry
(MBR_N3, hash_N3) with a token SC_compute, leading to a
VO(Q2) with only 2 value entries P5 and P6.

P1
P2

P4P5

P6
P3 P7

P8
P9

P10

P11

P12

N1

N2

N3

N4

N5

N6

Q1

Q2

 Query VO

Q1

[[[P1, P2, P3],
(MBR_N4, hash_N4)],
(MBR_N2, hash_N2)],

sroot

Q2

[[(MBR_N3, hash_N3),
[P5, P6]], (MBR_N2,

hash_N2)], sroot

Reduced VO(Q2): [[SC_compute,
[P5, P6]], SC_hit], SC_hit

(a) Queries (b) VOs
Figure 4.2 Queries with overlapping VOs

Figure 4.3 shows ReduceVO, which utilizes the SC to
minimize the verification object. Let VOraw (VOreduced) be
the VO before (after) the shrinking process. ReduceVO
scans the SC and VOraw in parallel, computing VOreduced.
Each step retrieves an entry eV (eS) from VOraw (SC). An
important invariant is that eV and eS must always
correspond to the same node (or data record) in the MR-
tree. We illustrate the algorithm using the example of
Figure 4.2 and assuming SC = VO(Q1) and VOraw = VO(Q2).
In the first two steps, eS and eV are both [(Case 4), and the
LBS simply appends two [into VOreduced. Then, eS becomes
[and eV = (MBR_N3, hash_N3) (Case 2). Both eS and eV
refer to the same node N3: the SC contains details about N3,
whereas the VO only contains aggregates (i.e., MBR and
hash). Therefore, it is possible to compute eV with SC
entries starting from eS until its corresponding], i.e., [P1, P2,
P3]. Thus the LBS appends an SC_compute token to
VOreduced. Note that we must adjust the current entry of SC

accordingly (Line 8-10) to ensure the invariant stated
above. Next, eV becomes [(before P5) and eS is (MBR_N4,
hash_N4) (Case 3). Conversely to Case 2, now the VOraw
contains details (i.e., [P5, P6]) while the SC contains
aggregates. Starting from this [, the LBS copies everything
from VOraw to VOreduced, until the corresponding] is reached.
Then, both eV and eS become successively [(Case 4), and
(MBR_N2, hash_N2) (Case 1). The token SC_hit is
appended to VOreduced. Finally, for sroot, SC_hit is appended
to VOreduced. VOreduced is sent to the client, which restores
the original VOraw (following the reverse process of
ReduceVO) and uses it to verify the query results.

VOreduced ReduceVO (SC, VOraw) // LBS
1. Initialize VOreduced to empty
2. While VOraw still has entries
3. Get next entry eV of VOraw and eS of SC
4. If eV and eS are the same value entry // Case 1
5. Append SC_hit to VOreduced
6. If eV is a MBR/hash value pair and eS is [// Case 2
7. Append SC_compute to VOreduced
8. Let ebegin = eS
9. While eS is not the matching] of ebegin
10. Get next entry from SC as the new value for eS
11. If eV is [and eS is a MBR/hash value pair // Case 3
12. Append eV to VOreduced
13. Let ebegin = eV
14. While eV is not the matching] of ebegin
15. Get next entry from VO as the new value for eV
16. Append eV to VOreduced
17. If eS and eV are the same token entry // Case 4
18. Append eV to VOreduced

Figure 4.3 ReduceVO algorithm

4.2 Updating the SC
Every new VOreduced updates the SC at the LBS and the
client. Specifically, both LBS/client integrate VOreduced into
the SC using MergeVO, shown in Figure 4.4. The SC
before (after) this operation is called SCold (SCnew). Initially,
SCnew is empty. Each step of MergeVO retrieves pairs of
entries eV ∈ VOreduced and eS ∈ SCold in parallel. Depending
on the type of these entries, we have 4 cases, similar to
ReduceVO. Case 1 occurs when eV is a hit for eS; eS is
added to SCnew and its [receives a timestamp equal to the
current time. As we discuss shortly, timestamps are used to
expunge old entries according to an LRU policy. Case 2
happens when eV can be computed by eS. MergeVO inserts
to SCnew all entries between the [and] tokens of eS. The
recency of these entries is not updated, because
SC_compute implies that only the aggregates, but not the
actual contents, of eS are required for the query. Case 3
incorporates new information from the VO into SCnew.
Specifically, when the VO contains details of an MR-tree
node while SCold has only aggregates, we append these
details into SCnew. In the example of Figure 4.2, if the client
has SCold = VO(Q1) and receives the reduced VO(Q2),
MergeVO updates the timestamps and replaces the

 8

MBR/hash value of N4 with [P5, P6]. Conceptually, SCnew
becomes the VO for query Q = (Q1 or Q2). Case 4 simply
appends token entries.

SCnew MergeVO (SCold, VO) // VO is already reduced
1. Initialize SCnew to empty
2. While VO has entries
3. Get next entry eV of VO and eS of SC
4. If eV is SC_hit // Case 1
5. Append eS to SCnew
6. Set the timestamp of the [of eS to now
7. If eV is SC_compute // Case 2
8. Append eS to SCnew
9. Let ebegin = eS
10. While eS is not the matching] of ebegin
11. Get next entry from SCold as the new value for eS
12. Append eS to SCnew
13. If eV is [and eS is an MBR/hash value pair // Case 3
14. Let ebegin = eV
15. While eV is not the matching] of ebegin
16. Get next entry from SCold as the new value for eS
17. If eS and eV are the same token entry // Case 4
18. Append eS to SCnew

Figure 4.4 MergeVO algorithm

In our implementation, we assign a limit L to the size of the
SC at the client side. L may depend on the memory of the
client, or it may be decided by the LBS. In either case, the
LBS and the client agree on the value of L, which may be
different for each client (e.g., the LBS may charge clients
according to their cache size). If the SC exceeds L (after an
application of MergeVO), PurgeSC (Figure 4.5) removes
the oldest entries to free space. Specifically, PurgeSC
performs the opposite of operation MergeVO, i.e., it
replaces the details of an MR-node (a sequence of entries
bounded by [and]) with a single entry that contains the
MBR and hash value of the node. The process is applied
repeatedly until the size of the SC drops below L. At each
step, the node to be replaced is chosen according to an
LRU policy based on the timestamp stored with each [.
Recall that these timestamps are maintained by MergeVO.

PurgeSC (SC)
1. While the size of the SC exceeds the limit L
2. Scan SC to find the oldest [that is not enclosed by other tokens.

Let ebegin be this [
3. Let eend be the corresponding] of ebegin
4. Compute the MBR and hash of all SC entries from ebegin to eend
5. Replace all SC entries from ebegin to eend with a single entry
 (MBR, hash)

Figure 4.5 PurgeSC algorithm

5. Experimental Evaluation
We implemented the MR-tree and the VR-tree in C++,
using the Crypto++ library [Crypto] and executed all
experiments on a P4 3GHz CPU. Both MR-tree and VR-
tree implementations are based on R*-trees using 4Kbytes
page size. Each experiment is repeated on two datasets: (i)
UNI that contains 2 million uniformly distributed data

points, and (ii) CAR that contains 2 million points taken
from road segments in California [R-portal]. In cases where
we want to set a specific cardinality, we randomly sample
from these datasets using an appropriate sampling rate.
Section 5.1 compares the initial construction cost and size
of MR-trees and VR-trees. Section 5.2 evaluates the query
processing and verification overhead of the two structures.
Section 5.3 assesses the benefits of synchronized caching.

5.1 Initial Construction

Figure 5.1 illustrates the construction cost for VR- and
MR- trees as a function of the data cardinality. This cost
includes both the time to create the trees and the time to
compute the hash values (MR-tree) or the signatures (VR-
tree). The VR-tree is 1-2 orders of magnitude more
expensive to build due to the numerous signatures. Figure
5.2 shows the CPU time for computing the necessary
authentication information. The MR-tree outperforms the
VR-tree by 3-4 orders of magnitude on this metric.
Comparing Figures 5.2 and 5.1, the computation of
signatures dominates the total construction cost of the VR-
tree. On the other hand, the MR-tree involves cheap
hashing operations, only for the nodes (and not the data
points). Consequently, the overhead of the additional
information (with respect to the R*-tree) constitutes a small
fraction (less than 1%) of the total construction cost. Figure
5.3 illustrates the size of the indexes in MBytes. The VR-
tree is much larger since it stores one signature (128 bytes)
for each data point and node, where the MR-tree stores one
digest (20 bytes) for every node.

VR-tree MR- tree

102

103

104

105

0.4 0.8 1.2 1.6 2.0

seconds

millions

102

103

104

105

0.4 0.8 1.2 1.6 2.0

seconds

millions

(a) UNI (b) CAR
Figure 5.1 Total construction time vs. data cardinality

VR-tree MR- tree

10-1

10

103

105

0.4 0.8 1.2 1.6 2

seconds

millions

0.4 0.8 1.2 1.6 2
10-1

10

103

105
seconds

millions

(a) UNI (b) CAR
Figure 5.2 CPU time for authentication data vs. cardinality

VR-tree MR- tree

0

200

400

600

0.4 0.8 1.2 1.6 2.0
millions

MBytes

0

200

400

600

0.4 0.8 1.2 1.6

MBytes

millions
2.0

(a) UNI (b) CAR
Figure 5.3 Index size vs. data cardinality

 9

5.2 Query Processing and Verification

This section evaluates the query and verification cost of the
two structures. All queries are ranges (recall from Section 3,
that other query types, such as NN, can be converted to
ranges), covering 1% of the entire (2D) space. For every
experiment, we execute 100 ranges at random locations and
illustrate the average cost. This cost burdens the LBS and
includes both the result retrieval and the construction of the
verification object. The data cardinality (N) varies between
0.4⋅106 and 2 ⋅106. We do not include synchronized
caching since it is evaluated separately in Section 5.3.

Figure 5.4 illustrates the query cost (in seconds) as a
function of the data cardinality (Ql = 10%). The MR-tree is
fast because it creates the VO by simply appending MBRs
and hash values for each pruned node. The VR-tree is
about 2 orders of magnitude slower due to the modular
multiplications required to create the aggregated signature.
Recall that signature aggregation is unavoidable because,
otherwise, the VO would be extremely large.

VR-tree MR- tree

0.4 0.8 1.2 1.6 2.010-3
10-2
10-1

1
10 seconds

milions

10-3
10-2
10
1
10

0.4 0.8 1.2 1.6 2.0
milions

seconds

(a) UNI (b) CAR
Figure 5.4 Query cost vs. data cardinality

Next we measure the verification object. Figure 5.5 depicts
the VO size versus the data cardinality. For small datasets,
the VO of MR-trees and VR-trees have similar sizes.
However, as the cardinality rises, the VO grows faster for
the VR-tree because more intermediate MBRs are included
in the VO (due to the smaller fanout). For comparison, the
diagrams also illustrate the result size. The verification
object (of VR-trees and MR-trees) is larger than the
corresponding result, because the result is always part of
the VO.

Result SetVR-tree MR-tree

0.4 0.8 1.2 1.6 2.00

200

400

600 KBytes

milions

 0
100
200
300
400

0.4 0.8 1.2 1.6 2.0
milions

KBytes

(a) UNI (b) CAR
Figure 5.5 VO size vs. data cardinality

Finally, Figure 5.6 investigates the verification time (at the
client) versus the data cardinality. The VR-tree leads to
high cost since verification involves a number of modular
multiplications, which is proportional to the output size. On
the other hand, verification in the MR-tree invokes
relatively cheap hash operations. Minimization of
verification time is crucial for clients (e.g., PDAs) with
limited computational resources.

VR-tree MR- tree

10-2

10-1

1

10

0.4 0.8 1.2 1.6 2.0

millions

seconds

10-2

10-1

1
10

0.4 0.8 1.2 1.6 2.0
millions

seconds

(a) UNI (b) CAR
Figure 5.6 Verification time vs. data cardinality

Summarizing, the MR-tree is considerably faster to build
and consumes less space than the VR-tree. At the same
time it is much more efficient for query processing and
verification. The only aspect where the MR- and VR-tree
have similar performance is the size of the VO. Next, we
evaluate the impact of synchronized caching on the
verification object.

5.3 Synchronized Caching

Recall that synchronized caching entails two caches at the
LBS and the client. The VO of each processed query is
incorporated in the caches and utilized to reduce the VO of
subsequent queries. This optimization is expected to have
considerable benefits in cases where successive queries
exhibit locality. In our experiments we simulate a moving
client that enquires about its surroundings. Specifically, the
first query is a range centered at a random location. The
user chooses a direction, moves a certain distance and
issues another range search (with a fixed extent). The
process is repeated 100 times. The VOs of the first 50
queries are used to warm up the cache. For the remaining
ones we measure the average reduction achieved per VO.
The average reduction is defined as (|VOraw|-
|VOreduced|)/|VOraw|, where |VOreduced| (|VOraw|) is the size of
the VO with (without) synchronized caching.

We investigate the effect of the cache size, and the
distance traveled between two consecutive queries using
the CAR dataset. The results for UNI are similar and
omitted due to the lack of space. The data cardinality is set
to 2⋅106, and the query extent to 10% per axis. Figure 5.7a
illustrates the average VO reduction as a function of the
cache size (at the client), after fixing the distance between
two consecutive queries to 3% of the axis length. Even 100
KBytes of cache result in a reduction of about 10%. The
reduction increases with the cache size and stabilizes at
around 500 KBytes. After this point, more cache does not
have a significant impact on performance, because the new
parts of the tree have to be included in the VO anyway.

The LBS stores, for each client, placeholders for the
corresponding hash values and records. Therefore, the
cache copy at the LBS consumes much less space than that
of the client. The memory consumption per client at the
LBS is shown at the bottom of the x-axis. Assuming a
cache of 500Kbytes per client (i.e., 1.7Kbytes at the LBS),
a LBS with 1 Gbyte of main memory can support up to

 10

558⋅103 clients. If the cache size is 300 Kbytes per client,
the LBS can support 833⋅103 clients.

0

20%

40%

60%

100 200 300 400 500

KBytes

0.9 1.0 1.2 1.4 1.7
client
LBS

0

20 %

40 %

60 %

1% 2% 3% 4% 5%

distance traveled

(a) vs. cache size (b) vs. distance traveled
Figure 5.7 Average VO reduction (CAR)

Figure 5.7b illustrates the average reduction as a function
of the distance between successive queries, after setting the
cache size to 300 KBytes. As expected, the effect of the
cache diminishes with the increasing distance, since the
stored VO becomes irrelevant faster. Nevertheless, the
distances that we use in these experiments are rather large
compared to the locality exhibited in most practical
applications.

In conclusion, synchronized caching achieves
significant reduction of the VO size, even for small caches
and relatively infrequent (or distant) queries. Most potential
clients of spatial outsourcing systems (e.g., PDAs) already
include flash memory that reaches several Mbytes and
could devote part of this memory for caching purposes.
The minimization of the verification object, on the other
hand, leads to savings in the communication cost, which is
very important for wireless networks. Finally, recall that
the update algorithms of Section 4 eliminate the need to
transfer cache information between the LBS and the client.

6. Conclusion
Recent advances in location based services and sensor
networks, as well as the popularity of web-based access to
spatial data (e.g., MapQuest, GoogleEarth, etc.),
necessitate query authentication for outsourced and
replicated multidimensional data. In this paper, we propose
the MR-tree, an authenticated index based on the Merkle
Hash tree and the R*-tree. Our method outperforms the
best current solution by orders of magnitude in many
important metrics such as construction cost, index size and
verification overhead. Furthermore, we develop a novel
synchronized caching protocol, which significantly reduces
the communication overhead of the verification step. We
conclude our contributions with an extensive experimental
study that validates the effectiveness and efficiency of the
proposed structure.

References
[BKOS97] de Berg, M., van Kreveld, M., Overmars, M.,

Schwarzkopf, O. Computational Geometry:
Algorithms and Applications. Springer-Verlag,
1997.

[BKSS90] Beckmann, N., Kriegel, H.-P., Schneider, R.,
Seeger, B. The R*-tree: An Efficient and Robust

Access Method for Points and Rectangles.
SIGMOD, 1990.

[CPT06] Cheng, W., Pang, H., Tan, K.-L. Authenticating
Multi-Dimensional Query Results in Data
Publishing. DBSec, 2006.

[Crypto] www.eskimo.com/~weidai/benchmark.html
[DGMS03] Devanbu, P., Gertz, M., Martel, C., Stubblebine,

S. Authentic Data Publication Over the Internet.
Journal of Computer Security 11(3): 291-314,
2003.

[G84] Guttman, A. R-trees: A Dynamic Index Structure
for Spatial Searching. SIGMOD, 1984.

[GTTC03] Goodrich M., Tamassia R., Triandopoulos N.,
Cohen R. Authenticated Data Structures for Graph
and Geometric Searching. CT-RSA, 2003.

[HIM02] Hacıgümüş, H., Iyer, B., Mehrotra, S. Providing
Databases as a Service. ICDE, 2002.

[HS99] Hjaltason, G., Samet, H. Distance Browsing in
Spatial Databases. ACM TODS, 24(2):265-318,
1999.

[LHKR06] Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin,
L. Dynamic Authenticated Index Structures for
Outsourced Databases. SIGMOD, 2006.

[M89] Merkle, R. A Certified Digital Signature.
CRYPTO, 1989.

[MND+04] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M.,
Kwong, A., Stubblebine, S. A General Model for
Authenticated Data Structures. Algorithmica,
39(1): 21-41, 2004.

[MNT04] Mykletun, E., Narasimha, M., Tsudik, G.
Signature Bouquets: Immutability for
Aggregated/Condensed Signatures. ESORICS,
2004.

[MOV96] Menezes, A., van Oorschot, P., Vanstone, S.
Handbook of Applied Cryptography. CRC Press,
1996.

[NT06] Narasimha M., Tsudik G. Authentication of
Outsourced Databases Using Signature
Aggregation and Chaining. DASFAA, 2006.

[PJRT05] Pang, H., Jain, A., Ramamritham, K., Tan, K.-L.
Verifying Completeness of Relational Query
Results in Data Publishing. SIGMOD, 2005.

[PSTW93] Pagel, B., Six, H., Toben, H., Widmayer, P.
Towards an Analysis of Range Query
Performance in Spatial Data Structures. PODS,
1993.

[PTFS05] Papadias, D., Tao, Y., Fu, G., Seeger, B.
Progressive Skyline Computation in Database
Systems. TODS 30(1), 41-82, 2005.

[PT04] Pang, H., Tan, K.-L. Authenticating Query Results
in Edge Computing. ICDE, 2004.

[R-portal] www.rtreeportal.org
[TS96] Theodoridis, Y., Sellis, T. A Model for the

Prediction of R-tree Performance. PODS, 1996.

