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ABSTRACT
Graph partitioning has attracted considerable attention due to its
high practicality for real-world applications. It is particularly rel-
evant to social networks because it enables the grouping of users
into communities for market analysis and advertising purposes. In
this paper, we introduce RMGP, a type of real-time multi-criteria
graph partitioning for social networks that groups the users based
on their connectivity and their similarity to a set of input classes.
We consider RMGP as an on-line task, which may be frequently
performed for different query parameters (e.g., classes). In order to
overcome the serious performance issues associated with the large
social graphs found in practice, we develop solutions based on a
game theoretic framework. Specifically, we consider each user as
a player, whose goal is to find the class that optimizes his objective
function. We propose algorithms based on best-response dynamics,
analyze their properties, and show their efficiency and effectiveness
on real datasets under centralized and decentralized scenarios.

1. INTRODUCTION
In this paper, we introduce RMGP a novel framework for Real-

time Multi-criteria Graph Partitioning. RMGP partitions a social
network into a set of input classes, so that users in the same class
are socially connected, and at the same time they have high sim-
ilarity to the class’ properties. Formally, let G = (V,E,W ) be
a social graph, where V is the set of users, E is the set of edges
(i.e., social connections), and W is the set of edge weights (de-
noting the strength of social connections). The edges may be di-
rected (e.g., representing the follow relationship in Twitter), and
the weights may be binary (i.e., indicating simply the presence or
absence of a friendship). Let P be a set classes given at query time,
and c : V × P → R+ a function that measures the cost of assign-
ing a user to a class, i.e., c(v, sv) is the cost of assigning v ∈ V to
sv ∈ P . Then, RMGP returns an assignment of each user v to a
single class sv that minimizes the following function:

RMGP (G,P, α) = α ·
∑
v∈V

c(v, sv) + (1− α) ·
∑

e=(v,f)∈E∧
sv 6=sf

we (1)
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Figure 1: Running Example

The first sum in Equation 1 represents the assignment cost, while
the second one corresponds to the social cost, i.e., the total weight
of edges crossing classes. The preference parameter α ∈ (0, 1)
adjusts the relative importance of the two factors (i.e., if a > 0.5,
the partition process should aim more at minimizing the assignment
cost at the expense of the social aspect). Each class becomes a
partition, so that the weighted sum of assignment and social costs
is minimized. Conversely, the similarities between users and their
assigned classes, as well as the social connectivity inside classes
are maximized.

EXAMPLE 1. Location-Aware Graph Partitioning (LAGP).
Assume that a geo-social network wishes to promote upcoming

events to users based on proximity and social connectivity. Each
event corresponds to a class, and the cost of assigning a user to
a class is his/her current distance, or travel time, to the respective
event. RMGP assigns each user to an event that minimizes (i)
the distance/travel time between the user and the event, and (ii)
the social connectivity between users assigned to different events.
Consequently, a user is assigned to an event that is nearby and, at
the same time, it is recommended to several of his friends.

We illustrate LAGP through the example of Figure 1, with users
V = {v1, v2, v3, v4, v5, v6} and a set of three locations P =
{p1, p2, p3} (each location corresponds to an event/class). The
edge weights indicate the strength of social connections. The ta-
ble in Figure 1 shows the Euclidean distance ||vi, pj || between each
user vi ∈ V and location pj ∈ P , which serves as the cost c(vi, pj)
(the larger the distance, the higher the cost of assigning vi to class
pj). Assuming α = 0.5, RMGP assigns v1 to event p3, v2 and v5
to event p2, and v3, v4, v6 to event p1 (users have the same color as
the event they are assigned to). Observe that user v4 is assigned to
p1, and not to the closest location p2, because his friends v3 and v6
are also assigned to p1. The bold edges are the ones that contribute
to the social cost, i.e., connecting friends in different events.



EXAMPLE 2. Topic-Aware Graph Partitioning (TAGP).
Consider that an on-line discussion forum wishes to place an ad-

vertisement for each user, in a manner that maximizes the "word of
mouth" effect. In the corresponding RMGP task, each potential
advertisement constitutes a class. The assignment cost of a user
is based on some (dis-)similarity measure (e.g., tf-idf) between his
current discussions and the advertisement topic. The social con-
nectivity between users is based on the number of common discus-
sions in which they have participated. Thus, users are likely to be
assigned advertisements that match their own interests, and those
of their frequent discussion co-participants.

In general, RMGP refers to the partition of a graph according
to connectivity, and one or more additional criteria. Specifically,
in addition to social connectivity, we have the travel cost in LAGP
and the text similarity in TAGP. A combination of multiple criteria
can also be supported. For example, if each user has a profile, the
assignment cost could take into account both the distance of each
user and his preference to an event (e.g., based on textual similarity
between the profile and the event description). Note that the combi-
nation of different criteria is application-dependent, and orthogonal
to RMGP; e.g., the assignment cost c(v, sv) of Equation 1 could
be a linear combination (or any other scoring function) of the dis-
tance and the preference of user v to event sv .

We consider RMGP as an on-line process because input param-
eters change frequently. Specifically, in LAGP, locations of users
maybe updated through check-ins, while new events may appear
frequently. Therefore, RMGP recommendations should be effi-
ciently generated in order to accommodate the fast-pace changes.
Moreover, for some tasks only a subset of the network, determined
at query time, may participate in RMGP. For instance, if a geo-
social network wishes to advertise events at a certain area, only
the users who recently checked-in that area, and the corresponding
induced sub-graph, are relevant.

Another important issue in RMGP, and all tasks that partition
a graph according to connectivity and additional criteria, is how to
set the relative importance of the social aspect in the total cost. For
instance, in LAGP the distance-based assignment cost can be in the
order of thousands (of meters), whereas the edge weights may be in
the range [0, 1]. In general, vast differences in the assignment and
social costs render the value of the preference parameter α (and
all types of relative weights) irrelevant. Normalization is crucial
for adjusting the importance of the assignment and social costs as
expressed by α, and eliminating the effects of factors such as the
extent of the data space.

Graph partitioning has been studied extensively in social net-
works, where users are classified into groups or communities for
advertising and analysis purposes. However, existing approaches
focus on different versions of the problem, where the graph is par-
titioned based on connectivity and/or similarities between node at-
tributes [32][28], but not between nodes and input classes. On
the other hand, RMGP can be considered as an instance of Uni-
form Metric Labeling (UML) [12]. UML is a well-known NP-Hard
problem that has only been studied theoretically in the context of
approximation algorithms. Thus, all existing (approximate) solu-
tions aim at small instances, and are not applicable to the large
graphs commonly found in social networks. Moreover, they do
not consider the real-time and decentralized nature of the problem,
which is fundamental in our setting.

To effectively solve RMGP in real world social networks, we
model the problem as a game, where each user corresponds to a
player: his goal is to find the class that minimizes his assignment
and social costs. As we show, the game reaches an equilibrium, i.e.,
a local minimum where no user has incentive to deviate. Modeling

and solving RMGP as a game has several advantages. First, the
game mimics the behavior of individual real-world users who aim
at optimizing their own objectives, independently of those of the
others. Consequently it yields recommendations (i.e., solutions)
that are likely to be followed by the users. On the other hand, op-
timization methods that minimize the global cost, without consid-
ering the individual objectives, could lead to recommendations that
are not followed by numerous users (e.g., in LAGP, users assigned
to far events), rendering the solution meaningless. Moreover, the
resulting algorithms are fast, allowing the real-time execution of
queries, and facilitate distributed processing.

We first develop a baseline algorithm based on best-response dy-
namics, and analyze its properties. Our experimental evaluation
shows that even the baseline algorithm is many orders of magni-
tude faster than state-of-the art UML methods and yields solutions
that are very close to the optimal approximation. Then, we pro-
pose optimizations that enhance pruning of the search space by
pre-computing a set of valid strategies per user and utilizing paral-
lelism. Moreover, we apply our algorithms in decentralized scenar-
ios (where the social graph is distributed at different servers), using
an implementation that reduces the communication costs between
processing units. Finally, we discuss and solve normalization is-
sues that arise in RMGP due to the different values/measurements
used for the assignment and social costs. Our contributions are
summarized as follows:

• We introduce RMGP, and model the problem based on a
game theoretic framework.

• We propose highly optimized algorithms that can efficiently
solve RMGP tasks for large social networks in real-time.

• We apply our techniques to decentralized implementations of
social networks.

• We show how to solve normalization issues in RMGP.

• We illustrate the effectiveness of our techniques through ex-
tensive experiments with real datasets under centralized and
decentralized settings.

The rest of the paper is organized as follows. Section 2 overviews
the related work and presents background on game theory. Sec-
tion 3 proposes the baseline algorithm and analyzes its behavior.
Section 4 describes multiple optimizations. Section 5 introduces
a framework for applying RMGP in decentralized environments.
Section 6 includes our experiments, and Section 7 concludes the
paper with directions for future work.

2. RELATED WORK
Section 2.1 presents related work on graph partition algorithms

and Section 2.2 provides background on game theory.

2.1 Graph Algorithms
Existing work on graph partitioning can be grouped into three

main categories: i) attribute-based, ii) connectivity-based, and iii)
attribute and connectivity-based. Attribute-based methods partition
the graph based only on the similarity of node attributes, without
considering the social connectivity [26]. Connectivity-based ap-
proaches partition the graph based only on connectivity, e.g., nor-
malized cut [25], structural density [31], and modularity [23]. Par-
titioning can also be based on multiple objective functions on the
graph’s structural properties. For instance, [3] minimizes both the
weight of edges that cross partitions, and the shortest path length
connecting two nodes in different partitions.



Methods in the third category partition a graph based on both
connectivity and attribute similarity [32]. For example, Van Gen-
nip et al. [29] create groups of users in a geo-social graph so that
users in the same group are nearby and socially connected. [32]
defines a distance function between two nodes that combines their
social connectivity and attribute similarity. A conventional clus-
tering algorithm, such as K-Medoids [11], can then be adapted to
partition the graph using the distance function. Even though the
above techniques partition a graph using multiple objectives none
of them can be used for RMGP. In particular, besides the social
connectivity, we consider the similarity of each node to a set of in-
put classes, instead of the similarity between two nodes based on
their attribute values.

On the other hand, RMGP is closely related to the Uniform Met-
ric Labeling (UML) problem. The input of UML is (i) an undi-
rected edge-weighted graph G = (V,E,W ), (ii) a set L of k la-
bels, (iii) a function c(v, l) that denotes the cost of assigning label
l ∈ L to node v ∈ V , and (iv) a uniform function d(l, l′) that re-
turns 1 if l 6= l′; 0 otherwise. UML assigns a label l to every node v
(the assignment is denoted as vl), such that the following objective
function is minimized.

∑
v∈V

c(v, vl) +
∑

e=(u,v)∈E

we · d(vl, ul) (2)

Comparing the objective function of UML with Equation 1, it
is easy to verify that they are equivalent. Specifically, the labels
of UML correspond to classes in RMGP. Moreover, Equation 2
can incorporate the preference parameter α by simply modifying
c(v, vl) and we.

UML can be formulated as an integer linear program (ILP), which
is NP-hard. Existing solutions are based on linear programming
(LP) relaxations [12] [6] and focus on providing theoretical ap-
proximation guarantees to bound the integrality gap between the
optimal (ILP) and the rounded (LP) solutions that can be obtained
in polynomial time. Even though both LP methods provide a 2-
approximation algorithm for UML, their respective complexities,
O
(
(|E|+ k · |V |)3.5

)
andO

(
(k(V + kE)3.5)

)
, are still prohibitive

for practical applications. To avoid linear programming, Bracht et
al. [4] propose a greedy approach that runs in O(k · |V |3.6), but
guarantees a much looser approximation ratio 8 log |V |. Further-
more, the algorithm requires extensive graph transformations; i.e.,
for each class it generates a new graph that connects the class to all
nodes.

Due to their high complexity, UML algorithms have only been
experimentally evaluated on small graphs with up to a few hun-
dreds of nodes. In this paper, we compare our techniques to the
above approaches and show that our solutions can be computed
several orders of magnitude faster and are very close to the theo-
retical 2-approximation obtained by LP. Moreover, previous UML
algorithms do not take into consideration the real-time and decen-
tralized nature of the problem, which is fundamental in our setting.

Several platforms, such as Giraph [2], Pregel [18], GraphLab
[17] have been used for implementing graph partitioning algorithms.
These approaches aim at offline tasks as they were designed for
graph analytics. A recent paper [16] studies LAGP tasks assuming
that events have minimum and maximum participation constraints
that cannot be violated (i.e., events that cannot reach the minimum
number of participants are canceled). Finally, Metis [10], a well-
known graph partitioning tool, focuses on k-way graph partition-
ing, i.e., it creates k clusters that minimize the cut based on connec-
tivity only. In our experimental evaluation, we design a benchmark
solution based on Metis.

2.2 Game Theory
In strategic games, players compete with each other over the

same resources in order to optimize their individual objective func-
tions. Under this framework, a player chooses a strategy that min-
imizes his own cost without taking into account the effect of his
choice on other players’ objectives. Formally, a strategic game is
a tuple < V, {Sv}v∈V , {Cv : ×u∈V Su}v∈V → R >, where Sv
represents all the possible decisions that player v can take during
the game to optimize his function Cv . The optimization of Cv de-
pends on v’s own strategy, as well as the strategies of the other
players. Thus, the objective function of each player takes as input
the strategic space S = S1×S2×· · ·×S|V |, which is the Cartesian
product of the strategies of all players. A strategic game has a pure
Nash equilibrium [22], if there exist a specific choice of strategies
sv ∈ Sv such that the following condition is true for all v ∈ V :

Cv(s1, ..., sv, ..., s|V |) ≤ Cv(s1, ..., s
′
v, ..., s|V |), ∀s′v ∈ Sv

In other words, no player has incentive to deviate from his cur-
rent strategy. Figure 2 illustrates a common framework for studying
the dynamic process of decision-making in a strategic game. Ini-
tially, a random strategy is assigned to every player. Then, in an
iterative manner, each player selects his best strategy in response
to the current strategies of all the other players; v chooses s∗v =
arg minsv∈Sv Cv(s1, ..., sv, ..., s|V |), i.e, the strategy that min-
imizes his own cost function. This decision is called the best-
response, and the process best-response dynamics [7].

Input: Strategic game < V, {Sv}v∈V , {Cv : ×u∈V Su}v∈V → R >
Output: Nash equilibrium

1. Assign a random strategy to each player
2. Repeat
3. For each player v ∈ V
4. compute v’s best strategy wrt the other players’ strategies
5. let v follow his best strategy
6. Until Nash equilibrium //no player has incentive to change his strategy
7. Return the strategy of each player

Figure 2: Best-Response Dynamics

Issues related to the framework of Figure 2 involve: (i) whether a
Nash equilibrium exists, (ii) how fast it can be found (speed of con-
vergence), (iii) how good is the resulting solution (quality). Three
measures have been widely used to evaluate the quality of equi-
libria : (i) social optimum (OPT), (ii) price of stability (PoS), and
(iii) price of anarchy (PoA). The social optimum is the solution
that yields the optimal values to all the objective functions, so that
their total cost (or utility) is minimum (or maximum). The PoS
of a strategic game is the ratio between the best value among its
equilibria and the social optimum i.e., PoS = best equilibrium /
OPT. On the other hand, the PoA of a game is the ratio between the
worst value among its equilibria and the social optimum i.e., PoA
= worst equilibrium / OPT. Intuitively, PoS corresponds to the best
solution, while PoA to the worst possible solution found.

Potential games constitute special class of strategic games, in
which a single function Φ : ×v∈V Sv → R, called the potential
function, can be used to express the objective functions of all the
players [19]. Let sv denote the set of strategies followed by all
players except v, i.e., sv = {s1, ..., sv−1, sv+1, ..., s|V |}. A po-
tential game is exact, if there exist a potential function Φ, such that
for all si and all possible combinations of si ∈ ×j∈N\{i}Sj , the
following condition holds:

Cv(sv, sv)− Cv(s′v, sv) = Φ(sv, sv)− Φ(s′v, sv)



For potential games, the best-response dynamics of Figure 2 al-
ways converge to a pure Nash equilibrium [19]. Therefore, we can
use the local search algorithm of Figure 2 to obtain solutions for
any combinatorial problem that falls in the above framework. In
most cases the potential function Φ can be directly obtained by the
objective function of the corresponding optimization problem and
Cv can be defined accordingly. Since Φ represents the objective
functions of all players, the set of Nash equilibria can be found by
locating the local minima of Φ.

Game theory has been used for solving numerous well-known
graph problems, e.g., minimum spanning tree and community de-
tection [8][24][21]. To the best of our knowledge, there is no work
that considers a game theoretic approach for the UML problem.

3. RMGP: GAME THEORETIC APPROACH
In order to model RMGP as a game, we assume that each user is

a player, whose goal is to join a class with low assignment cost that
contains many of his closest friends. Initially, players are randomly
assigned to classes, and then they start changing classes according
to their best-responses until they reach a Nash equilibrium. In the
rest of the section, we describe the algorithmic framework, and we
analyze its properties.

3.1 Baseline Algorithm
The RMGP game is a tuple < V, {Sv}v∈V , {Cv : ×u∈V Su →

R}v∈V >, where each user/player v ∈ V has a set of strategies Sv
and a cost function Cv . Let sv ∈ Sv be a specific strategy of player
v, which represents the class that v is assigned to, and c(v, sv) be
its cost. Given sv and the strategies sv of the other players, the total
cost Cv(sv, sv) of v is the weighted sum of (i) the assignment cost
c(v, sv), and (ii) the social cost, i.e., half1 of the total weight of
edges that connect v with the subset of his friends in adj(v), who
are assigned to different classes. The goal of each player v ∈ V is
to find the class sv that minimizes his own total cost as expressed
by Equation 3. Similar to Equation 1, parameter α adjusts the
relative importance of the assignment and social costs.

Cv(sv, sv) = α · c(v, sv) + (1− α) ·
∑

f∈adj(v)∧
sf 6=sv

1

2
w(v,f) (3)

It is important to note that the RMGP objective function in
Equation 1 is equal to the sum of all individual user costs, i.e.,
RMGP (G,P, α) =

∑
v∈V Cv(sv, sv). This decomposition of

the RMGP objective into a sum of individual (per user) costs func-
tions provides a natural motivation for modeling RMGP as a game,
since users’ own goals are considered for reaching a global solu-
tion. Consequently, recommendations generated by the RMGP
game are likely to be followed by the users.

Figure 3 depicts the baseline algorithm RMGPb, which applies
the framework of Figure 2 to RMGP. Initially, RMGPb assigns
every player to a random class and computes the maximum so-
cial cost maxSCv , assuming that all friends of v are assigned to
a different class. Then, it starts the best-response procedure (Lines
4-14). Each iteration of the repeat-loop corresponds to a round. A
round computes, for each player v, the cost of assigning v to ev-
ery class. Initially the cost of a class is set as the assignment cost
plus maxSCv (Lines 8-9). Then, for each strategy sf followed by
a friend f of v, the social cost of sf is reduced according to the
1The social cost of assigning two users v, f in different classes is
evenly divided between v and f , i.e., for an edge (v, f) ∈ E, only
1
2
w(v,f) is attributed to the cost Cv .

weight of the edge (v, f) (Lines 9-10). Lines 11-13 assign v to the
strategy with the minimum cost. The algorithm terminates when
there is no class change for any user during a round. The output is
the final class sv assigned to each player v.

Input: Social Graph G = (V,E,W ), Classes P
Output: Nash equilibrium

1. For each player v ∈ V
2. assign v ∈ V to a random class/strategy
3. maxSCv = (1− α) ·

∑
f∈adj(v)

1
2
· w(v,f)

4. Repeat
5. For each player v ∈ V
6. minCost =∞
7. For each class p ∈ P
8. costv [p] = α · c(v, p) +maxSCv
9. For each friend f of v
10. costv [sf ] = costv [sf ]− (1− α) · 1

2
· w(v,f)

11. For each class p ∈ P
12. If costv [p] < minCost
13. minCost = costv [p], sv = p
14. Until Nash equilibrium
15. Return players’ strategies

Figure 3: RMGPb Algorithm

Table 1 shows all the execution steps of RMGPb for our run-
ning example with α = 0.5. Initially (first row), we randomly
assign each player to a location/class p ∈ P , e.g., players v1 and
v4 to location p1. The value of the cost function for each player
is shown inside the parenthesis next to his id (e.g., Cv1 = 0.265).
Next, we iterate over the players, starting with v1. The first col-
umn contains the cost for each of the three classes, and the best
response is underlined (e.g., the best-response of v1 is p3 with cost
0.185). The pair of gray cells per row indicates strategy deviations;
the cell with a bold value represents the new class. For instance,
v1, following his best response, switches from p1 to p3. A round
terminates when all players have been examined. At the first round
v1, v3 and v6 change strategies. During the second round, there are
no strategy deviations (i.e., there are no gray cells). Thus,RMGPb
has reached an equilibrium and it terminates, returning the final as-
signments (v3, v4, v6 to p1, v2, v5 to p2, and v1 to p3).

The performance of RMGPb can be improved by some simple
heuristics. Specifically, in Line 2, instead of a random initializa-
tion, we can assign each player to the class that yields the minimum
assignment cost (e.g., the closest event). Moreover, instead of se-
lecting players at random in each round (Line 5), we can consider
them in decreasing order of their degrees. The intuition behind this
choice is that strategy changes of highly connected users (commu-
nity leaders) will propagate fast to the other players, decreasing the
number of rounds. We examine the effects of these heuristics in the
experimental evaluation.
RMGPb can perform graph partitioning by combining connec-

tivity with arbitrary criteria. For instance, in LAGP (running ex-
ample), the assignment cost c(v, sv) in Line 8 could take into ac-
count both the distance of each user and his preference to an event
(e.g., based on textual similarity between the profile and the event
description). Moreover, it can easily handle cases where only a
subset of the graph participates in the game (e.g., only users in a
certain geographic area) by adding appropriate conditions in Lines
5 and/or 9. Finally, if multiple executions are required (e.g., in
a scenario sending location-based advertisements every hour), the
solution of the last execution can be used as the seed of the next
one, in order to minimize the number of rounds.



Steps p1 p2 p3

Initialization v1(0.265), v4(0.485) v2(0.22), v5(0.15), v6(0.36) v3(0.535)

R
ou

nd
1 v1(0.265, 0.325, 0.185) v4(0.485) v2(0.22), v5(0.15), v6(0.36) v1(0.185), v3(0.535)

v2(0.525, 0.22, 0.345) v4(0.485) v2(0.22), v5(0.15), v6(0.36) v1(0.185), v3(0.535)
v3(0.05, 0.47, 0.535) v3(0.05), v4(0.485) v2(0.22), v5(0.15), v6(0.36) v1(0.185)
v4(0.31, 0.325, 0.52) v3(0.05),v4(0.31) v2(0.22), v5(0.15), v6(0.36) v1(0.185)
v5(0.62, 0.15, 0.55) v3(0.05), v4(0.31) v2(0.22),v5(0.15), v6(0.36) v1(0.185)
v6(0.22, 0.36, 0.0.57) v3(0.05), v4(0.31),v6(0.22) v2(0.22), v5(0.15) v1(0.185)

R
ou

nd
2 v1(0.265, 0.325, 0.185) v3(0.05), v4(0.31), v6(0.22) v2(0.22), v5(0.15) v1(0.185)

v2(0.525, 0.22, 0.345) v3(0.05), v4(0.31), v6(0.22) v2(0.22), v5(0.15) v1(0.185)
v3(0.05, 0.47, 0.535) v3(0.05), v4(0.31), v6(0.22) v2(0.22), v5(0.15) v1(0.185)
v4(0.285, 0.35, 0.52) v3(0.05),v4(0.285), v6(0.22) v2(0.22), v5(0.15) v1(0.185)
v5(0.57, 0.2, 0.55) v3(0.05), v4(0.285), v6(0.22) v2(0.22),v5(0.2) v1(0.185)
v6(0.22, 0.36, 0.57) v3(0.05), v4(0.285),v6(0.22) v2(0.22), v5(0.2) v1(0.185)

Table 1: RMGPb Example

3.2 Analysis
We first analyze the running time of RMGPb and then investi-

gate the quality of its solutions. Let k = |P | be the number of input
classes, and |V |, |E| be the node and edge cardinality respectively.

LEMMA 1. The complexity of each round is Θ(k · |V |+ |E|).

PROOF. The best response of a user v requires initializing the
costs for k strategies (Lines 7-8), each involving constant time.
Lines 10-11 reduce the cost of classes that contain the dv friends
of v, where dv is the degree of v. Finally, Lines 11-13 find, among
the k classes, the one incurring the minimum cost for v. Sum-
marizing, the total cost for a single user is 2 · k + dv . Repeat-
ing the same process for all users yields:

∑
v∈V (2 · k + dv) =

2 ·k · |V |+
∑
v∈V dv = 2 ·k · |V |+2 · |E| = Θ(k · |V |+ |E|).

In order to obtain the number of rounds, we first show that RMGP
is an exact potential game (see Section 2.2). Specifically, the play-
ers’ best responses according to their own objective function (Equa-
tion 3) reduce the value of the potential function Φ(S) given below.
Note that Φ(S) is not the same as the RMGP objective function
given in Equation 1 (due to the 1

2
factor in the social cost) and it

will only be used in the following as a tool for our analysis.

Φ(S) = α ·
∑
v∈V

c(v, sv) + (1− α) ·
∑

e=(v,f)∈E∧sv 6=sf

1

2
we (4)

THEOREM 1. RMGP constitutes an exact potential game.

PROOF. Recall from Section 2.2, that it suffices to show that for
every player v, who changes his strategy from the current one sv to
the best-response s′v , and for all possible combinations of the other
players’ strategies sv it holds that: Cv(sv, sv) − Cv(s′v, sv) =
Φ(sv, sv)− Φ(s′v, sv). Indeed, we have Φ(sv, sv)− Φ(s′v, sv) =
α · (c(v, sv)− c(v, s′v)) + (1−α) · (

∑
f∈adj(v)∧sv 6=sf

1
2
w(v,f)−∑

f∈adj(v)∧s′v 6=sf
1
2
w(v,f)) =

α ·c(v, sv)+(1−α) ·
∑
f∈adj(v)∧sv 6=sf

1
2
w(v,f)− (α ·c(v, s′v)+

(1− α) ·
∑
f∈adj(v)∧s′v 6=sf

1
2
w(v,f)) =

Cv(sv, sv)− Cv(s′v, sv)

Since RMGP is an exact potential game, and the set of strategic
configurations S is finite, players need to change their strategies a
finite number of times before a Nash equilibrium is reached. In or-
der to provide an upper bound for the number of rounds required
for convergence of RMGPb, we consider a scaled version of the
problem where the objective function takes integer values. More
specifically, we assume an equivalent game with potential function

ΦZ(S) = d · Φ(S), where d is a positive multiplicative factor cho-
sen such that ΦZ(S) ∈ Z, ∀S. Notice that d is a constant that
depends on the choice of c(v, sv), we and α, and does not scale
with the size of the problem. We should further point out that this
scaling only serves the purpose of proving the following theorems
and the actual execution of the algorithm can be performed on dec-
imal values.

Let C∗ , d ·
∑
v∈V maxp∈P c(v, p), and W ∗ , d

2
·
∑
e∈E we.

Intuitively, C∗ corresponds to the (scaled) maximum assignment
cost, assuming that each user is assigned to his "worst" strategy.
Similarly, W ∗ is the (scaled) maximum social cost of any solu-
tion, assuming that all edges cross classes. The following lemma
describes an upper bound on the number of rounds required until
RMGPb converges to a Nash equilibrium. The main idea behind
the proof of the lemma is that in each round ΦZ(S) will decrease
by at least 1 and hence the total number of rounds cannot be more
that the difference between its maximum and the minimum values.

LEMMA 2. The number of rounds required untilRMGPb con-
verges to an equilibrium is upper bounded by max {C∗,W ∗}.

PROOF. We can easily see that the scaled version of RMGPb
with potential function ΦZ(S) = d ·Φ(S) = α ·

∑
v∈V c

′(v, sv)+
(1 − α) ·

∑
e=(v,f)∈E∧sv 6=sf

w′e, where c′(v, sv) = d · c(v, sv)

and w′e = d · we/2, will converge to a Nash equilibrium in the
same number of rounds asRMGPb. The cost reduction in ΦZ after
each strategy change of a player is at least 1, i.e., ΦZ(sv, sv) −
ΦZ(s′v, sv) ≥ 1 for all players v ∈ V and all possible strategies
S. This is because i) a player deviates only if his cost decreases
according to his best response, ii) the improvement is at least 1 as
ΦZ takes integer values, and iii) the improvement of a user’s cost
is the same as the improvement of the global potential function due
to the property of exact potential game. Consequently, the total
number of rounds is at most the maximum possible value of ΦZ,
denoted as Φmax, minus the minimum possible value, denoted as
Φmin. In the worst case, Φmin = 0 and Φmax ≤ α ·C∗+(1−α) ·
W ∗ ≤ max {C∗,W ∗}. Therefore, the number of rounds to reach
an equilibrium is upper-bounded by max {C∗,W ∗}, as stated by
the lemma.

Next, we continue our discussion with some theoretical results
on the quality of the solutions of RMGPb.

THEOREM 2. InRMGPb, the price of stability (PoS) is bounded
by 2, and the price of anarchy (PoA) is bounded by
PoA ≤ 1 + (1−α)

α

degavg·wavg

2·c∗avg
, where degavg is the average de-

gree,wavg = 1
|E|
∑
e∈E we is the average edge weight and c∗avg =

1
|V |
∑
v∈V minsv∈P c(v, sv) is the average minimum per user cost.



PROOF. Let C(S) denote the summation of all players’ costs,
C(S) ,

∑
v∈V Cv(sv, sv), and recall that C(S) is equal to the

RMGP objective function of given in Equation 1. From the defi-
nition of the potential function Φ(S) (Equation 4) we can directly
see that for any strategic configuration S, we have that

1

2
C(S) ≤ Φ(S) ≤ C(S). (5)

Let S∗ be the globally optimal set of strategies that minimize
C(S), and let OPT = C(S∗). Further, let S∗∗ be the set of
strategies that yields the minimum of the potential function Φ(S),
i.e., the best Nash equilibrium. From the bound in (5) and since
C(S∗) ≤ C(S), ∀S and Φ(S∗∗) ≤ Φ(S), ∀S, we have:
C(S∗∗) ≤ 2Φ(S∗∗) ≤ 2Φ(S∗) ≤ 2C(S∗) = 2 ·OPT , and hence
the PoS is bounded by 2 as stated by the Theorem.

Now, let S# be the strategic configuration of any Nash equilib-
rium (e.g., the one obtained by RMGPb). Since S# is a Nash
equilibrium, all the user cost functions are locally minimized and
hence we have that Cv(s#v , sv

#) ≤ Cv(s′v, sv
#), for all v ∈ V

and all s′v ∈ P . Choosing s′v to be the strategy with the smallest
assignment cost for user v (i.e., s′v = arg minsv∈P c(v, sv)) we
obtain C(S#) =

∑
v∈V Cv(s#v , sv

#) ≤
∑
v∈V Cv(sv

′, sv
#) =

= α
∑
v∈V

min
sv∈P

c(v, sv) + (1− α)
∑
v∈V

∑
f∈adj(v)∧

s′v 6=s
#
f

1

2
w(f,v)

≤ α
∑
v∈V

min
sv∈P

c(v, sv) + (1− α)
∑
v∈V

∑
f∈adj(v)

1

2
w(f,v)

= α
∑
v∈V

min
sv∈P

c(v, sv) + (1− α)
∑
e∈E

we

= α|V |c∗avg + (1− α)|E|wavg (6)

Since C(S∗) ≥ α · |V | · c∗avg , we have that PoA = C(S#)/C(S∗)
≤ 1 + 1−α

α
· |E|·wavg

|V |·c∗avg
, and since |E| = |V | · degavg/2 we obtain

the required bound.

3.3 Normalization Issues
In several applications, the assignment and social costs may not

be comparable. For instance, in LAGP the assignment cost per
user is defined on distance and can be in the order of thousands (of
meters), whereas edge weights may be in the range [0, 1]. On the
other hand, for TAGP the assignment cost is based on similarity
and is usually in the range [0, 1], while the social cost (e.g., based
on the number of common discussions threads) may be in the order
of thousands. Even for the same type of task, costs may exhibit
huge fluctuations depending on the problem characteristics; e.g.,
distances in LAGP may be defined in a unit space (i.e., a square
with extent 1 per axis), or may be given in meters, miles etc.

In such cases, the direct application of RMGP algorithms, or
any partition method that combines social with other criteria, may
be meaningless; if distances are very large compared to edge weights,
most users are likely to be assigned to the closest event indepen-
dently of their friends because the total cost is dominated by the
assignment cost (i.e., distances to events). On the other hand, for
high edge weights (compared to distances), users are likely to be
grouped based only on their social connections, independently of
their distance to events. To avoid the effect of the specific prob-
lem characteristics and measurements, we introduce the normalized
version RMGPN of multi-criteria graph partitioning.

The aim of RMGPN is to regularize the assignment and so-
cial costs so that they are comparable: when α = 0.5 the two

sums of Equation 1 should have similar values; other values of α
should indeed reflect the input preferences (e.g., α = 0.9 should
mean that the assignment overhead is about 9 times more impor-
tant that the social aspect). As a first step, recall that the objective
function of conventional RMGP (Equation 1) can be written in
terms of the per user costs (Equation 3) as RMGP (G,P, α) =∑
v∈V Cv(sv, sv). If ACv (and SCv) denote the average assign-

ment (and social) cost per user, RMGP (G,P, α) can be rewritten
as

RMGP (G,P, α) = α · |V | ·ACv + (1− α) · 1

2
· |V | · SCv

In RMGPN for α = 0.5, the average assignment and social
costs must be equal; i.e., it should hold that:

|V | ·ACv =
1

2
· |V | · SCv ⇒ ACv =

1

2
· SCv

To achieve this, the costs should be normalized, by re-adjusting
the assignment cost or the edge weights. In the following we focus
on the normalization of assignment cost. Let the normalization
constant be cN = SCv

2·ACv
; then, RMGPN aims at minimizing the

function of Equation 7:

RMGPN (G,P, α) = cN · α ·
∑
v∈V

c(v, sv) + (1− a) ·
∑

e=(v,f)∈E∧
sv 6=sf

we (7)

The value of cN depends on the problem characteristics. We fo-
cus on LAGP before discussing other applications. Let ||vi, pj || be
the distance between user vi ∈ V and event pj ∈ P . Equation 7
essentially normalizes this distance to cN · ||vi, pj ||; if cN > 1, the
data space is expanded, whereas if cN < 1 the data space contracts.
However, we cannot compute the exact value of cN because it re-
quires ACv and SCv , which can only be obtained after solving the
problem. Instead, we approximate cN using estimations of ACv
and SCv based on two heuristic approaches.

The optimistic approach considers that among the k events, ev-
ery user is assigned to the closest one. Therefore,ACv = distmin,
where distmin is the average minimum distance between every
user and any event, and it can be derived by cost models [27], or
it can be computed at an initialization phase. Regarding SCv , let
degavg be the average node degree and wavg be the average edge
weight, both of which are query-independent and available apriori.
We assume that among the degavg friends of a user, only a frac-
tion 1√

k
is assigned to different events, so that SCv =

degavg·wavg√
k

(e.g., if there are 16 events, 1/4 of the friends of a user are expected
to be in other classes). Thus, the estimation for the normalization
constant is CNopt =

degavg·wavg

2·distmin·
√
k

.
The pessimistic approach considers that each user is assigned to

the event with the median distance, i.e., ACv = distmed, where
distmed is the average median distance between every user and
event. For the estimation of SCv , we assume that users are uni-
formly assigned to k events, so that there are degavg·(k−1)

k
edges

connecting a user with friends at different events. Accordingly,
SCv =

degavg·(k−1)·wavg

k
andCNpes =

degavg·(k−1)·wavg

2·distmed·k
. CNpes

may be larger or smaller thanCNopt depending on the values of the
above parameters.

According to either the optimistic or the pessimistic approach,
the normalization constant cN , involves graph-dependent parame-
ters degavg , wavg , and application-dependent parameters distmin,
distmed. In other applications, the values of distmin, distmed
should be computed accordingly. For instance, in TAGP, a pes-
simistic approach would set distmed as the average median dis-
similarity between every user and advertisement. In case of multi-



ple criteria (e.g., both distance and text dissimilarity), the values of
distmin, distmed should take into account all criteria. In general,
the computation of application-dependent parameters is orthogonal
to the normalization framework. Since normalization only involves
multiplication of the assignment cost by cN , RMGPN preserves all
the properties of RMGP presented in this section. It can also eas-
ily accommodate the optimizations of the next section. Moreover,
our experimental evaluation confirms that normalization is indeed
necessary in order to obtain meaningful results.

4. OPTIMIZATIONS
In this section we present optimizations that improve the perfor-

mance of the baseline algorithm without compromising the conver-
gence guarantee. Section 4.1 describes the elimination of strate-
gies that can never be followed, regardless of the decisions of other
players. Section 4.2 investigates how independent strategies can be
utilized to achieve parallelism. Section 4.3 enhances efficiency at
the expense of space by exploring a global table of strategies. The
proposed optimizations are orthogonal and can be applied in any
combination.

4.1 Pruning by Strategy Elimination
RMGPb computes the cost functions of all players for each

strategy in every round. However, there are strategies that cannot
be assigned to some users. For example, in LAGP, a user with a
small number of friends will be assigned to an event in his vicin-
ity. Consequently, we can reduce the strategic space, i.e., prune the
events that are far from the user, and avoid redundant computations.

Let sv,min be the strategy with the minimum assignment cost for
player v, and Wv be half the sum of the edge weights incident to
v, i.e., sv,min = arg minsv∈Sv c(v, sv) and Wv =

∑
f∈adj(v)

1
2
·

wv,f , respectively. In the worst case (i.e., assuming that none of his
friends follows sv,min), the total cost of assigning v to sv,min is:

α · c(v, sv,min) + (1− α) ·Wv

The reduced strategic space of v, denoted as Srv , contains only
the possible strategies that v may follow. A strategy p ∈ Srv if and
only if the lowest possible total cost of assigning p to v does not
exceed α · c(v, sv,min) + (1 − α) ·Wv . The lowest cost for p is
achieved when all friends of v follow p, i.e., α·c(v, p)+(1−α)·0 =
α · c(v, p). Consequently, p belongs to Srv if:

α · c(v, p) ≤ α · c(v, sv,min) + (1− α) ·Wv

The valid region V Rv of player v is a bound such that no strategy
with assignment cost higher than V Rv can be assigned to v:

V Rv =
α · c(v, sv,min) + (1− α) ·Wv

α

Equivalently, the reduced strategic space Srv of v contains only
those strategies, whose assignment cost does not exceed V Rv . In
the running example of Figure 1, if α = 0.5, then V Rv1 = 0.37.
Srv1 contains only p3, since c(v1, p1) = 0.48, c(v1, p2) = 0.6, and
c(v1, p3) = 0.27. Therefore, we can directly remove v1 from the
game, and directly assign v1 to p3. Similarly, we can eliminate v6
and prune p1 from Srv2 .

We refer to the version of the algorithm that includes strategy
elimination as RMGPse. In a initialization step, RMGPse com-
putes the valid regions for all users and eliminates the strategies that
can never be followed. If during this process, it discovers a user v
that can only be assigned to a single strategy (i.e., the one with the
minimum assignment cost), it directly assigns v and removes him

from the game. SinceRMGPse never prunes best responses, it has
the same convergence guarantees as RMGPb.

4.2 Parallelism with Independent Strategies
In each round, RMGPb computes the best response of all users

sequentially, in a round-robin fashion. This is a fundamental re-
quirement in best response dynamics: if multiple players change
strategies simultaneously their decisions may be based on “out-
dated” information and there is the chance that the overall potential
function increases. However, in our setting, if two users are not so-
cially connected, the strategic deviations of one will not affect the
best-response of the other; i.e., these two users can select their best
responses simultaneously. Based on this observation, we can parti-
tion the users inNg groups such that no two users in the same group
share an edge. In the running example of Figure 1 we could have
three (or more groups), e.g., G1 = {v1, v5}, G2 = {v2, v3, v6},
and G3 = {v4}. The best responses of the users in the same group
(e.g., v2, v3 and v6) are computed in parallel, either by the same
machine through multi-threading, or by different machines.

We refer to this game as RMGPis. As shown in Figure 4,
RMGPis examines each group in a round-robin manner. Since
there are implementation limits on the number of threads that can
be created, the algorithm takes as input a parameter T that defines
the maximum threads that can run simultaneously. For each group
Gi, RMGPis creates T sets of users, each consisting of at most
d|Gi|/T e users (Lines 3-6). The threads are executed in paral-
lel, computing the best response of the users in the corresponding
group sequentially (Line 7). RMGPis waits for all threads to fin-
ish in order to continue to the next group (Line 8). The algorithm
terminates when none of the users in any group changes strategy.

Input: Social Graph G = (V,E,W ), Classes P , Colored Groups Gi,
Number of threads T

Output: Nash equilibrium

1. assign each player v ∈ V to a class/strategy
2. Repeat
3. For i ∈ [1, Ng ]
4. users per thread upt = d|Gi|/T e
5. For each t ∈ [1, T ]
6. Ut = choose at most upt users from Gi
7. start thread: compute best responses of users in Gti
8. Gi = Gi \ Ut
9. wait for all threads to finish
10. Until Nash equilibrium
11. Return players’ strategies

Figure 4: RMGPis Algorithm

Groups can be computed by a graph coloring algorithm. In par-
ticular, graph coloring assigns colors to nodes such that no two in-
cident nodes share the same color. The problem of coloring a graph
using the minimum number of colors is NP-Hard. However, there
are polynomial greedy approaches (e.g., O(|V |2), [30]) that use at
most dmax + 1 colors, where dmax is the maximum degree. We
apply such an algorithm off-line to create groups of nodes with the
same color.

4.3 Scheduling with Global Table
Depending on the strategy deviations, numerous redundant com-

putations can be avoided with proper book-keeping. In particular,
for a class/strategy p and a user v, if the set of v’s friends, who fol-
lowed p does not change, then the cost of assigning v to p remains
the same. Even if some of v’s friends have switched strategies, it
is possible that v is not affected, and the costly examination of his



strategies can be avoided. Based on these observations we propose
the RMGPgt optimization.
RMGPgt randomly assigns each player v to a strategy and com-

putes his cost for each strategy. This information is stored in a
|V | · k array (k is the class cardinality), referred to as the global
table, which is kept updated in the following manner. A Boolean
variable hv indicates whether user v is happy, i.e., if his current
strategy has the minimum total cost among the strategies. The
method only examines those players for which hv is false. In
more detail, assume that the algorithm considers player v, where
sv is his current strategy, and s′v is his best-response. First, v up-
dates his strategy from sv to s′v , and sets hv = true. Then, he
informs his friends so that they will update their costs for the cor-
responding strategies. Specifically, for each friend f of v, the cost
of sv increases by (1−α) · 1

2
·w(v,f) due to the class change of v;

on the other hand, the cost of s′v decreases by (1− α) · 1
2
· w(v,u).

If, after the changes, the current strategy of f is the one with the
lowest cost, hf is set to true. The algorithm terminates when all
players are happy.

Figure 5 depicts the pseudocode ofRMGPgt. Initially,RMGPgt
computes the global table GT and sets v as happy or unhappy ac-
cordingly (Lines 3-6). Then, it processes the game described above
until reaching a Nash equilibrium. RMGPgt performs the same
number of rounds asRMGPb, assuming that both use the same ini-
tial assignments. However, RMGPgt is faster since it only sched-
ules unhappy users that will switch strategies, as opposed to all
players inRMGPb. Therefore, the cost of each round inRMGPgt
is lower than that of RMGPb, and it gradually decreases. The
trade-off is that RMGPgt needs to maintain in main memory, for
each user v, the cost of every strategy. The space requirement can
be reduced if, during the construction of the global table, we ap-
ply the optimization of Section 4.1 to eliminate strategies that can
never be followed. Finally, RMGPgt follows the definitions of
RMGPb for cost and potential functions; therefore, convergence
is guaranteed and the PoS and PoA remain the same.

Input: Social Graph G = (V,E,W ), Classes P
Output: Nash equilibrium

1. initialize array GT of size |V | × k
2. assign each player v ∈ V to a class/strategy
3. For each player v ∈ V
4. For each class/strategy p ∈ P
5. GT [v][p] = Cv(p, sv)
6. If sv = argminp∈P GT [v][p] then hv = true; false otherwise
7. Repeat
8. For each player v ∈ F
9. If hv = false
10. s′v = argminp∈P GT [v][p], hv = true
11. For each friend f ∈ adj(v)
12. GT [f ][s′v ] = GT [f ][s′v ]− (1− α) · 1

2
· w(v,f)

13. GT [f ][sv ] = GT [f ][sv ] + (1− α) · 1
2
· w(v,f)

14. If sf = argminp∈P GT [f ][p]
15. hf = true; false otherwise
16. Until Nash equilibrium
17. Return players’ strategies

Figure 5: RMGPgt Algorithm

5. DECENTRALIZED GAME
Commercial social networks usually distribute the social graph

across multiple servers in order to improve content delivery and
accommodate the geographically diverse nature of data generation

and demand. Computation in decentralized storage systems is usu-
ally performed through a distributed data access interface (API) be-
tween the application and the corresponding servers. One such ex-
ample is Facebook’s TAO [5]. Following a similar approach, one
could perform RMGP on a distributed social graph by fetching
the data over the network through the API to a master processing
unit and executing the algorithm locally. We refer to this approach
as fetch-and-execute (FaE). However, for large problem instances,
transferring the data to a server can be a major bottleneck in per-
formance. Moreover, a single server may not be able to store the
entire graph due to memory limitations.

To avoid these shortcomings, we propose a framework for per-
forming RMGP in a decentralized manner. Our framework as-
sumes that the graph is distributed over several slave nodes that
have processing capabilities. The partitioning scheme used for as-
signing the data to the slaves is orthogonal to our problem. A mas-
ter node M acts as a game coordinator that manages the data ex-
change between the slave nodes. We call this framework DG, for
decentralized game. DG requires that the social graph has been
colored using a distributed graph coloring technique such as [13].
Although we assume that the slaves can only communicate through
M , DG can be easily extended to handle direct data exchange be-
tween slaves.

We describe DG through an LAGP scenario, e.g., we wish to
assign users, who are currently checked-in within the bounds of
a specific geographical area to k events. Figure 6 depicts the pro-
cessing method and communication steps betweenM and the slave
nodes. First, M sends an initialization command to all slave nodes,
which contains the query (i.e., events, α, area of interest) along
with a strategy initialization method, e.g., random or closest event.
Then, each slave: i) determines the users who are stored locally
and will participate in the game, i.e., are within the area of inter-
est, ii) initializes players’ strategies based on the method decided
by M , and iii) sends the strategic vector of the local users, referred
to as the local strategic vector LSV , along with the distinct col-
ors of the players to M . M integrates the union of all LSV s into
a global strategic vector GSV , and sends it to the slaves that will
participate to the game (slaves that do not contain users within the
area of interest are excluded). Once a slave node receives GSV, it
i) stores it locally, ii) performs additional initialization tasks, e.g.,
computes the global table if processing is based on RMGPgt, and
iii) sends an acknowledgment toM , denoting that it is ready to start
the game.

After M has received an acknowledgment from all slaves, it
starts the execution of the game. Each iteration of the repeat loop
(Lines 14-25) corresponds to a round of the game. In every round,
M sends to the slave nodes a command to compute the best re-
sponse of all users with a specific color. Upon receiving the com-
mand, each slave computes the best responses and sends back to
M only the strategy changes. Next, M updates GSV and redis-
tributes the changes. When a slave node receives such a message,
it updates the local GSV and the global table if required, and sends
an acknowledgment to M . The round finishes when all colors are
processed. The algorithm terminates if M receives no strategic up-
dates in a round.

Compared to FaE, DG improves the overall performance in two
ways. First, it lessens the communication overhead by allowing
slave nodes to locally process their data and exchange only strat-
egy changes through the network. This is an important feature since
data transfers may significantly burden the performance of decen-
tralized systems. Second, DG reduces the query response time by
enabling slaves to work in parallel.



1. M sends q and initialization parameters to the all slave nodes
2. Each slave node
3. determines the local players
4. initializes the strategies of the local players
5. sends the strategies and the distinct colors of the local players’ to M
6. let D denote all slave nodes that participate to the game
7. let CL be the set containing the distinct colors of players
8. M computes GSV
9. M distributes GSV to all slave nodes in D
10. Each slave node in D
11. stores GSV locally
12. performs additional initialization tasks (if required)
13. sends ACK to M
14. Repeat
15. For each color c ∈ CL
16. M sends "compute c" command to all slave nodes in D
17. Each slave node in D
18. computes the best responses of the users in group c
19. sends the strategic changes to M
20. M updates GSV
21. M distributes the changes to the slave nodes in D
22. Each slave node in D
23. updates its local strategic vector and players’ scores
24. sends ACK to M
25. Until no strategic changes

Figure 6: Decentralized Game

6. EXPERIMENTS
We evaluate the proposed approaches assuming a LAGP task,

where the users of a geo-social network are assigned to events
based on proximity and social aspects (i.e., the running example).
The graph and the locations of users are stored in two main-memory
hash tables where the user IDs are used as keys. In the social hash
table, for each user there is an adjacency list of pairs (friend id,
edge weight). The location hash table maintains the coordinates of
the last check-in of each user. All algorithms were implemented in
C++, under Linux Ubuntu and executed on an Intel Xeon E5-2660
2.20GHz with 16GB RAM.

We use two real datasets: Gowalla and Foursquare. Gowalla [1]
consists of i) 12,748 users in the Dallas and Austin metropolitan
area, ii) their check-ins over a weekend in February 2009, and iii)
48,419 edges/friendships among them. 128 different social events
that took place during the same weekend in Dallas and Austin,
were obtained from Eventbrite 2. Foursquare [15], collected in
September 2013, consists of 2,153,471 users and their check-ins,
27,098,490 friendships, and 1,143,092 events/venues. In both datasets,
all edge weights equal to 1. For experiments, where we need to re-
duce the size of the social graph, we use the Forest Fire sampling
technique [14]. For decreasing the event cardinality, we randomly
select the required number of events.

Section 6.1 compares the performance of RMGPb with algo-
rithms for related problems. Section 6.2 investigates the effect of
normalization on the quality of the solutions. Section 6.3 evaluates
the optimizations of the baseline approach in a centralized setting.
Section 6.4 studies RMGP in a decentralized setting.

6.1 Comparison with Other Approaches
Since as discussed in Section 2 existing graph partitioning meth-

ods focus on different problems, in order to evaluate the proposed
techniques we use the following benchmarks. (i) The Metis-Hungarian
approach (MH), which initially computes the minimum unbal-
anced k-way social cut using METIS, and then it assigns every par-
tition (i.e., group of users) to an event using the Hungarian method

2http://www.eventbrite.com

[20], so that each partition is assigned to a different event and the
total assignment cost is minimized. (ii) The linear programming
UML algorithm (UMLlp) [12], which guarantees an approxima-
tion ratio 2. (iii) The faster greedy UML approach (UMLgr) [4],
which guarantees a looser approximation ratio 8 log |V |.

We compare the above techniques with the unoptimizedRMGPb
in terms of efficiency and solution quality. RMGPb applies ran-
dom initial assignment and random order for considering users in
each round. Since UML methods aim at small datasets, we reduce
the size of Gowalla through Forest Fire. Moreover, we pre-compute
the costs (distances) of the assignments because they are required
by UMLlp and UMLgr as input. In order to solve UMLlp, we
use CVX [9].

Figure 7(a) assesses the execution time (in ms) as a function of
the number k of events, for |V | = 200. RMGPb is more than 3
orders of magnitude faster than UMLgr and UMLlp because both
UML algorithms have high complexity and require graph transfor-
mations at execution time. MH is slightly slower than RMGPb.
Figure 7(b) shows the solution quality (i.e., total assignment cost
according to Equation 1) versus k. UMLlp yields the lowest cost
because in the worst case it generates a 2-approximation of the
optimal solution. Actually, in most settings, the linear relaxation
gave integral solutions, which means that the output of UMLlp
is optimal (this is not expected for larger graph instances). The
assignments of RMGPb have higher cost, but still comparable to
UMLlp. However, the solutions of UMLgr and MH are signif-
icantly worse; UMLgr is bounded by a higher (worse) approxi-
mation ratio 8 log |V |, while MH minimizes the social cost (i.e.,
k-way cut) but yields high assignment costs.
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Figure 7: RMGPb, MH , UMLlp and UMLgr vs. k
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Figure 8 plots the running time and quality cost versus the node
cardinality |V |, for k = 7. Similar to the previous experiment,
RMGPb is the most efficient algorithm while the quality of its so-
lutions remains close to UMLlp (which in most cases is optimal).
Note that the quality cost grows with the size of the graph, because
there are more users to assign. We restrict the maximum number
of nodes to 300, because otherwise UMLlp and UMLgr would be
too slow. In the remaining experiments, we focus on game theoretic



 0

 20

 40

 60

 80

 100

 120

 140

 160

8 16 32 64 128

Q
u
al

it
y
 C

o
st

 (
x
1
0

3
)

k

assignment
social

(a) No normalization

 0

 5

 10

 15

 20

 25

8 16 32 64 128

Q
u
al

it
y
 C

o
st

 (
x
1
0

3
)

k

assignment0.11

0.11

0.09

0.09
0.07

social

(b) Optimistic normalization

 0

 2

 4

 6

 8

 10

8 16 32 64 128

Q
u
al

it
y
 C

o
st

 (
x
1
0

3
)

k

assignment
social

0.019 0.017 0.018 0.017 0.025

(c) Pessimistic normalization

Figure 9: Effect of Normalization, Cost vs. k (α = 0.5)

algorithms using the complete real datasets. We exclude UMLlp
andUMLgr because they are inefficient for large graphs, andMH
since it generates solutions of low quality.

6.2 Effect of Normalization
To demonstrate the effect of normalization, we use Gowalla. Fig-

ure 9(a) shows the assignment and social costs as a function of the
number of events k for the original (non-normalized) RMGP. Fig-
ures 9(b) and 9(c) illustrate the corresponding diagrams for RMGPN

according to the optimistic and pessimistic normalization, respec-
tively. In all cases, the preference parameter α is set to 0.5 so that
the assignment and social costs are considered equally important.
The solutions are obtained by RMGPb, where initially all users
are assigned to the closest event.

According to Figure 9(a), the assignment dominates the social
cost for all values of k before the normalization. This happens
because the average distance between a user and an event is above
100 (kms) for all values of k, whereas the edge weights are equal
to 1 and the average node degree is 7.6. Consequently, even if all
friends of a user are assigned to different events, the social cost is
likely to be a small fraction of the assignment cost, and most users
stay at the closest event. For instance, if k = 8, only 1434 users
are re-assigned to a new event, while 11314 remain at their initial
assignment; the social gain of moving to a further event attended
by friends cannot compensate for the increase in the distance.

On the other hand, the normalized versions of the problem ex-
hibit a much more balanced behavior, especially with the pessimistic
approach, for which the assignment and social costs are similar for
all values of k (recall that α is set to 0.5). For k = 8, in the op-
timistic (pessimistic) approach 3459 (6583) users are re-assigned
to events that reduce their social cost. The numbers on top of the
columns for RMGPN show the values of the normalization con-
stant cN used for the specific value of k (see Section 3.3). Finally,
note that the overall costs in the three diagrams are not directly
comparable since they are based on different formulae (Equation
1 for RMGP and Equation 7 for RMGPN), or different approxi-
mations of cN (for the two versions of RMGPN). Moreover, they
correspond to different solutions.

Since the solutions of the non-normalized version of RMGP are
futile, in all the following experiments we assume RMGPN nor-
malized according to the pessimistic approach.

6.3 Centralized RMGP
We examine the behavior of RMGPb assuming a single server,

which maintains the Gowalla dataset and performs query process-
ing. Recall that RMGPb initializes users to random events, and
each round considers users in a random order. We slightly modify

the baseline to create two versions: i) RMGPb+i that initializes
users to their closest event, and ii) RMGPb+i+o, which in addi-
tion considers users in decreasing order of their degree.

Figure 10(a) illustrates the CPU time of the three variants as a
function of the number k of events, for α = 0.5. RMGPb+i
improves significantly the performance of RMGPb, whereas the
additional effect of RMGPb+i+o is evident only for k = 128.
Figure 10(b) shows the quality of the final solutions produced by
the algorithms, for the same settings. For each value of k, the first
column corresponds to the cost of RMGPb, the second to the cost
RMGPb+i, and the third to the costRMGPb+i+o. The white part
of a column indicates its assignment (i.e., distance) cost, whereas
the gray part is the social component. Observe that the two com-
ponents have comparable costs because α = 0.5 and the problem
is normalized. Usually RMGPb+i and RMGPb+i+o reach the
same solution since they start with the same initialization, and their
differences in terms of quality are negligible. On the other hand,
the solutions produced by RMGPb are inferior in all settings.
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Figure 10: Behavior of RMGPb (α = 0.5)
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Figure 11: Behavior of RMGPb (k = 32)

Figure 11(a) studies the effect of α on the running time, for
k = 32. Similar to Figure 10(a), RMGPb+i and RMGPb+i+o
have almost identical performance, and they are both better than
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RMGPb. The value of α does not have a significant impact, and
in all cases the heuristic versions require between 5 and 8 rounds
to terminate, whereas the original algorithm needs between 9 and
11 rounds. Figure 11(b) measures the effect of α on the quality of
solutions. Small values of α indicate low importance of the assign-
ment cost, and the algorithms aim at minimizing mainly the social
cost. This explains the small contribution of the gray (i.e., social)
component in the leftmost columns of the diagram. As α increases,
the assignment cost becomes more important; for α = 0.9, the
social component dominates the total cost because the algorithms
tend to assign users to their closest events. Similar to Figure 10(b),
RMGPb+i and RMGPb+i+o yield, in general, better solutions
than RMGPb. Since RMGPb+i+o has the best overall perfor-
mance, we use it as the baseline algorithm for subsequent experi-
ments.

Next we evaluate the optimizations of Section 4, namelyRMGPse,
RMGPis, RMGPgt. Recall that i) RMGPse prunes events that
cannot be assigned to a user (independently of the friend assign-
ments) during an initialization round, ii) RMGPis exploits par-
allelization through independent strategies, and iii) RMGPgt uti-
lizes a global table to only examine users who deviate (i.e., are
re-assigned to a different event). RMGPAll applies all three opti-
mizations. Since the algorithms start with the same initial assign-
ments (users are assigned to the closest events initially), they reach
similar solutions. Thus, in the following, we exclude experiments
on the quality of the solutions and only focus on efficiency.

Figure 12(a) measures the running time as a function of the num-
ber of events k, for α = 0.5. The time of all approaches increases
with k because the number of possible assignments per user grows
linearly. RMGPgt achieves the best gains among individual opti-
mizations because it only schedules unhappy users that will switch
strategies. Therefore, the cost of each round in RMGPgt is lower
than that of the other optimizations, and it gradually decreases (see
also Figure 12(c)).

Figure 12(b) examines the effect of α on the running time, for
k = 32. As α increases the spatial component starts dominating
the total cost and users tend to be assigned to the closest events.
Accordingly, the pruning power of RMGPse increases since the
valid regions shrink (eliminating more users), and for α = 0.9 it
outperformsRMGPis. RMGPAll has the best performance in all
cases as it incorporates all optimizations.

Figure 12(c) shows the running time per individual round for a
random query with k = 32 and α = 0.5. All algorithms terminate
after 8 rounds. Round 0 constitutes the initialization step, which
involves the cost of sorting the users in decreasing order of their
degree and assigning them to their closest event (i.e., the two basic
heuristics). In addition, for RMGPse it includes the computation

of valid regions, and forRMGPgt it includes the generation of the
global table. Thus, Round 0 is more expensive for these methods.
Subsequent rounds have fixed cost for RMGPb, RMGPse and
RMGPis because they incur exactly the same computations. The
savings of RMGPse and RMGPis with respect to RMGPb are
due to strategy elimination and parallelism respectively. On the
other hand, in the case of RMGPgt the running time per round
gradually decreases because the the number of users who are re-
assigned drops as the algorithm approaches convergence.

6.4 Decentralized RMGP
In this section we evaluate DG, the framework presented in Sec-

tion 5, versus FaE, which involves fetching the data to a server and
executing the query locally. We use three identical servers (Intel
Xeon E5-2660 2.20GHz with 16GB RAM) that communicate us-
ing an 100Mbps Ethernet connection. The Foursquare dataset is
distributed to two of the servers. In DG, the third server acts as
the master node, while in FaE it receives the entire dataset and per-
forms all computations. Both DG and FaE employ RMGPall as
the underlying algorithm since it has been shown to be the most
efficient in the previous experiments.

Figure 13 depicts the execution time (in sec) versus k, for α =
0.5. The columns represent the cost of FaE, which is split into
transfer (gray) and execution (white) time. The first factor corre-
sponds to the time required for the processing server to receive the
social graph from the other servers, and is query-independent. For
values of k up to 128 it dominates the total cost of FaE. DG avoids
this cost and can start the game earlier. On the other hand, the
execution time of FaE is comparable to DG, although the latter in-
volves communication with the slaves during the game, while FAE
executesRMGPall locally. This can be explained by the high cost
of initialization (Round 0). For instance, if k = 1024 more than
2.2 billion computations of euclidean distances among users and
events are required. In DG, slaves perform, in parallel, initializa-
tions for users in their partition, compensating for the additional
data transfers during the rounds. For both FaE and DG the execu-
tion time increases linearly with k, mainly due to the cost of the
initialization step. Observe that the running time (up to 5 minutes
for the largest instance) is small compared to the size of the problem
(2,153,471 users, 27,098,490 edges, up to 1,024 events), especially
considering that we only use two slaves. Recall that UML methods
require comparable times for graphs of a few hundred nodes.

Figure 14 plots the processing time (left axis) and data trans-
ferred (right axis) per round by DG for a random query with k =
256. The game terminates in 17 rounds. Round 0 incurs 58 sec-
onds due to the initialization. The processing time of subsequent
rounds gradually decreases because fewer users change strategies;
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this results in reduced data transfers and update operations at the
master and slave nodes. Note that even the last round consumes
some time because of the network communication (e.g., command
and acknowledgment messages). The maximum amount of data
(16MBs) is transferred at Round 0 because each slave obtains an
up-to-date version of the entire strategic vector. Subsequent rounds
only communicate strategy changes, and the amount of data trans-
ferred diminishes in accordance with the processing time.

7. CONCLUSION
This paper studies a type of multi-criteria graph partitioning,

which assigns users of a social network to a set of input classes so
that their assignment and social costs are minimized. To achieve ef-
ficiency, we model the problem as a game, develop a best-response
algorithm, and propose several optimizations to enhance its perfor-
mance. We implement our methods in both centralized and decen-
tralized settings, where the social graph is distributed at different
servers. In addition, we apply normalization to resolve issues that
arise due to large differences in the assignment and social costs. Fi-
nally, we demonstrate the effectiveness of the proposed techniques
with extensive experiments on real datasets. Given that our meth-
ods significantly outperform existing UML algorithms, they could
be used to provide solutions to UML problems in real-time, even
for large graphs.
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