
Continuous Spatial Authentication

Stavros Papadopoulos1, Yin Yang1, Spiridon Bakiras2, and Dimitris Papadias1

1 Dept. of Computer Science and Engineering,

Hong Kong University of Science and Technology
{stavros, yini, dimitris}@cse.ust.hk

2 Dept. of Mathematics and Computer Science,
John Jay College, City University of New York

sbakiras@jjay.cuny.edu

Abstract. Recent advances in wireless communications and positioning devices
have generated a tremendous amount of interest in the continuous monitoring of
spatial queries. However, such applications can incur a heavy burden on the
data owner (DO), due to very frequent location updates. Database outsourcing
is a viable solution, whereby the DO delegates its database functionality to a
service provider (SP) that has the infrastructure and resources to handle the
high workload. In this framework, authenticated query processing enables the
clients to verify the correctness of the query results that are returned by the SP.
In addition to correctness, the dynamic nature of the monitored data requires the
provision for temporal completeness, i.e., the clients must be able to verify that
there are no missing results in between data updates. This paper constitutes the
first work that deals with the authentication of continuous spatial queries,
focusing on ranges. We first introduce a baseline solution (BSL) that achieves
correctness and temporal completeness, but incurs false transmissions; that is,
the SP has to notify clients whenever there is a data update, even if it does not
affect their results. Then, we propose CSA, a mechanism that minimizes the
processing and transmission overhead through an elaborate indexing scheme
and a virtual caching mechanism. Finally, we derive analytical models to
optimize the performance of our methods, and evaluate their effectiveness
through extensive experiments.

1 Introduction

In database outsourcing [9], a data owner (DO) delegates its DBMS tasks to a service
provider (SP) that has the necessary resources to perform advanced query processing.
The SP is then responsible for processing client queries on behalf of the DO.
Authenticated query processing allows the SP to prove to the client that (i) the results
are authentic (i.e., originated from the DO), (ii) sound (i.e., no result object is
fictitious or modified), and (iii) complete (i.e., all objects satisfying the query are
present). We refer to these three terms collectively as correctness. Figure 1.1
illustrates the general framework, commonly used in the outsourcing literature.
Initially, the DO obtains, through a trusted key distribution center, a private and a
public key [20]. The private key is known only to the DO, while the public key is
accessible by all the clients. The DO signs the data with its private key, generating

one (or more) signatures. Then, it sends the signature(s) and the data to the SP, which
constructs an authenticated data structure (ADS) for efficient query processing. The
ADS is essentially an index that contains additional authentication information
(typically, hash digests and signatures). When the SP receives a query from a client, it
generates a verification object (VO) by accessing the ADS. The VO contains the result
set along with the necessary authentication information. The SP sends the VO to the
client, which can verify the results by matching the VO against the public key of the
DO.

Fig. 1.1: Database outsourcing framework.

While there is extensive literature on authenticated processing in conventional
databases, there is very limited work on outsourced data in the presence of frequent
updates, especially for spatio-temporal databases. In this paper, we focus on
authenticated processing of continuous spatial ranges, motivated by advances in
wireless communications and GPS-enabled devices (e.g., RFID chips, sensor
networks, navigation systems, etc.). Consider, for instance, a SP that receives
locations of shipments around the globe (using RFID technology). A company (i.e., a
client) that wishes to track its products through the SP registers long-running queries
that monitor certain locations of interest. Whenever an update (arrival or departure)
influences a query, the corresponding client is immediately informed. In addition to
the timely delivery of query results, it is crucial for the subscribers of such a system to
be able to verify their correctness.

The dynamic nature of the data in the above scenario, and the potentially large
number of long-running queries, pose several technical challenges. First, a system for
continuous authentication on dynamic data must accommodate very fast updates and
also support efficient query processing. Second, it must provide effective mechanisms
for minimizing the communication cost with the clients, and their verification effort.
Third, in addition to correctness, the clients must be able to verify the temporal
completeness of their results, i.e., confirm that they receive all the updates that affect
their queries.

This paper constitutes the first work on continuous authentication of dynamic
spatial data. We first introduce a baseline solution, called BSL, that achieves
correctness and temporal completeness, but incurs false transmissions; that is, the SP
has to notify clients whenever there is a data update, even if it does not affect their
results. Then, we propose CSA (for continuous spatial authentication), a mechanism
that minimizes the processing and transmission overhead through an intricate
indexing scheme and a virtual caching mechanism. Third, we derive accurate models
for estimating the size of the VO, which is the most important factor that determines
the performance of an outsourcing system. We apply these models to optimize CSA.
Finally, we empirically show that CSA outperforms BSL significantly in all aspects
and is, therefore, applicable in highly dynamic environments. The remainder of the
paper is organized as follows. Section 2 reviews existing ADSs for database

outsourcing. Section 3 describes BSL, while Section 4 proposes the CSA technique.
Section 5 presents our experimental results and Section 6 concludes the paper.

2 Related Work

The Merkle Hash Tree (MH-Tree) [12] is a main-memory binary tree that provides
efficient authentication of equality queries on single-dimensional data. It assumes that
the database is sorted on the query attribute and, at the leaf level, every node stores
the digest of the binary representation of the record. The digests are computed with a
one-way, collision-resistant hash function (e.g., SHA1 [15]). The tree is built bottom-
up and internal nodes store the digest of the concatenation of the digests of their
children. After the tree is constructed, the DO signs the digest stored in the root of the
tree and sends it, along with the data, to the SP. During query processing, the SP
traverses the tree and, apart from the requested record, it inserts into the VO the digest
stored in the sibling of every visited node. Having the VO, the DO’s signature and the
DO’s public key, the client can verify the authenticity of the result by re-constructing
the digest of the root. Devanbu et al. [5] modify the query processing mechanism of
the MH-Tree for answering one-dimensional range queries, while satisfying
soundness and completeness. They also extend their methods to multiple dimensions,
combining the MH-Tree with the Range Search Tree [2].

The Verifiable B-Tree (VB-Tree) [18] is the first signature-based approach that
augments a standard B+-Tree with signed digests. However, this method only
guarantees the correctness of the results, but not the completeness. To address this
problem, Pang et al. [17] and Narasimha and Tsudik [16] introduce a technique called
signature chaining. They assume that the dataset is sorted on one attribute, and every
record is associated with one signature. This signature combines hashed information
about the record, and both its immediate successor and predecessor in the sorted
order. In addition, the DO inserts two special (boundary) records at the two ends of
the sorted order. To assure integrity for a range query, the constructed VO contains (i)
the result set, (ii) the signature for each record in the result set, and (iii) the boundary
records.

The Merkle B-Tree (MB-Tree) [10] extends the MH-Tree to external memory (the
node fanout depends on the disk page size). Every node has a digest, which is
computed by applying the hash function to the concatenation of all its children's
digests. The DO then signs the hash of the concatenation of the digests of the entries
contained in the root node of the tree. Range query processing is performed by two
top-down traversals (one for each boundary record). At each visited node, the digests
of the nodes that do not overlap the query range are inserted into the VO (along with
the result set and the signed root).

In the context of multi-dimensional databases, which is closely related to this work,
there have been very few ADSs proposed in the literature. First, Cheng et al. [3]
introduce two authenticated structures, namely the Verifiable KD-Tree (VKD-Tree)
and the Verifiable R-Tree (VR-Tree). Both structures are modified versions of the
standard KD-Tree and R-Tree, respectively. Specifically, in every node of the tree,
the points and/or MBRs (Minimum Bounding Rectangles) contained therein are

sorted according to their x-coordinate, and a signature chain is generated. Range
queries are processed by following the signature chain at every node that overlaps the
query range. However, these structures incur large space and query processing
overhead for the SP, high initial construction cost for the DO, and considerable
verification burden for the clients. Furthermore, they lack algorithms for insertions
and deletions (updates are not discussed in [3]), which render them inapplicable to
dynamic environments.

Currently, the most efficient ADS for multi-dimensional databases is the Merkle R-
Tree (MR-Tree) [21], which combines the idea of the MB-Tree with the structure of
the R*-tree. In particular, every leaf node is associated with a digest that is computed
on the concatenation of the binary representation of all objects in the node. Internal
nodes are assigned a digest that summarizes the child nodes' MBRs and digests. Each
node digest is stored at the corresponding parent entry. The root digest is signed by
the DO. Range queries are handled by a depth-first traversal of the tree. The resulting
VO contains (i) all the points in every leaf node visited, (ii) the MBRs and digests of
all the pruned nodes, and (iii) the DO’s signature. Nevertheless, the MR-Tree cannot
support very fast updates and is, thus, not suitable for our problem.

Also related to our work are two recent solutions that authenticate continuous
range queries on one-dimensional data streams. First, Li et al. [11] deal with
authentication in sliding window streams, i.e., a tuple expires w time units after its
arrival. Their method segments the time into slots, and builds a separate MH-Tree on
the tuples that arrived in each slot. Its goal is to reduce the communication cost at the
expense of delayed result updates. Papadopoulos et al. [19] introduce CADS, which
also deals with streaming environments, but focuses on real-time reporting. CADS
combines space (i.e., domain) partitioning with MH-Trees for effective indexing.

Our work extends the general methodology of [19] for continuous spatial ranges.
Specifically, we integrate space partitioning, MH-Trees and Hilbert curves for
indexing highly dynamic spatial data. In addition to data structures, we develop a
comprehensive set of algorithms for the initial computation and the continuous
monitoring of the results. Finally, we propose accurate models for determining the
best space partitioning granularity, a factor that significantly affects the scheme
effectiveness in our setting.

3 Baseline Solution

Since there is no spatial ADS that can handle frequent location updates, in this section
we devise a baseline solution (BSL). Each point1 p is represented by a tuple of the
form <p.id, p.x, p.y>, where p.id is a unique identifier and (p.x, p.y) are p’s co-
ordinates. BSL maps all the 2D points into the 1D domain utilizing a space-filling
curve. We employ the Hilbert curve because it preserves spatial locality and leads to
low query processing cost [13]. Let D:[Lx, Ly, Ux, Uy] be a square dataspace, where
(Lx, Ly) and (Ux, Uy) are the lower left and upper right corners. D is partitioned in 22·o
regular cells, where o is an integer called the order (or resolution). Figure 3.1a depicts
a Hilbert curve with o=3. The cell at the lower left corner has Hilbert value 0, and the

1 We use terms point and object interchangeably.

values of the remaining cells follow the Hilbert curve (for simplicity, we only include
the values of selected cells). Each point p is associated with the Hilbert value p.hv of
the cell that covers it, e.g., p1.hv=2, p2.hv=7, p3.hv=8, etc.

The DO indexes the points with a 2-3 MB-Tree using their Hilbert values as
search keys. The 2-3 MB-Tree is similar to a main memory MB-Tree, where each
node may have either 2 or 3 entries. An insertion in a full node causes it to split in two
nodes, each containing 2 entries. On the other hand, a deletion from a node with 2
entries leads to an underflow. Similarly to B+-Trees, the node first tries to borrow an
entry from a full sibling node. If this is not possible, the node is merged with a
sibling. To support multiple updates at the same timestamp, we do not alter any
digest, but temporarily mark the visited paths. Then, the marked paths are revisited
and the digests are computed bottom-up. In this way, the (expensive) hash
computations are performed only once.

42

q

p14
p13

p11
p12

p4

A F

ED

Bp1

p7 p6

p5

p9 p10

p8

p15p2

p3
C

0

1 2

3 4 5

6

9

10 5253

54

5657

58 59

7

8

27

2829

40

41

4851

63

55

2 7 8 9 27 28 29 40

41 42 48 51 55 57 63

2 8 28

41 51 57

2 41

AB : [2,7] CD : [8,27]

EF : [51,63]

e1 e2

e3 e4 e5

e6 e7

p6
e8

p1 p2 p3 p4 p7 p8

p9 p10 p11 p12 p13 p14 p15

Included in the VO

L.head = AB
L.head = CD

L.head = EF'
p5

2-3 MB-Tree

L.head = ∅

'

' '

'

'
(a) Hilbert curve (o=3) (b) 2-3 MB-Tree in BSL

Fig. 3.1: Indexing and query processing in BSL

Each leaf entry p in the 2-3 MB-Tree has the form <p.id, p.x, p.y, p.hv>. An
intermediate entry e is a triplet (e.h, e.k, e.ptr), where e.k is the Hilbert value of the
first point in the subtree of e, e.ptr is a pointer to the corresponding child node and e.h
is a digest computed on the concatenation of the digests of the entries in e.ptr. Figure
3.1b contains the tree for the points of Figure 3.1a, showing only the Hilbert value of
each entry. The DO computes a signature on Hroot, D and o, i.e., it performs
sign(h(Hroot | Lx | Ux | Ly | Uy | o)), where h is the hash function (in our work we
employ SHA1 [15]) and ‘|’ denotes concatenation. As shown later, D and o are
necessary during the verification process. Then, it sends the tree, D, o and the
signature to the SP. Upon receiving a 2D window query q, the SP finds the parts of
the Hilbert curve corresponding to cells that intersect with q. Given the shaded query
in Figure 3.1, (i) poly-line AB corresponds to cells 5 and 6, (ii) CD to 9 and 10, and
(iii) EF to cells 52-59. The union of points in these cells constitutes the result of q;
i.e., the result is {}∪{p4}∪{p13, p14} for points in AB, CD, EF, respectively. Note that
the result may contain some false positives, e.g., p13, that fall out of the query window
but reside in an intersecting cell. Such points are filtered out by the client.

Each poly-line corresponds to a 1D range in the 2-3 MB-Tree. One solution would
be for the SP to process these ranges one by one. This involves an expansion of each
range to include boundary records. For instance, AB is extended to AB':[2,7] so that it
covers p1 and p2. Similarly, CD and EF are extended to CD':[8,27] and EF':[51,63] to

include boundary tuples p3, p5 and p12, p15, respectively. Finally, the SP should
construct a separate VO for each of the expanded ranges. However, executing the 1D
ranges individually and generating separate VOs would be inefficient, because (i) tree
nodes may be visited multiple times, and (ii) VO components (i.e., digests and/or
boundary points) may either appear in several VOs, or they may not be necessary as
they can be reconstructed from information contained in other VOs. To avoid these
problems, we integrate the execution of all sub-queries in one traversal that produces
a single VO. The generated VO has no redundancy and can be verified efficiently by a
linear scan. The detailed algorithm, called MultiRangeMB, is shown in Figure 3.2.
Note that the algorithm utilizes special tokens [and] that indicate the scope of a node.

MultiRangeMB (MBNode n, List L)
1. Append [to the VO
2. For each entry e in n
3. If n is an intermediate node
4. if e intersects L.head // e may contain results
5. MultiRangeMB(e.ptr, L) // e.ptr points to a child node
6. Else append e.h to the VO
7. Else // n is a leaf node and e is a point
8. Append <e.id, e.x, e.y> to the VO
9. If e is the last entry of n AND e.hv is ≥ the upper bound of L.head
10. Evict L.head from L
11. Append] to the VO

Fig. 3.2: Algorithm MultiRangeMB of BSL

MultiRangeMB takes as arguments the root of the 2-3 MB-Tree, and a list L that
stores the 1D (Hilbert) sub-ranges of query q sorted in ascending order. The algorithm
traverses the tree in a depth-first fashion, and checks all the entries contained in each
visited node. For an intermediate node, if an entry e overlaps with the head of L
(L.head), the traversal continues in e’s subtree (lines 4-5). Otherwise, the digest of e
is inserted into the VO (line 6). Line 6 also captures the case where L is empty, so that
the digests of all unexamined entries along the path from the last leaf visited up to the
root are appended to the VO. When the algorithm reaches a leaf node, it first appends
all point entries to the VO (line 8). If the Hilbert value of the last point contained in
the leaf is greater than or equal to the upper bound of L.head (i.e., the boundary point
entry for L.head is already inserted in the VO), the latter is evicted from L.

We illustrate this multi-range traversal using the example of Figure 3.1. The SP
sorts the expanded ranges AB', CD' and EF' in ascending order of their lower
boundary value and inserts them in the ordered list L. Then, it starts by processing
range AB':[2,7] at the head of L. Every point (p1, p2) satisfying AB is appended to the
VO (such entries are shown in grey). After the leaf accommodating the last point (p2)
is visited, AB' is evicted from L. Subsequently, the algorithm continues at entry e4,
where it starts processing CD':[8,27] and includes p3, p4, p5 in the VO. CD' is evicted
from L, EF':[51,63] commences at e5 and e5.h, e6.h, p12, p13, p14, p15 are appended to
the VO. Note that it is not necessary to include p.hv in the VO because, along with the
VO and the signature, the SP sends D and o. Having this information available, the
client can compute the Hilbert values of the points locally.

In general, the VO contains a sequence of point entries for each processed 1D
interval, and (possibly) digests interleaved between pairs of point sequences. Upon
receiving the VO, the client first decomposes q into the same set of 1D intervals as the
SP (before their expansion) using D and o, sorts them on their lower boundary value
and inserts them in a list L. Then, it utilizes an algorithm to reconstruct the digest of
the root (Hroot). This algorithm is similar to the evaluation of parenthesized arithmetic
expressions, where the tokens play the role of the parentheses. When the algorithm
encounters a token], it has all the information (digests or records) to compute the
digest of the node that started at the corresponding [. The digests and records are
appended to a buffer B, which after termination is used to derive Hroot=h(B).
Furthermore, for each encountered point sequence, the algorithm computes the
Hilbert values of the points, checks whether the boundary points for L.head exist, and
evicts the latter from L. Also it reports the points that satisfy q during this process. At
the end of the algorithm, L must be empty and the reconstructed Hroot combined with
D and o must verify the signature.

The proof of soundness is straightforward, since if the SP modifies any VO
component, the signature will not be verified (due to the collision-resistance of the
hash function). Furthermore, recall that the client receives D and o intact (otherwise
the signature verification fails) and, therefore, it can determine the exact 1D queries
processed by the SP. It can then ensure completeness by simply checking the
existence of the boundary objects for each sub-query.

The above discussion captures the initial result computation in BSL; next we
describe the continuous monitoring component. Whenever there is a data
modification, the DO alters its tree and forwards the update(s) to the SP, according to
the positive-negative model. An object insertion is denoted as (+<p.id, p.x, p.y,
p.hv>), and a deletion as (-<p.id, p.hv>). An object movement is handled by a deletion
followed by an insertion. In addition to the actual data, each transmission contains a
DO signature and two timestamps: LT is the current time and ST is the time of the
previous transmission. The signature incorporates the new Hroot, LT and ST. The two
timestamps are necessary so that the clients can detect temporal attacks, i.e., situations
where the SP avoids reporting some result updates. Specifically, an authentication
scheme satisfies temporal completeness, if it is impossible for the SP to omit sending
a result change to the client, without the latter detecting it [19]. The DO periodically
sends updates to the SP, along with the new signature, LT and ST. The SP updates the
tree structure, the timestamps and the signature accordingly, and generates a new VO
for every monitored query. It then sends the new VO, LT, ST and the signature to the
corresponding clients (D and o do not need to be re-sent).

Proof of temporal completeness (sketch): Suppose that at time t the SP avoids
sending the VO for an update that affects the client’s result. At a later time t' the SP
transmits a new VO to the client. Note that multiple omissions may have occurred
between t and t'. The client will detect the attack by noticing that the time of the
previous update (included in the new VO) is ST ≥ t, at which it did not receive any
VO. Note, however, that temporal completeness cannot be guaranteed if the client
does not receive any VO for a long time, in which case it cannot be sure whether the
last results are still up-to-date. This problem can be solved using the concept of query
freshness [10], according to which the DO revokes old signatures at periodic time
intervals. �

The efficient query processing and update operations of the 2-3 MB-Tree render
BSL suitable for dynamic environments. However, BSL incurs false transmissions of
VOs for queries whose result is not affected by the latest data updates. This imposes
significant CPU cost to the SP (for computing the VOs) and to the clients (for
verifying them). Furthermore, it leads to excessive network overhead. The next
method aleviates these problems by integrating sophisticated indexing schemes and
query processing algorithms.

4 Continuous Spatial Authentication – CSA

Section 4.1 describes the indexing scheme of CSA and Section 4.2 explains the query
processing algorithms. Section 4.3 presents the analytical models used to optimize the
performance of CSA.

4.1 Indexing Scheme

CSA subdivides the dataspace into partitions, in order to reduce the area affected by
an update and limit the number of false transmissions. Let D:[Lx, Ly, Ux, Uy] be a
square dataspace. We build an m⋅m regular grid over D, by decomposing each axis
into m equal segments. Let lP be the extent of each partition along the two axes. A
point p with co-ordinates (p.x, p.y) can be located in constant time in partition Pij,
where i=⎣p.x / lP⎦ and j=⎣p.y / lP⎦. In order to capture skewed point distributions, we
embed a Temporal Merkle Hash-Tree (TMH-Tree) in each partition P. The TMH-
Tree is a modified 2-3 MB-Tree that incorporates temporal information used by a
virtual caching mechanism. Specifically, every entry e in an intermediate node
contains a timestamp e.t that signifies the latest (i) record insertion/deletion/update
that occurred in the subtree of e, or (ii) movement of e to another node due to a
split/merge operation. Figure 4.1 summarizes the index structures in CSA.

……

P11 P12

P21 P22

Pm-1m-1 Pm-1m

Pmm-1 Pmm

…

…

…

… …

TMH11

...

...

...

DPM-Tree

R11, LT11,
ST11, H11, o11

Rmm, LTmm,
STmm, Hmm, omm

...

TMHmm
...

…

…

Figure 4.1: Indexing structures in CSA

For each partition, we construct a Hilbert curve of order P.o in P and compute the
Hilbert values of the residing points. The TMH-Tree then indexes the points using
their Hilbert values as search keys. Each leaf entry p has the form <p.id, p.x, p.y,
p.hv> and an intermediate entry e is a quadruplet (e.h, e.k, e.ptr, e.t), where the
semantics are the same as in BSL, except that p.hv is computed locally within each
partition (instead of the entire dataspace). To avoid confusion, the term cell is used
only for the Hilbert grid. The term partition is used for the grid constructed over D.
Note that the value of o may be different for each partition. Similar to m, the choice of
o may have a significant effect on performance. Section 4.3 contains models for
choosing appropriate values of m and o.

All partitions are indexed by a Domain Partition Merkle-Tree (DPM-Tree). The
DPM-Tree is a binary tree that organizes digests in a way similar to the MH-Tree. A
leaf node of the DPM-Tree corresponding to partition P contains a pointer P.R to the
root of the TMH-Tree embedded in P, timestamps P.LT and P.ST, order P.o, and a
digest P.H. P.LT (P.ST) is the timestamp of the last (second last) update that occurred
in P (P.LT ≥ P.ST). P.H is computed on the concatenation of the digests contained in
the root of the TMH-Tree along with P.ST and P.o. The information in intermediate
nodes is inserted bottom-up. An intermediate node N contains value N.H, which is the
digest of the concatenation of the digests of its children, and timestamp N.T which is
the maximum between the timestamps of its children. In order to establish a
neighborhood relationship among the nodes of the DPM-Tree, we consider that the
root corresponds to the entire dataspace. Its two children are generated by splitting the
space vertically into two equal subspaces. Subsequently, each child generates two
new children by dividing its subspace horizontally into two new equal subspaces. This
process is repeated recursively (selecting the splitting axis in a round-robin fashion)
until the final subspaces are single partitions (leaf level 0).

Let HDPM (TDPM) be the digest (timestamp) in the root of the DPM-Tree. The DO
computes h(HDPM | TDPM | Lx | Ly | Ux | Uy), signs it and sends it to the SP along with
the dataset. CSA supports multiple updates at the same timestamp as follows. The
TMH-Trees are first modified, as discussed in Section 3, without altering any hash or
timestamp value, and the visited paths are marked. When an entry is deleted from a
full intermediate node (i.e., there is no underflow), it is replaced with a dummy value,
so that the order of the remaining entries in the node remains the same. Then, the
marked paths are revisited and the digests and timestamps are computed bottom-up,
only once. Finally, a single depth-first traversal of the DPM-Tree locates the leaf
nodes that correspond to the affected partitions and computes the appropriate digests
and timestamps bottom-up. However, if at some instant the number of points in a
partition P changes significantly, the DO may decide to change P.o in order to
improve performance. In this case, it notifies the SP that computes the new Hilbert
values for the residing points and re-builds the embedded TMH-Tree.

Finally, the SP maintains some book-keeping structures for query monitoring.
Specifically, each partition P is associated with an influence list P.IL that stores the
identifiers of the queries that overlap with P. A hash table QT on q.id maintains a
tuple <q.id, q.rg, q.t> for every running query q, where q.id is a unique identifier, q.t
is the timestamp of q’s last VO update., and q.rg is the spatial range [qLx, qLy, qUx, qUy]
of q.

4.2 Query Processing

First we discuss snapshot query processing and verification. Upon receiving a spatial
range q, the SP starts its execution by traversing the DPM-Tree. At every visited
node, the SP obtains the subspace covered by its subtree. This is performed by
recursively breaking D into two equal spatial subspaces, either horizontally or
vertically, in a round-robin fashion. If q overlaps with the corresponding subspace of
a node, the algorithm continues traversing its subtree. Otherwise the node’s digest is
appended to the VO. Upon reaching the leaf level of the DPM-Tree, if q does not
overlap with a partition P, P.H is inserted into the VO. Otherwise, the algorithm
appends P.ST and P.o into the VO, and decomposes q into a set of 1D intervals, by
determining its intersections with the embedded Hilbert curve. Then, it expands the
intervals to include boundary records, sorts them on their lower boundary and stores
them in a list L. The expanded sub-queries are issued to the embedded TMH-Tree,
using the multi-range algorithm of BSL (Figure 3.2).

Given the VO and D, the client can verify its correctness, by computing the digest
HDPM at the root of the DPM-Tree. The process is similar to the one described in
Section 3, except that intervals are used to determine the extents of each partition on-
the-fly. After the client computes HDPM, it hashes it with TDPM and D, and matches it
against the signature of the DO. The actual results are extracted during the
verification process.

Proof of soundness (sketch): Soundness is ensured by the hierarchical organization
of the hashes in the two trees and the collision-resistance of the hash function. If an
adversary alters or deletes a point from the dataset, or inserts a bogus one, the change
will propagate until HDPM. Thus, the client will reconstruct an HDPM that does not
match the DO’s signature. �

Proof of completeness (sketch): Completeness is satisfied for two reasons. (i) The
client has D and, therefore, while reconstructing HDPM, it can verify that the SP
returns a partial VO for every partition overlapping the query. (ii) For each such
partition it also has P.o and, therefore, it can establish completeness in the way that
we discussed in Section 3. Finally, note that, for every P, P.o is incorporated in P.H
and D is in the signature. Consequently, the SP must send them intact in order for the
signature to be certified. �

When the SP receives updates from the DO, it alters the indices and determines the
affected queries whose range overlaps with partitions where at least one update has
occurred. Finally, it generates a new VO for each such query. Motivated by the
observation that an updated VO shares common components with the previous one,
we propose a virtual caching mechanism (VCM) to further reduce the communication
cost. The term virtual is due to the fact that the SP does not store the VO for any
query. Instead, each client keeps in its own cache the VO that was received last. VCM
works as follows: whenever a node N of the DPM-Tree (or node entry e of the TMH-
Tree) is visited during processing query q, its corresponding timestamp is checked
against q.t. If q.t is equal or larger, then token Hit is inserted into the VO and the
traversal for the N’s (e’s) subtree stops. This token instructs the client to retrieve the
partial VO corresponding to N’s (e’s) subtree from the cached VO. Upon receiving a
new VO, the client merges the components contained in the updated VO with the ones

in the cache. Eventually, it reconstructs HDPM (as described above) and matches it
against the signature.

Proof of temporal completeness (sketch). Suppose that the initial computation of a
query q occurs at a time t and the VO is sent to the client. The client successfully
verifies its correctness and stores it as cachedVO. Now assume that at later time t' (>t)
one (or more) update(s) takes place in some partition P that overlaps with q, but the
SP does not send a new VO to the client. Subsequently, another update occurs that
affects q. This time the SP generates newVO and sends it to the client (along with new
signature and TDPM). We distinguish two cases: (i) the newVO contains a partial VO
corresponding to P, thus also P.ST. The client compares P.ST with the cached TDPM
(=t). Since P.ST > t, at least a potential result update (at P.ST) was omitted and the
client is alarmed. (ii) newVO contains a Hit token that corresponds to P. Since the
actual P.ST is different than the one included in cachedVO, the client reconstructs a
false P.H value and soundness is violated. �

4.3 Computing the Grid Granularity

The granularity m of the dataspace partitioning greatly affects the efficiency of CSA.
If m is too coarse (i.e., there are very few partitions), the ability of CSA to reduce
false transmissions is subdued. On the other hand, a large number of partitions leads
to a tall DPM-Tree and numerous TMH-Trees, which also adversely affects
performance. Moreover, for skewed distributions, many of the partitions may contain
few or no records at all. Since manually tuning m at the DO is both costly and error-
prone, in the sequel we first establish cost models and then clarify the selection of m
based on these models.

Our analysis focuses on the expected VO (EVO) size, for two reasons. First, the VO
must be transmitted from the SP to the client through the network, which is usually
the bottleneck of the entire system. This is especially true for mobile clients (e.g.,
PDAs), where battery consumption is a major concern (wireless transmissions
consume significantly more power than offline computations [6]). The second reason
is that other performance goals, such as minimizing the computation at the SP and the
client, are strongly correlated with EVO. Intuitively, the larger the EVO, the more
nodes are visited during query processing, and subsequently processed by the client to
reconstruct the root digest.

Without loss of generality, we normalize the values along each axis of the
dataspace to [0, 1]. In order to keep the analysis tractable, we make the following
simplifying assumptions: (i) all partitions have the same length. (ii) The updates
follow the distribution of the initial dataset, i.e., the cardinality of each partition does
not change significantly over time. When this assumption does not hold, the DO and
SP can periodically re-compute m and rebuild the structures of CSA accordingly. (iii)
Each query q has expected length lq ∈ (0, 1] along each axis. Furthermore, its lower
boundary (along each axis) is uniformly distributed in [0, 1− lq]. (iv) The virtual
caching mechanism is disabled as its effects are not significantly influenced by the
partitioning granularity m.

We use symbol Pi,j (1≤ i, j ≤m) to denote the partition covering the region [(i−1)/m,
i/m] ⋅ [(j−1)/m, j/m], which contains a known number |Pi,j| of points. Query q takes the

shape of a square with length lq along each axis. CSA involves an initial VO
computation for a query q, as well as the construction of a new VO whenever q is
affected by updates. Let EVOinit(q) be the expected size of the initial VO of q, and
EVOupd(q) the expected size of the VO generated due to an update. For a given
random query sample QS (e.g., drawn from a past query log) with cardinality |QS|,
and a number of timestamps NU that updates occur, EVO is computed by

() ()

| | (1)

init upd
q QS

EVO q NU EVO q
EVO

QS NU
∈

+ ⋅
=

⋅ +

∑
 (4.1)

Regarding EVOinit, CSA includes in the VO five different types of information: (i)
the result set of q, (ii) two boundary records for proving completeness, (iii)
timestamps of each partition overlapping q, which collectively prove temporal
completeness, (iv) the digests inserted during the traversal of the DPM- and the TMH-
Trees that is used by the client to verify correctness and, finally, (v) the signature of
the DO. We do not consider the tokens since their sizes are negligible. Let Sr be the
length of a record and |q| be the average number of tuples in the query result set.
Types (i) and (ii) consume Sr⋅(|q|+2). Given the query extent lq, |q| can be calculated
using standard selectivity estimation techniques (e.g., sampling [1], histograms [7],
probabilistic models [8]). If qp is the number of partitions intersecting q, and St is the
size (in bytes) of a timestamp representation, the size of (iii) is qp⋅St. Since each
partition has extent 1/m on each axis, the expected value for qp is ⎣2⋅m⋅lq ⎦+1.
Regarding (iv), we use symbols EVOD and EVOT to denote the total size of the digests
appended to the VO when traversing the DPM-Tree and all the TMH-Trees,
respectively. Finally, (v) equals the size of one signature (let Ss). Summarizing,
EVOinit is given by:

()() | | 2 ()init r t D T sEVO q q S qp S EVO EVO q S= + ⋅ + ⋅ + + + (4.2)

We next focus on EVOD. Note that EVOD consists of the digests of all pruned
nodes of the DPM-Tree. A node is pruned, if and only if (i) it does not overlap the
query, and (ii) none of its ancestors is pruned (otherwise it is not visited at all). Let
OVN(i) be the number of nodes at depth i (the root being at depth 0) that overlap with
q. The number of nodes at depth i satisfying condition (i) is 2i−OVN(i). Among these
nodes, some are descendents of pruned nodes at higher levels and, thus, violate
condition (ii). Given that the DPM-Tree is binary, a node at depth j (j < i) has 2i-j
descendents at depth i. Therefore, assuming that PN(i) is the number of pruned nodes
at depth i, Equation 4.3 gives both PN(i) and EVOD (Sh is the size of a digest). Note
that since m is the partitioning granularity for each of the two axes, the height of the
DPM-Tree is ⎣lgm2⎦ = 2⋅⎣lgm⎦.

2 lg

0

1

0

()

where () 2 () () 2

m

D h
i

i
i i j

j

EVO PN i S

PN i OVN i PN j

⋅⎢ ⎥⎣ ⎦

=

−
−

=

= ⋅

= − − ⋅

∑

∑
 (4.3)

We next determine OVN. Figure 4.2 depicts the spaces covered by the subtrees of
the DPM nodes at an odd and even depth (the root being at depth 0). Specifically,

Figure 4.2a (4.2b) shows the 5th (6th) depth. In general, each node at depth i covers 1
/ 2⎣i/2⎦ extent on the x-axis and 1 / 2⎡i/2⎤ on the y-axis. The number of cells
overlapping q is thus calculated by:

() ()/ 2 /2() 2 1 2 1i i
q qOVN i l l⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅ + ⋅ ⋅ +⎣ ⎦ ⎣ ⎦ (4.4)

q

q

(a) Odd depth (b) Even depth

Fig. 4.2: DPM-Tree nodes and query q

The derivation of EVOT depends on the order of the Hilbert curve used in each
partition. Let P.o be the order in partition P. An overly coarse (fine) P.o leads to
limited indexing effectiveness (many empty cells) and consequently sub-optimal
performance. We determine P.o based on the following observation: when records are
uniformly distributed in partition P, ideally each Hilbert cell should contain exactly
one record. Note that according to our experiments, the optimal m is usually large
enough for this local uniform distribution assumption to hold. Therefore, an
appropriate value for P.o is lg|P|/2.

For partitions completely contained in q, all data records (and no digests) are
inserted into the VO. For partitions that partially overlap with q (i.e., those on the
boundary of q as shown in Figure 4.2), the digests of the pruned sibling nodes during
the TMH-Tree multi-range traversal are added to the VO (in addition to the records
satisfying q). However, the exact analysis of this traversal is very complicated
because (i) it involves calculating the number of ranges q is broken into, which itself
is a difficult task [14], and (ii) the ranges have different sizes, meaning that the
common ancestors are at different levels. Instead, we employ the following
approximation for the multi-range traversal: for each TMH-Tree in a partition that
partially overlaps q, we count two complete root-to-leaf paths, adding to EVO the
digest of the siblings of all visited nodes. This method overestimates the traversal path
by counting the root-to-split-node part twice, but on the other hand also
underestimates it by not taking into account the small up-and-down paths inside the
envelop of the two root-to-leaf paths. These two contradicting factors are expected to
partially cancel each other out. Moreover, with reasonably fine partitioning
granularity m, (i) the number of partitions on the boundary of q is much smaller than
those within q, and (ii) each TMH-Tree is expected to have a small height, both of
which render the approximation error insignificant. Summarizing, the formula for
EVOT is (f is the expected fanout of the TMH-Tree):

()() 2 1 log 1

where { | partially overlaps }

T h f
P PP

EVO q S f P

PP P P q
∈

⎢ ⎥= ⋅ ⋅ − ⋅ +⎣ ⎦

=

∑
 (4.5)

Combining Equations 4.2, 4.3 and 4.5 yields the complete model for EVOinit. We
next derive EVOupd. Recall that in CSA, the SP sends a new VO only when at least
one update happens in a partition intersecting with q. According to the assumption
that the updates follow the same distribution as the initial dataset, the probability that
an update falls in any one of QP1, QP2, …, QPqp is Σi|QPi|/(ΣjΣk|Pj,k|, 1≤i≤qp,
1≤j,k≤m. Therefore, for a batch of |U| independent update operations (i.e., insertions
or deletions) occurring at a timestamp, the probability ProbVO(q) that the SP transmits
a new VO (i.e., q is affected by any one of these updates) is:

() ,
1 1 1

1 1
U

qp m m

VO i j k
i j k

Prob q QP P
= = =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑∑ (4.6)

Similar to the case of EVOT(q), ProbVO(q) is a function of the values of |QPi|
(1≤i≤qp), which, in turn, depends on the position of q. Let EVOinit(q) be the expected
VO size for a particular query q, which is obtained by combining Equations 4.2, 4.3
and 4.5. Then EVOupd(q) = EVOinit(q) ⋅ ProbVO(q).

Equipped with the above models, we present a simple and effective algorithm
Bestm to compute an appropriate value for the partitioning granularity m. Initially,
Bestm sets m to a maximum value mmax. A good choice for mmax is half of the first
power of 2 that is larger than the data set cardinality. It then scans the dataset once to
compute the cardinality for each partition, and utilizes this information to compute
EVO using the cost models. After that, it decreases m to mmax/2, and computes the
corresponding EVO. Observe that at this stage it is unnecessary to scan the dataset
again to compute the cardinality of the partitions, since these can be obtained by
aggregating the corresponding partitions in the previous step. At subsequent steps, m
is reduced by half each time, and EVO is estimated, until m = 1. Among all
considered values for m, the one achieving the minimum EVO is chosen as the
partitioning granularity for CSA.

5 Experimental Evaluation

We implemented our methods using the Crypto++ library [4], and deployed them on a
Core 2 Duo 2.2GHz CPU with 2GBytes of RAM. Each record r consumes 100 bytes
and contains two search keys r.x and r.y. The values of r.x and r.y are obtained from
the real dataset CAR (California Roads, available at www.rtreeportal.org), and are
normalized to [0, 1]. At every timestamp, updates arrive at a rate of AR. An update
involves a deletion of a random tuple and an insertion of a new one with the same id
but different keys. Consequently, the number of update operations |U| = 2⋅AR, and
dataset cardinality DC is constant at all times. The new key values follow their initial
distribution. We monitor QC running queries, which are uniformly distributed in the
dataspace and cover approximately 0.1% of the data domain.

First, we determine the optimal partitioning granularity m for CSA, using the
models of Section 4.3. We set DC = 100K, QC = 1K and AR = 100, and we disable
the VCM. Figure 5.1a depicts the estimated total VO size generated for all 1K queries
with respect to m, as well as its actual size computed in our experiments. Figure 5.1b

zooms into the part of Figure 5.1a, where 23 ≤ m ≤ 27. The error of our estimation is 5-
17%. Our cost models successfully determine the best granularity, which in this case
is m=25. In the sequel, we set m to the best granularity as estimated by our models.

Estimated SizeVO Actual SizeVO

20 26 21123 29

Total VO Size (MBytes)

m
21 22 24 25 27 28 2100

2
4
6

8
10
12
14

6

6.5

7

7.5

8

8.5

9

23 24 25 26 27
m

Total VO Size (MBytes)

(a) Effect of partitioning granularity (b) Optimal partitioning granularity

Fig. 5.1: Total VO size vs. partitioning granularity m

Figure 5.2 assesses the effect of the dataset cardinality (DC), when QC = 1K, AR =
100 and the VCM is switched on. Figure 5.2a shows the total query processing time
per timestamp at the SP. BSL incurs a considerable computational overhead since it
re-processes all queries at each timestamp. On the other hand, CSA executes only the
queries affected by the updates, as well as a small number of queries that correspond
to false transmissions. Figure 5.2b depicts the total VO size generated for all queries
per timestamp versus DC. CSA outperforms BSL, because (i) it executes only the
queries affected by the updates, and (ii) the VCM enables the SP to omit sending VO
components corresponding to DPM/TMH subtrees that are not altered by the updates.
Figure 5.2c illustrates the verification cost per timestamp at each client. In BSL the
client has to verify its query at every timestamp, whereas in CSA it establishes
correctness only when its query is affected by an update.

CSA BSL

1

10

102

103

10K 50K 100K 200K 500K

Query Processing Time
(msec)

DC

 10

105

102

103

104

10K 50K 100K 200K 500K
DC

Total VO Size
(KBytes)

(a) Query processing time (b) Total VO size

1

10

10-1

10-2

10K 50K 100K 200K 500K
DC

Verification Time
(msec)

(c) Verification time

Fig. 5.2: Performance vs. dataset cardinality DC

We next investigate the impact of the query cardinality (QC), after setting DC = 100K
and AR = 100. Figures 5.3a and 5.3b plot the query processing cost at the SP and the
communication cost at every timestamp, respectively. Both costs grow linearly with
QC. In BSL, each query is evaluated at every timestamp. Therefore, the
computational effort at the SP as well as the information communicated between the
SP and the client increases with the number of running queries. In CSA, more queries
are likely to be affected by the updates (in which case a new VO is generated and
transmitted to the client) in the presence of a large number of running queries.

CSA BSL

1

10

102

103

10-1

100 500 1000 2000 5000
QC

Query Processing Time
(msec)

10

105

102

103

104

100 500 1000 2000 5000
QC

Total VO Size
(KBytes)

(a) Query processing time (b) Total VO size

Fig. 5.3: Performance vs. number of queries QC

Figures 5.4a and 5.4b demonstrate the query processing and the communication cost,
respectively, versus the arrival rate AR (DC = 100K, QC = 1K). BSL is not influenced
by AR. The overhead of CSA converges to that of BSL for large values of AR
because, as more updates occur, more queries are affected and re-evaluated. For these
queries, a new VO must be produced and transmitted. Furthermore, a high AR reduces
the effectiveness of VCM because the updates alter a large part of the DPM- and
TMH-Trees and, consequently, invalidate many VO components in the clients' cache.

CSA BSL

1

10

102

103

10 50 100 200 500

Query Processing Time (msec)

AR

10 3

10 4

10 2

10

10 5

10 50 100 200 500
AR

Total VO Size
(KBytes)

(a) Query processing time (b) Total VO size

10 50 100 200 500
AR

10

10-2

10-1

1

10-3

Verification Time (msec)

(c) Verification time

Fig. 5.4: Performance vs. arrival rate AR

Finally, Figure 5.4c shows the verification time at the client at every timestamp versus
AR. As expected, the verification burden at the client increases for high arrival rates,
because its query is affected by an update with higher probability. An interesting
observation is that the curve of CSA converges faster to that of BSL, in comparison to
the corresponding curves of Figures 5.4a and 5.4b because the VCM alleviates the
processing and communication costs, but not the verification effort; to establish
correctness, the client first has to combine the newly received VO with the one in its
cache. Therefore, the client eventually verifies a VO with size equivalent to the one
generated when the VCM is disabled.

6 Conclusions

In this paper we address continuous range processing and authentication on highly
dynamic spatial databases. We assume a database outsourcing environment, where a
service provider (SP) returns to the clients the query results, as well as authentication
information necessary to establish their correctness. Due to the dynamic environment,
clients must also be able to prove temporal completeness, i.e., that they did not miss
any results in-between successive updates. We first propose BSL, a method that
achieves these goals at the expense of false transmissions. Next, we introduce CSA, a
scheme that utilizes a space partitioning scheme and an efficient caching mechanism
to reduce the cost (processing and communication) for both the SP and the client. We
optimize the performance of CSA through a detailed analytical study. Finally, we
conduct an exhaustive experimental evaluation and show that CSA significantly
outperforms BSL for all performance metrics.

Acknowledgments. This work was supported by grant HKUST 6181/08 from Hong
Kong RGC.

References

1. Babcock, B., Chaudhuri, S., Das, G. Dynamic Sample Selection for Approximate
Query Processing. SIGMOD, 2003.

2. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 1997.

3. Cheng, W., Pang, H., Tan, K. -L. Authenticating Multi-dimensional Query Results
in Data Publishing. DBSec, 2006.

4. Crypto++ Library. Available at www.eskimo.com/~weidai/benchmark.html.
5. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S. Authentic Data Publication

Over the Internet. Journal of Computer Security 11(3): 291-314, 2003.

6. Datta, V., Vandermeer, D., Celik, A., Kumar, V. Broadcast Protocols to Support
Efficient Retrieval from Databases by Mobile Users. ACM TODS, 24(1):1-79,
1999.

7. Guha, S., Shim, K., Woo, J. Rehist: Relative Error Histogram Construction
Algorithms. VLDB, 2004.

8. Getoor, L., Taskar, B., Koller, D. Selectivity Estimation using Probability Models.
SIGMOD, 2001.

9. Hacıgümüş, H., Iyer, B., Mehrotra, S. Providing Databases as a Service. ICDE,
2002.

10. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L. Dynamic Authenticated Index
Structures for Outsourced Databases. SIGMOD, 2006.

11. Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G. Proof-Infused Streams: Enabling
Authentication of Sliding Window Queries On Streams. VLDB, 2007.

12. Merkle, R. A Certified Digital Signature. CRYPTO, 1989.
13. Mokbel, M., Aref, W., Kamel, I. Analysis of Multi-Dimensional Space-Filling

Curves. GeoInformatica 7(3): 179-209, 2003.
14. Moon, B., Jagadish, H. V., Faloutsos, C., Saltz, J. H. Analysis of the Clustering

Properties of the Hilbert Space-Filling Curve. TKDE, 13(1): 124-141, 2001.
15. National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash

Standard. National Institute of Standards and Technology, 1995.
16. Narasimha, M., Tsudik, G. Authentication of Outsourced Databases Using

Signature Aggregation and Chaining. DASFAA, 2006.
17. Pang, H., Jain, A., Ramamritham, K., Tan, K.-L. Verifying Completeness of

Relational Query Results in Data Publishing. SIGMOD, 2005.
18. Pang, H., Tan, K.-L. Authenticating Query Results in Edge Computing. ICDE,

2004.
19. Papadopoulos, S., Yang, Y., Papadias, D. CADS: Continuous Authentication on

Data Streams. VLDB, 2007.
20. Rivest, R. L., Shamir, A., Adleman, L., A method for Obtaining Digital Signatures

and Public-key Cryptosystems. Communications of the ACM, 21(2):120-126,
1978.

21. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G. Spatial Outsourcing for
Location-based Services. ICDE, 2008.

