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Abstract. Data privacy is a huge concern nowadays. In the context of
location based services, a very important issue regards protecting the
position of users issuing queries. Strong location privacy renders the
user position indistinguishable from any other location. This necessitates
that every query, independently of its location, should retrieve the same
amount of information, determined by the query with the maximum re-
quirements. Consequently, the processing cost and the response time are
prohibitively high for datasets of realistic sizes. In this paper, we propose
a novel solution that offers both strong location privacy and efficiency by
adjusting the accuracy of the query results. Our framework seamlessly
combines the concepts of ϵ-differential privacy and private information
retrieval (PIR), exploiting query statistics to increase efficiency without
sacrificing privacy. We experimentally show that the proposed approach
outperforms the current state-of-the-art by orders of magnitude, while
introducing only a small bounded error.

1 Introduction

Mobile devices enable the use of location based services (LBS) in order to fa-
cilitate everyday tasks. An LBS allows users to issue queries along with their
locations to a server, which in turn replies with the results. For example, a user
may ask for the closest gas station to his current location, the shortest path
from his home to a shopping mall, real-time traffic condition in his area, and
so on. Each of the queried locations, e.g., gas station, shopping mall, is called a
Point of Interest (POI). However, location based queries raise privacy concerns,
as they can reveal the sensitive location of the user. For example, a user may
wish to find the nearest bar without revealing his presence in the specific area.
In this work we focus on private k-Nearest Neighbor queries (kNN), which ask
for the k nearest POIs to the user.

Numerous algorithms have been proposed for private kNN queries. Strong
Location Privacy for kNN [23] is currently the only solution which renders the
position of the user truly indistinguishable from all other possible locations. It
leverages hardware PIR and a query plan. Hardware PIR ensures that the server
is oblivious to the data acquired by the users, while the query plan requires that
every user receives the same amount of information independent of the data size
needed. By combining these two properties, the query process for any user from

1



any location appears exactly the same to the server. In order to guarantee that
all users receive accurate answers, the algorithm of [23] sets the query plan as
the maximum data size required by any possible query. Although this solution is
viable for small databases, it becomes prohibitively expensive for a large number
of POIs because the result size required to satisfy any query may be enormous.

In order to overcome this problem, we propose the adaptive query plan, which
relaxes the need for answering all queries accurately. Instead, it computes a
minimum data size, which guarantees that at least a predefined percentage of
queries are answered correctly. The adaptive query plan depends on the actual
user behavior and changes periodically based on statistics of previously issued
queries. However, utilizing statistics on sensitive location data may reveal the
whereabouts of a user [7]. In order to avoid this type of privacy breaches, we
employ the notion of ϵ-differential privacy [8]. This concept offers theoretical
privacy guarantees when publishing statistics on sensitive data. Our solution is
applicable to [23], and in general to PIR techniques based on similar principles.

We demonstrate the efficiency and effectiveness of our approach by using
rigorous secure hardware simulations on two real datasets consisting of millions
of POIs. Compared to [23], it offers up to orders of magnitude better efficiency,
while retaining high levels of accuracy, rendering it practical for large datasets.

2 Related Work

Section 2.1 describes the notion of ϵ-differential privacy. Section 2.2 reviews
location privacy techniques in general and presents the implementation of the
state-of-the-art method of [23].

2.1 ϵ-Differential Privacy

Differential privacy hides sensitive information about individual users when pub-
lishing statistics. Specifically, the published results are produced in a random
way, so that the presence of any individual in the data has negligible impact.
Let D be a set of finite databases with d attributes. Each D ∈ D is a set of
rows. For example, each row of D represents a user, and each column a loca-
tion. A cell ci,j of D is 1 if user i has visited location j, and 0 otherwise. Two
databases D,D′ ∈ D are considered neighboring if they differ in at most one
row; essentially, D and D′ differ in the locations of one user. A mechanism M
is a randomized algorithm performed by the publisher; given a database D, M
applies some functionality and outputs a transcript o.

Definition 1. A mechanism M : D → O satisfies ϵ-differential privacy if
for all sets O ⊆ O, and every pair D,D′ ∈ D of neighboring databases

Pr[M(D) ∈ O] ≤ eϵ · Pr[M(D′) ∈ O] (1)

The smaller the value of ϵ, the stronger the privacy guarantees. Intuitively,
M satisfies ϵ-differential privacy, if changing the attributes of one individual in
the database has a negligible effect on the distribution of the output of M.
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A common differential privacy technique adds Laplace noise to the outputs
using the Laplace Perturbation Algorithm (LPA [8, 7]). Before presenting LPA, we
formulate the notion of sensitivity. We view the release of statistical information
as a query performed on the data. For example the query asks for the counts
on each column of D, i.e., the number of users who visited each location. We
model the query as a function Q : D → Nd, where d is the number of elements
in the output. For D,D′ ∈ D, Q(D),Q(D′) are two d-dimensional vectors. Let
∥Q(D)−Q(D′)∥ be the L1 norm of Q(D),Q(D′). Then, the sensitivity of Q
is ∆(Q) = maxD,D′∈D ∥Q(D)−Q(D′)∥ for all neighboring D,D′ ∈ D.

Let Lap(λ) be a random variable drawn from Laplace distribution with mean
zero and scale parameter λ. LPA achieves ϵ-differential privacy through the mech-
anism outlined in the following theorem [7].

Theorem 1. Let Q : D → Nd, and define c
def
= Q(D). A mechanism M that

adds independently generated noise from a zero-mean Laplace distribution with
scale parameter λ = ∆(Q)/ϵ to each of the d output values of Q, i.e., which
produces transcript

o = c+ ⟨Lap(∆(Q)/ϵ)⟩d

achieves ϵ-differential privacy. The error introduced in the ith element of o by
LPA is

error iLPA = E|o[i]− c[i]| = E|Lap(λ)| =
√
2λ =

√
2∆(Q)/ϵ

The higher the error the more the published results deviate from their actual
values, reducing their utility. Next, we include a composition theorem [19] that
is useful for our proofs. It concerns successive executions of differentially private
mechanisms on the same input, and allows us to view ϵ as a privacy budget,
distributed among these mechanisms.

Theorem 2. Let M1, . . . ,Mr be a set of mechanisms, where each Mi provides
ϵi-differential privacy. Let M be another mechanism that executes M1(D), . . . ,
Mr(D) using independent randomness for each Mi, and returns the vector of the
outputs of these mechanisms. Then, M satisfies (

∑r
i=1 ϵi)-differential privacy.

An interesting problem concerns computing differentially private range-sums
over sensitive histograms. Applying LPA in this scenario would result in high
error due to the noise accumulation. [9, 3] reduce the error by building a full
binary tree over the input values. Every node stores the sum of the values of
its children, plus noise with logarithmic scale to the input size. Then, each sum
of consecutive values is computed by summing the root values of the maximal
subtrees covering the values. We exploit this technique in our solution in order
to maximize utility.

2.2 Location Privacy for kNN queries

The setting of private kNN queries assumes a data owner, who provides the POIs
to an LBS, and users, who issue queries to the LBS. The goal is to conceal the
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user locations from the LBS. There exist two notions of privacy in the literature:
(i) weak location privacy, where the LBS can derive that the query issuer lies in
some general area, without, however, being able to pinpoint his exact position,
and (ii) strong location privacy, where the LBS cannot infer anything about the
position of the user issuing the query. Weak location privacy solutions adopt
three general methodologies, namely K-anonymity, location obfuscation, and
data transformation.

K-anonymity [20, 14] methods assume the existence of a trusted third party
that receives and anonymizes the queries before sending them to the LBS. Specif-
ically, a trusted anonymizer that has the locations of all users, generalizes each
query so that the LBS cannot distinguish who among K users issued the query.
Location obfuscation [16, 6, 5] substitutes the exact user location with a cloaking
region, which is sent to the LBS instead of the exact location. In some obfus-
cation methods (e.g., [28]), the user sends a fake location and keeps obtaining
results until it acquires all k nearest neighbors. In all the above techniques, the
LBS can restrict the position of the querying users in some area within the data
space, without however being able to pinpoint their exact location.

Data transformation techniques [16, 25] assume that the owner encodes the
data before sending them to the LBS. Subsequently, the users send encoded
queries to the server. The latter cannot determine either the queried data or
the user query location. Data transformation methods conceal the user locations
better than K-anonymity and obfuscation. However, they are expensive due to
the encoding/decoding operations. Additionally, they are prone to access pattern
attacks [27] because the same query always returns the same encoded results.
For example, the LBS may use the query frequency and data density to infer
the position of a user (e.g., queries at a city center are much more frequent than
those from the suburbs).

Strong location privacy is based on private information retrieval (PIR) ([10,
11]), which allows the users to retrieve data from a database obliviously. There
are three categories of PIR, namely information-theoretical, computational, and
hardware-based. Information-theoretical PIR [4] offers privacy with theoretical
guarantees, while computational PIR [18, 21, 24, 26, 13] assumes computationally
bounded adversaries. They are both infeasible even for databases of moderate
sizes [25]. Hardware-based PIR relies on a tamper-resistant CPU, trusted by the
clients, attached to the server. This CPU receives client block requests, which
are unreadable by the server, obliviously extracts the requested blocks from the
server disk, and returns them to the client. Hardware-based methods are the
only viable PIR solutions for large datasets.

[15] applies hardware-based PIR for kNN processing, allowing, however, a
variable number of PIR requests for different queries. Consequently, although
each PIR retrieval is private, the cardinality of these retrievals may allow access
pattern attacks. On the other hand, the method of [12] achieves strong location
privacy because every query involves a single PIR request and, hence, all queries
are indistinguishable. Nevertheless, this scheme focuses on single NN processing
(k = 1), and relies on a prohibitively expensive computational PIR protocol [18].
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Currently, the only viable technique that guarantees strong location privacy for
kNN queries is AHG [23]. AHG is a hardware-based PIR algorithm that utilizes
a query plan to avoid access pattern attacks.

Specifically, the setting of [23] assumes that the LBS maintains the data as
sequential blocks1. AHG initially imposes a Hilbert index grid G on the POIs,
grouping them into cells. The Hilbert index grid is a mapping which defines an
ordering among the cells according to their unique Hilbert values, e.g., Hilbert
values of cell c21 and cell c11 are defined by H(2, 1) = 1 and H(1, 1) = 0,
respectively. To preserve locality, the LBS stores the cells ordered by the Hilbert
values along with their POI counts in multiple PIR blocks of a database DB1.
It also keeps the blocks of individual POIs in two databases, namely DB2 and
DB3. Essentially, DB1 maintains an index of the POIs stored in DB2. DB2 holds
the actual locations of the POIs, i.e., the longitudes and latitudes, and pointers
to DB3. Finally, DB3 stores the tail records of the POIs, i.e., other data related
to the POIs, such as street addresses, phone numbers, and detailed information.

The users issue kNN queries to the trusted CPU (attached to the LBS),
using a fixed query plan to ensure that each query retrieves the same number of
blocks from each database, independent of the query location. The query plan is
defined as QP = ((DB1, cnt1), (DB2, cnt2), (DB3, k)). Specifically, when a user
asks a kNN query, he first obtains cnt1 index blocks from DB1. Then, using the
index, he retrieves cnt2 blocks with POI coordinates from DB2, and locates the
k nearest POIs using these coordinates. Finally, he issues a query to DB3 and
obtains the k corresponding blocks from DB3. In order to guarantee that every
user receives enough blocks for an accurate answer, cnt1 and cnt2 constitute
upper bounds for the number of blocks needed by any possible query location2.

3 Adaptive Query Plan

We assume the same setting as [23], where a curious, but not malicious LBS
maintains the data as sequential blocks. Users issue kNN queries in the form
of block requests to a trusted CPU attached to the LBS. This CPU obliviously
extracts the requested blocks from the server, and returns them to the client. Ac-
cording to the fixed query plan of AHG, every user receives the maximum number
of blocks required to accurately answer all possible queries. Consequently, most
users obtain numerous redundant blocks since the vast majority of queries need
relatively few blocks due to the fact that the query distribution usually follows
the distribution of the POIs [2, 22, 17]. This has a negative impact on the LBS
(in terms of processing cost) and the users (in terms of response time), rendering
AHG too slow for large spatial datasets commonly found in practice.

To overcome this problem, we propose an adaptive query plan (AQP) that
yields the exact kNN set for the majority of the queries, but may lead to inaccu-
rate results for a pre-defined percentage (1−α) of queries at sparse areas of the

1 The size of each block depends on the PIR hardware.
2 There is a distinct query plan for every allowed value of k. For ease of presentation,
we focus on a single value of k.

5



data space. The value of α adjusts the trade-off between accuracy and efficiency.
In order to derive the size of AQP, we utilize differentially private statistics about
previous queries. Strong location privacy is always preserved independently of
the value of α and the size of AQP.

Our framework involves two stages: (1) The query stage has a fixed period
(e.g., a day), in which users issue kNN queries to the LBS. Every user can ask
up to qmax private kNN queries, where qmax is a system parameter. For each
query, he records the number of redundant blocks during the current period.
(2) At the query plan re-computation stage, the LBS obtains the redundancy
data from users in a differentially private manner, and computes the distribution
of redundant blocks along with the number of blocks necessary to answer the
issued queries. Finally, it generates an AQP for the next query stage, so that at
least a percentage α of the queries receive enough PIR blocks for accurate results,
according to the current statistics. Section 3.1 describes the query stage, Section
3.2 elaborates the re-computation stage, and Section 3.3 proves the correctness
and analyzes the utility of our approach.

3.1 Query Stage

During this stage, each user u maintains a vector Ru of length cnt1 + 1 that
stores the number of redundant blocks received from DB1. Each element j of Ru

holds the number of times that u received j redundant blocks. The last element
Ru[cnt1] indicates the number of queries with insufficient blocks (i.e., those with
potentially inaccurate results). For example, if cnt1 = 30, Ru[0] = 1, Ru[2] = 5,
and Ru[30] = 4, then u had 1 query for which he received the exact number of
required blocks, 5 queries with 2 redundant blocks, and 4 queries without enough
blocks. A similar vector Su of length cnt2 + 1 is maintained for database DB2.

Figure 1 depicts an example for 20 POIs (P1 to P20), a 6 × 6 grid, and a
query location Q. Let cyx be the cell of the yth row and xth column. All the
cyx’s are ordered according to their unique Hilbert values, and stored in DB1 as
pairs of numbers. The first value of cyx indicates the sum of the POIs contained
in all preceding cells in the Hilbert order, while the second one is the number of
POIs in cyx. For example, (3,0) for c13 denotes 3 POIs lying in c11, c21, c22, c12,
and no POIs in c13. Each block in DB1 holds up to 8 cells, and it is denoted as
B1,id, where id is the block id. DB2 holds a tuple < P.id, P.x, P.y, P.ptr > for
each POI, where P.id is the POI id, P.x, P.y its coordinates, and P.ptr a pointer
to DB3. Each DB2 block, denoted as B2,id, consists of up to 4 POIs, which are
sorted on the Hilbert values of their cells. Finally, DB3 contains tuples of the
form < P.id, P.tail >, where P.id is the POI id, and P.tail is the tail information
of the POI. Each block in DB3 is denoted as B3,id.

Let the query plan be ((DB1, 2), (DB2, 4), (DB3, 2)). Assume that a user u
in cell c45 issues a 2NN query from location Q. Initially, u discovers the block
in DB1 that contains his residing cell as follows. He computes the Hilbert value
H(4, 5) = 29 of c45, and determines the required block as (29+1)/8+1 = 4. Then,
he finds the position of c45 by computing (29 + 1) mod 8 = 6. Consequently,
u derives that the information of c45 is at position 6 of the 4th block in DB1,
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Fig. 1. Query stage example

and instructs the secure CPU to retrieve block B1,4. The pair of values in c45 is
(17, 0), denoting that there are no POIs in u’s cell. Thus, u proceeds with the
next closest cell to Q, which is c35. The latter belongs to the already retrieved
block B1,4 and hence, u does not need to obtain another block. Moreover, c35
contains only one POI and as such u needs to explore more cells by following the
same procedure. After retrieving c44 from B1,2, u has gathered 2 POIs, which
he uses for pruning as follows. He computes the maximum possible distance
maxdist between Q and the retrieved cells, and draws a circle C1 centered at
Q, with radius of maxdist. All the cells that have no common area with the
disk of C1 cannot contain any POIs comprising the 2NN, and hence, they can
be ignored. Therefore, u needs only the information of cells c34, c46, c36, c55,
c25, c54, c24, c43, c33, c56, and c26, which are distributed among all the 5 blocks
of DB1. However, he cannot acquire the information for all these cells, since his
DB1 block retrieval is limited to 2 blocks by the query plan. As such, he has
insufficient blocks from DB1 in order to ensure an accurate 2NN, and hence, he
updates the redundancy vector for DB1 by setting Ru[2] := Ru[2] + 1.

Next, u requests the coordinates of the POIs from DB2 in ascending order of
the minimum distances between Q and each retrieved cell from DB1. Specifically,
he obtained (17, 1) for c35 from the previous step. He computes (17+1)/4+1 = 5,
and (17 + 1) mod 4 = 2, and derives that the POI is at the 2nd position of the
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5th block of DB2. Thus, he requests B2,5 from DB2, and repeats the process for
all of the potential NNs. Each time he retrieves the coordinates of a POI, he
updates the best 2NN so far, and further prunes the search space if the current
distance of this 2NN is less than the minimum distance between Q and any other
cell. For example, let the current 2NN be P9 and P12, which lets u draw circle
C2. Any cell with no common area with the disk of C2 cannot contain a better
NN, e.g., cell c43 is pruned, because the distance between Q and P12, is smaller
than the minimum distance between Q and c43. Eventually, u receives 3 blocks,
i.e., B2,1, B2,4, and B2,5, and his 2NN consists of the POIs P9 and P12. However,
the query plan requires that any user retrieves 4 blocks, so he sends a random
request, retrieves one more block, and updates his redundant block vector Su for
DB2, to Su[1] := Su[1] + 1. Finally, he follows the pointers of P9 and P12, and
retrieves blocks B3,2 and B3,6 from DB3 in order to acquire the tail information.

3.2 Re-computation Stage

During re-computation, the LBS aggregates the redundancy vectors of all active
users, i.e., those that are on-line. The process is identical for both DB1 and DB2;
in the following we focus on DB1. Each active user must specify the percentage
ℓ of users that he trusts not to collude with the LBS. For instance, if ℓ = 10,
10% of the users are considered trusted. The parameter adjusts the noise scale
added by the differentially private mechanism. High values of ℓ, as well as a
large number of active users, lead to more accurate statistics. For simplicity, we
assume that every user chooses the same ℓ value.

When a user u registers with the service, he sends to the LBS a self-signed
Diffie-Hellman (DH) component for computing pairwise keys, and a certificate
to authenticate himself. At the beginning of re-computation, the LBS distributes
the self-signed DH components and certificates to all active users. Every user
computes the pairwise keys shared with the other users using the DH compo-
nents. Then, each user u performs computations on Ru, before forwarding a
noisy and encrypted version R̂u of Ru to the LBS. Having collected R̂u from the
active users, the LBS derives a differentially private vector R̂ of the aggregate
statistics and uses it to generate the new AQP.

The process constitutes a combination of secure multiparty computation and
distributed differential privacy, for which we adopt the method of [1], originally
proposed for computing differentially private sums3. Let n be the number of
active users, Ku,w be the pairwise key shared by users u and w, r1 and r2 be
two random numbers published by the LBS, and Ku a symmetric key between
user u and the LBS. For every element Ru[v], user u spends privacy budget
λ = ϵ/(4 · qmax) by drawing two noise values from the Gamma distribution,
and computes R̂u[v] = Ru[v] + Gu,1(n · ℓ, λ) − Gu,2(n · ℓ, λ). Subsequently, u
selects approximately n·ℓ other users randomly by using a secure pseudo random

3 In this setting, there are several users, each holding a value, and they wish to publish
the total sum, so that the value of any user is not revealed, even if an adversary has
complete knowledge of all the remaining users.
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function (PRF), so that if u selects w, then w selects u as well. The PRF works
as follows: u chooses w, if PRF (Ku,w, r1) ≤ n · ℓ/(n − 1); for each chosen w,
u computes dkeyu,w = (u − w)/|u − w| · PRF (Ku,w, r2). Note that dkeyu,w =

−dkeyw,u. User u then encrypts R̂u[v] as Enc(R̂u[v]) = R̂u[v]+Ku+
∑

w dkeyu,w
and sends it to the server.

The LBS aggregates all the numbers sent from the users. By doing this,
all the dkeys are canceled out, and the server decrypts the sum by R̂[v] =∑

u Enc(R̂u[v]) −
∑

u Ku =
∑

u Ru[v] +
∑

u (Gu,1(n · ℓ, λ)−Gu,2(n · ℓ, λ)). [1]
shows that R̂[v] is equivalent to R̂[v] =

∑
u Ru[v]+Lap(λ/ℓ) because the Laplace

noise can be approximated from identically distributed (i.i.d.) gamma distribu-
tions. As such, after computing all the elements of R̂, the final result satisfies
differential privacy.

The LBS calculates cnt1 by executing method recomputeQP (R̂), shown in
Figure 2. Lines 4−5 determine if the percentage of queries without enough blocks
exceeds (1− α) by checking ratio = R̂[cnt1]/

∑cnt1
i=0 R̂[i]. In this case, the value

of cnt1 increases, so that queries receive more blocks. In case the percentage
of queries without enough blocks does not exceed (1 − α) (lines 6 − 11), the
server iteratively computes ratio+ = R̂[l]/

∑cnt1
i=0 R̂[i] by incrementing l until

the ratio exceeds (1 − α). Essentially, the ratio for a certain l value represents
the percentage of queries that will not receive enough blocks if we decrease the
previous query plan by l. Thus, the new query plan is computed as the previous
one reduced by (l − 1).

Function recomputeQP(R̂)
1. for i = 0 to cnt1 do

2. sum+ = R̂[i] //count the total number of queries

3. ratio = R̂[cnt1]/sum //ratio of queries without enough blocks
4. if ratio > (1− α) then //percentage of inaccurate queries exceeds (1− α)
5. cnt1 := cnt1 + 1 //increase AQP size by 1
6. else
7. l = 0
8. while ratio ≤ (1− α) //percentage of inaccurate queries below (1− α)

9. ratio+ = R̂[l]/sum //decrease AQP size
10. l = l + 1
11. cnt1 := cnt1 − (l − 1)

Fig. 2. Pseudocode of recomputeQP

In lines 2 and 9 of recomputeQP (Figure 2), the LBS sums consecutive noisy
values of R̂ in order to compute differentially private range-sums over private
data. As discussed in the related work session, this would result in high error
due to the noise accumulation. Therefore we adapt the technique of [9, 3] as
follows. Each user u creates a binary tree, such that the original redundancy
vector Ru (without noise) represents the leaf nodes and each parent node is
the sum of its direct children, i.e., the root node is the sum of all leaf nodes.
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Moreover, the privacy budget spent by the users decreases from ϵ/(4qmax) to
ϵ/(4qmax · log2 |R̂|), in order to satisfy the same level of privacy as suggested by
[9, 3]. Then, aggregation is executed for the tree nodes instead for the elements of
Ru. Finally, the LBS acquires an aggregate tree with leaf nodes representing the
noisy values of R̂, and re-computes the query plan as before. The only difference
is that, instead of adding the values of R̂ one by one in order to compute ratio,
the LBS utilizes the noisy tree structure, resulting in more accurate sums.

3.3 Correctness and Utility Analysis

The next theorem shows that our adaptive solution, when applied on both DB1

and DB2, satisfies ϵ-differential privacy.

Theorem 3. The AQP algorithm satisfies ϵ-differential privacy for at most
qmax queries per user.

Proof. We refer to the query stage as mechanism M1, and the re-computation
stage as mechanism M2. Due to the fact that the query stage satisfies strong
location privacy [23], an adversary cannot distinguish if the user asks a query
from a location j or any other location j′. In other words, the probability for the
user to be at location j, and receive cnt1 blocks from DB1 and cnt2 blocks from
DB2 is the same with the probability he is at j′, and receives exactly the same
number of blocks from the two databases. Thus, from Definition 1, M1 satisfies
0-differential privacy.

In the case of M2, we further split the mechanism into two mechanisms M2.1

and M2.2. M2.1 computes cnt1 for DB1 and M2.2 computes cnt2 for DB2. Thus,
mechanism M2 comprises of cnt1 +1 (M2.1) and cnt2 +1 (M2.2) mechanisms of
[1], each utilizing privacy budget ϵ/(4 · qmax).

Let D1 be a table where each row represents a user, and each column the
received redundant blocks from DB1, i.e., each row u of D1 corresponds to Ru

of user u for DB1. Each cell i, j of D1 holds how many times user i received j
redundant blocks from DB1 during the query stage. Similarly, we define a table
D2 for DB2, i.e., each row u of D2 corresponds to Su of user u for DB2.

Mechanism M2.1 (resp. M2.2) essentially executes the method of [1] on each
column of D1 (resp. D2), and returns vector R̂ (resp. Ŝ), which holds the noisy
sums on the columns. A neighboring database D′

1 (resp. D′
2) differs at most by

2 · qmax to D1 (resp. D2): A user issues at most qmax private queries in D1 (resp.
D2), and there can be at most qmax different private queries in D′

1 (resp. D′
2).

As such, he can change at most 2 · qmax values of each database D1 and D2.
In order to determine the achieved privacy level we work as follows. For any

D1 (resp. D2), w.r.t a D′
1 (resp. D

′
2), we create two databases; Da which contains

only the columns of D1 (resp. D2) that differ from D′
1 (resp. D′

2), and Db which
contains the columns that are exactly the same as those of D′

1 (resp. D′
2). Note

thatDa has at most 2·qmax columns due to the sensitivity ofD1 (resp.D2). From
Da we compute the noisy sums of the columns R̂a, and from Db we compute R̂b,
where R̂a ∪ R̂b = R̂D1 (resp. R̂a ∪ R̂b = R̂D2) and R̂a ∩ R̂b = ∅. Any mechanism
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of [1] when applied on Da with privacy budget ϵ/(4·qmax), it satisfies ϵ/(4·qmax)-
differential privacy, as shown in [1]. On the other hand, when it is applied on Db,
it satisfies 0-differential privacy, due to Definition 1, since Db = D′

b. Moreover,
we have at most 2 · qmax sub-mechanisms of M2.1 (resp. M2.2) applied on Da,
since Da has at most 2 · qmax columns. Hence, from Theorem 2, M2.1 satisfies
(2 · qmax · ϵ/(4 · qmax) = ϵ/2)-differential privacy, and equivalently M2.2 satisfies
ϵ/2-differential privacy, while M1 satisfies 0-differential privacy. Thus, the whole
procedure satisfies (0 + ϵ/2 + ϵ/2 = ϵ)-differential privacy due to Theorem 2.

Next, we quantify the expected error. We focus on DB1 since the analysis
for DB2 is the same. Let q be the total number of queries performed at query
stage, and R be the actual redundancy vector without the noise required for
differential privacy. Due the the noise addition, we expect that the computed
(at the LBS) vector R̂ deviates from R, yielding an error during the query plan
re-computation.

Let lreal be the position of R representing the α percentile, i.e., the minimum
lreal value such that R[cnt1]+

∑lreal

i=0 R[i] > (1−α) ·q. Then, cnt1−lreal−1 is the
number of necessary blocks for accuracy α. On the other hand, the corresponding
number in Figure 2 is computed as the minimum value of l for which it holds
that R̂[cnt1] +

∑l
i=0 R̂[i] > (1 − α) · q. As such, recomputeQP may stop at an

l ≤ lreal (or l > lreal), and return |lreal − l| more blocks (resp. fewer blocks) for
each query than required for accuracy α. We define |lreal − l| as the error due to
the noise perturbation.

As an example, let n = 10, α = 70%, q = 10, cnt1 = 3, |R̂| = 4, and R and
R̂ as shown in table 1. Then, (1 − α) · q = 3, R[3] + R[0] = 3, and lreal = 2.
Consequently, cnt1 − (lreal − 1) = 2, and hence, cnt1 = 2 for the next period.
However, the server knows only the noisy R̂. It computes R̂[3]+ R̂[0]+ R̂[1] > 3,
and sets l = 3. As a result, cnt1− (l− 1) = 1, or cnt1 = 1, and due to noise each
query receives |lreal − l| = 1 block less than required for 70% accuracy.

Table 1. An example illustrating variables

Redundancy 0 1 2 insufficient

R 2 2 5 1

R̂ 1 3 5 1

In the worst case, R is highly skewed, and (α + δ)q queries, for any small
δ > 0, receive cnt1 − 1 redundant blocks (i.e., R[cnt1 − 1] = (α+ δ)q), while the
rest receive insufficient blocks (i.e., R[cnt1] = (1−α−δ)q). Therefore, lreal should
be |R| − 1, i.e., the new query plan should be set as cnt1 = 1. In this case, if
the Laplace noise added while computing R̂[cnt1] is positive, recomputeQP will
compute the new query plan as cnt1 := cnt1+1 = |R|, resulting in the maximum
error of |R|−1. Due to the fact that the Laplace distribution is symmetric about
its mean 0, the probability for recomputeQP to stop at position 0 is 50%, at
position 1 is 25%, and so on. This is equivalent to multiple Bernoulli trials and
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hence, the probability to stop at position i can be described with the Binomial
distribution with p = 0.5. Thus, with probability 50%, we get the worst possible
error |R| − 1, while the probability for the error to be reduced by l (i.e. to stop
at position l) is equal to the probability we receive l heads in l coin flips.

In order to better quantify the expected error, we assume a uniform distri-
bution of the queries in R, i.e., q/|R| queries receive 0 redundant blocks, q/|R|
queries receive 1 redundant block, and so on. In this case, in order to achieve α
accuracy, we need to set lreal = (1− α)|R|. Then, it suffices to compute the ex-
pected value of l (returned by recomputeQP ) in order to find the expected error

|lreal − l|. Initially, we calculate the expected error of each sum
∑i

i=0 R̂[i], for
any 0 ≤ i ≤ |R|. The sum is computed utilizing the aggregate tree at the server
side with noisy node values. The noise at each node is equivalent to Laplace

noise with scale λ = 4qmax·log |R|
ϵ·ℓ . In order to calculate each sum i we use the

technique of [3], which results in error err less than λ ·
√
log(i+ 1) · log 1

δi
with

probability (1− δi).
RecomputeQP checks the value of each sum for i = 0 to |R|, and returns the

first i that results in a noisy sum which is higher to (1−α)·q. Thus, i = l if it does
not stop at i = 0 . . . l−1, with probability higher than 1− δ. The probability for
the algorithm to stop at a position l is equal to the probability it does not stop

until position l − 1 or
∏l

i=0

(
1− Pr

[
(i+ 1) q

|R| + err ≥ (1− α) · q
])

. Thus, the

value of l can be computed as the first value for which the following inequality
does not hold.

l∏
i=0

(
1− Pr

[
(i+ 1)

q

|R|
+ err ≥ (1− α) · q

])
≥ (1− δ)

l∏
i=0

(
1− Pr

[
err ≥ (1− α) · q − (i+ 1)

q

|R|

])
≥ (1− δ)

l∏
i=0

(1− δi) ≥ (1− δ)

where δi = 0.5
(1−α)·q−(i+1)·q/|R|

λ
√

log (i+1) .

4 Experimental Evaluation

In this section we compare our adaptive query plan AQP with the fixed query
plan of AHG [23]. We implemented the methods in C++ on a Linux server with
Intel Core i7-4770 and 32GB of RAM. Since the re-computation takes only a few
seconds and is performed once after each query stage, it is excluded from the
evaluation, and all experiments focus on query processing. In order to evaluate
efficiency, we measure the query response time, which directly affects the user,
and the number of block accesses, which determines the processing cost at the
LBS. We used two datasets with real POIs from Germany (denoted as Germany)
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Table 2. Parameter values

Parameter Values Default

# of active users n 2000, 4000, 6000, 8000, 10000 6000
% of trusted users ℓ 5, 10, 15, 20, 25 10

Accuracy α 0.75, 0.8, 0.85, 0.9, 0.95 0.95
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Fig. 3. Response time vs. G granularity

and the United States (denoted as USA)4. The former consists of 1.9 million
POIs, while the latter has 12.8 million POIs.

Table 2 illustrates the examined parameters, along with their default values.
The number n of active users denotes those participating in the re-computation
stage. The percentage ℓ of trusted users corresponds to those trusted not to
collude with others. Accuracy α is the percentage of queries that should be
answered correctly. In all experiments, we set ϵ = 1 for differential privacy, and
k = 10 as the number of returned nearest neighbors. Every user issues qmax = 10
private queries that follow the same distribution as the POIs. Since all queries
retrieve the same number of blocks they incur the same cost and response time.

Following [23], we first fine-tune the granularity of the grid G, used by the
basic AHG and AQP. Figure 3 shows the query response time, i.e. the total
elapsed time until a user receives a query answer, as a function of the granu-
larity of G, assuming fixed query plans (as in [23]). Coarse granularity leads to
high cost because there are numerous POIs in each cell, leading to many DB2

PIR retrievals. The response time is also high when the granularity is too fine
because there are numerous empty cells, yielding many DB1 PIR retrievals. In
the remaining experiments, we set the grid granularity to the optimal configura-
tion, which is 500×500 for Germany, and 900×900 for USA. Note that a single
query by basic AHG requires more than 10 minutes in USA, even for the best
granularity, motivating the need for AQP.

Figure 4 plots the response time versus the number of active users, setting
α = 95% and ℓ = 10%. The cost drops as the active users increase because the

4 SimpleGeo’s Places, available at http://freegisdata.rtwilson.com/.
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Fig. 4. Response time vs. number of active users

accuracy of statistics estimation improves, leading to a smaller query plan. The
basic solution needs 93.3 seconds for Germany, and 743.1 seconds for USA, in or-
der to answer a single query. For Germany, AQP reaches the lowest value (about
20 seconds) quickly, saving 78.6% compared to AHG. Concerning USA, the ben-
efits of AQP are limited for a small number of users due to inaccurate query plan
calculation by the LBS. However, as the number of active users increases, the
cost drops quickly, reaching 65 seconds for 10,000 users and achieving savings of
91.3%. The larger benefits of AQP for USA are explained by the fact that the
basic plan is very expensive leaving more space for optimization.

To better elaborate performance, we investigate the size (in blocks) of the
query plans. The fixed query plan forGermany is ((DB1, 83), (DB2, 53), (DB3, 10))
under all settings. This implies that any 10NN query retrieves cnt1 = 83 blocks
from DB1, cnt2 = 53 from DB2, and cnt3 = 10 from DB3. Recall that the
cnt1 blocks correspond to cell retrievals, whereas the cnt2 blocks represent POI
retrievals. The cnt3 blocks refer to detail information about the 10NNs, and
cannot be avoided by AQP or any other method. The fixed query plan for USA
is ((DB1, 299), (DB2, 485), (DB3, 10)). Note that cnt1 (cnt2) is higher for USA
because of the finer grid granularity (larger number of POIs).

Figures 5 and 6 show the number of blocks cnt1 and cnt2, in both fixed and
adaptive plans, as a function of the number of active users, setting α = 95% and
ℓ = 10%. Comparing Figures 5 and 6, the benefits of AQP are more pronounced
in DB1. This is explained by the fact that the pruned cells are likely to contain
few POIs; therefore the cell reduction in DB1 does not directly translate to an
equivalent POI reduction in DB2. In general, the results are consistent with
those on response time in Figure 4; i.e., for Germany a small number of active
users suffices, while for USA more users are necessary to substantially reduce
the number of block retrievals.

Figure 7 shows the response time as a function of the percentage of trusted
users ℓ, fixing α = 95% and n = 6, 000. The time drops as ℓ increases because the
resulting statistics have smaller noise scale. For Germany, even ℓ = 5% (i.e., 300
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trusted users) yields the lowest cost. Similar to Figure 4, for USA the number
of users necessary for convergence is larger, but the savings with respect to the
basic plan are more substantial.

Figure 8 illustrates the response time as a function of the percentage of
accuracy α, setting ℓ = 10% and n = 6, 000. As expected, the cost drops with
the required accuracy, but the effect is more pronounced in USA where reducing
the accuracy from 95% to 75% decreases the time from 135 to 30 seconds. The
same reduction in Germany gains only about 3 seconds. It is worth pointing out
that even for the inaccurate queries, the retrieved 10NN set is similar to the real
one; i.e., 80%-90% of the actual nearest neighbors are in the query result.

In the next experiment, we evaluate the actual versus the expected accuracy
of queries. Specifically, we first executed n·qmax = 60, 000 queries based on which
the LBS generated the AQP. Then, we performed another 100, 000 queries and
measured the percentage for which the users obtain accurate results, i.e., the
retrieved and the actual 10NN sets are identical. Note that the query distribu-
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tions in both cases are the same as that of the POIs. As shown in Figure 9,
the accurate queries always exceed the desired accuracy level because the error
incurred by the re-computation stage corresponds to a conservative estimation.

Summarizing the experimental evaluation, even the current state-of-the-art
method may take several minutes (more than 10 for USA) to answer a nearest
neighbor query. This implies that the results may be out-dated by the time they
are received, especially for the case of mobile users. On the other hand, the
proposed AQP approach achieves efficiency by sacrificing accuracy for a small
percentage of queries (in our experiments, the default accuracy setting is 95%).

5 Conclusion

Strong location privacy requires that every query retrieves the same number of
blocks in order to protect users from access pattern attacks. This has serious
performance implications for both the LBS (in terms of processing cost) and
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the users (in terms of response time). To overcome the problem, we propose a
novel approach that utilizes query statistics and ensures privacy by adopting the
concept of ϵ-differential privacy. The trade-off is that accuracy is sacrificed for
a small predefined percentage of queries. As shown in a comprehensive experi-
mental evaluation with real POIs, ours is the first practical approach for strong
location privacy in large datasets.
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