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Abstract—Existing analysis for R-trees is inadequate for several traditional and emerging applications including, for example,

temporal, spatio-temporal, and multimedia databases because it is based on the assumption that the extents of a node are identical on

all dimensions, which is not satisfied in these domains. In this paper, we propose analytical models that can accurately predict R*-tree

performance without this assumption. Our derivation is based on the novel concept of extent regression function, which computes the

node extents as a function of the number of node splits. Detailed experimental evaluation reveals that the proposed models are

accurate, even in cases where previous methods fail completely.

Index Terms—Database, spatial database, R-tree, cost model.
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1 INTRODUCTION

THE R-tree [14] is one of the most popular multidimen-
sional access methods, currently incorporated in var-

ious commercial products such as Oracle and Informix.
Object minimum bounding rectangles (MBRs) are grouped
together in leaf nodes according to their spatial proximity,
which are then recursively grouped in higher levels until
the root contains a single node. Fig. 1 shows a simple 2D
example where five objects ða; b; c; d; eÞ are clustered into
two leaf nodes N1 and N2 that constitute the two entries in
the root R. R-trees (like most spatial access methods) were
motivated by the need to efficiently process window
queries. The R-tree answers the query q in Fig. 1 as follows:
The root is first retrieved and the entries (e.g., N2) that
intersect the range are recursively searched because they
may contain qualifying objects (object e). Nonintersecting
entries (e.g., N1) are skipped.

In addition to “traditional” spatial applications, R-trees

have also been widely used to index data from other

domains. As an example, consider a banking system that

records the historical changes of account balances as a result

of withdrawals and deposits. Old versions of the records

are not removed since possible queries may inquire about

any time in history (e.g., find accounts with balances greater

than 5k dollars during May or June). Each record is

modeled as an interval, e.g., in Fig. 2a segments b0, b1, b2,

b3 indicate that three deposits have been made to account b

(current balance 5k dollars). Similarly, account d incurs one

withdrawal, while a and c do not change during the

recorded period. Fig. 2a also shows the MBRs of the leaf

nodes N1, N2, N3 in the corresponding R-tree. This

approach (i.e., viewing each record as a 2D interval) has

been adopted in numerous R-tree-based indexes [36], [21],
[22], [7], [40] for temporal databases.

In spatio-temporal and multimedia databases (that
manage large volume of moving objects), the most basic
form of R-trees is the 3D R-tree, which considers time as just
another dimension and integrates it in the tree construction
along with the other dimensions. The movements of
2D objects are modeled as distinct boxes in the three-
dimensional space. The temporal projection denotes the
period when the corresponding object remains static, while
the spatial projection of the box corresponds to the object’s
position and extent during this period. Whenever an object
moves to another position, a separate box is created to
represent its new static period, position, and extents. Fig. 2b
extends the example of Fig. 1 assuming that at time t1,
objects d, and e issue location updates, which result in new
versions d0 and e0, leading to another leaf node N 0

2.
Variations of the above idea have been exploited for
indexing multimedia objects [48], trajectory [32], and
historical information retrieval [38] for real-world data.
Furthermore, the 3D R-tree has been used as a part of a
multitree structure for aggregate processing in the context
of spatio-temporal data warehouses [35].

A number of analytical models (reviewed in the next
section) have been proposed to capture the performance of
R-trees. One basic assumption in these models is that the extents
of a node are similar on all dimensions which, however, does not
hold for temporal, spatio-temporal, and multimedia objects. As
shown in Fig. 2, for example, object “lifespans” (i.e., the
projection of intervals/3D boxes on the time dimension)
depend on the lengths of the periods that the corresponding
objects retain their attributes (i.e., salary and positions in
Figs. 2a and 2b, respectively). In particular, if a record does
not change for a long time, then its lifespan will force its
parent node to have (much) longer extent (on the temporal
dimension) than those nodes containing only objects with
short lifespans. In such situations, the existing R-tree analysis is
simply inapplicable. Although the “elongated-node-extent”
problem is well-known [22], [7], [40], predicting the R-tree
performance in this scenario remains an open problem,
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which seriously limits query optimization in the related

systems.
This paper settles the problem for the R*-tree [10], themost

efficient andwidely-used variant of R-trees. In particular, we

propose a cost model, based on the novel concept of extent

regression functions (ERFs), that accurately captures theR*-tree

performance for arbitrary data extents, independently of the

concrete application domain. ERFs provide considerable

insight into the behavior of R*-trees and motivate new

optimization techniques, even in well-studied domains

(e.g., spatial databases). Further, our analytical framework

can be also applied to other data partition methods (e.g., the

BKD-[28], X-[8], A-[41] trees, etc.).
The rest of the paper is organized as follows: Section 2

surveys existing approaches for R-tree analysis and

elaborates why they fail to produce correct estimation for

general data sets. Section 3 discusses our models, and

Section 4 applies them to concrete applications. Section 5

presents an experimental study to confirm the effectiveness

of the proposed models, while Section 6 concludes the

paper with directions for future work.

2 RELATED WORK

Since (as discussed in the next section) extent regression
functions depend on the split algorithm of the correspond-
ing multidimensional access method, in this section we first
review the R*-tree split algorithm. Then, we survey the
existing cost models for window queries and motivate our
work by elaborating their deficiencies.

2.1 R*-Tree Split Algorithm

The R-tree clusters multidimensional objects by their spatial
proximity. According to [19], [34], an efficient clustering
should minimize metrics such as the overlap between
MBRs, their perimeters, etc. Among the R-tree variants
(e.g., [14], [39]), the R*-tree [10] is the most efficient (in
terms query performance) mainly because of its improved
split algorithm. Specifically, given a full node (i.e., the
number of entries exceeds the node capacity by 1), the split
algorithm distributes its entries into two new nodes aiming
at minimizing the overlap between the resulting MBRs,
while ensuring the minimum node usage of 40 percent.

To illustrate this, consider Fig. 3, where r1; r2; . . . ; r8
correspond to the MBRs of entries in an overflowing node
(i.e., the node capacity is 7). The algorithm first selects the
split axis (among all dimensions) that leads to the
smallest overall perimeter (see [10] for details). Let the
chosen axis be the x-dimension in Fig. 3. Then, the entries
are distributed based on the coordinates of their MBRs on
this dimension. Specifically, all rectangles are sorted by
the x-coordinates of their left boundaries (in the example,
the sorted list is fr1; r2; . . . ; r8g). Next, the algorithm
attempts all possible divisions of the sorted list subject to
the minimum node usage. In this case, a node should
contain at least 3ð� 40% � 7Þ entries; thus, possible dis-
tributions involve assigning the first 3, 4, or 5 entries (of

654 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 1. R-tree for spatial data.

Fig. 2. Application of R-trees in temporal environments. (a) R-tree for temporal data and (b) R-tree for spatio-temporal data.

Fig. 3. The possible groupings. (a) 3-5 assignment, (b) 4-4 assignment, and (c) 5-3 assignment.



the list) into the first node and the remaining entries into
the second one. Then, the final grouping is the one with
minimum mutual overlap. Figs. 3a, 3b, and 3c illustrate
the overlap regions (the dark areas) for these groupings.
Clearly, the “3-5” assignment (Fig. 3a) achieves the
smallest overlap.1

Notice that the extents of thenewnodes are similar to those
of the original node along the dimensions that do not incur
split. For instance, in all cases of Fig. 3, the y-extents of the
resulting nodes do not change significantly after the split.
This is because the splitting is performed according to one
axis only and, thus, has little discrimination effect along the
other dimensions. This is a common property for many data-
partitioning spatial indexes (e.g., the BKD-trees, X-trees,
A-trees, etc.).

2.2 Existing Performance Studies

Faloutsos et al. [13] performed the first analysis for R-trees
and R+-trees (by that time, R*-trees had not been proposed)
focusing on 1D intervals. Later, [19] and [34] independently
developed (2-1) that is the basis of most subsequent models.
Specifically, for two d-dimensional rectangles r1; r2 ran-
domly distributed in the unit data space ½0; 1�d, the
probability PINTRðr1; r2Þ that they intersect each other is:

PINTRðr1; r2Þ ¼
Yd
i¼1

ðr1:li þ r2:liÞ; ð2-1Þ

where r1ð2Þ:li denotes the MBR length along the ith ð1 �
i � dÞ dimension for r1ð2Þ. For a window query q, a node in
the R-tree is visited if and only if its MBR intersects q. As a
result, the probability that a node is accessed can be
calculated with (2-1) provided that its extents are available.
Based on this, the summation of the probabilities for all
nodes in the tree gives the expected number of node
accesses in answering q [19], [34], [18] as shown in following
equation:

NAðqÞ ¼
XM
i¼1

PINTRðri; qÞ ¼
XM
i¼1

Yd
j¼1

ðri:lj þ q:ljÞ
" #

; ð2-2Þ

whereM is the total number of nodes (of all levels), and ri is
the MBR of the ith node (NA stands for node accesses). The
practical applicability of the above equation is limited
because the extents of all nodes in the tree are usually not
available in advance and, even if they are known (e.g., for
static data), their summation may lead to expensive
estimation overhead. To simplify this formula, Theodoridis
and Sellis [46] assume a “regular uniform data model”
where 1) all objects have the same extent length LD along
each dimension and 2) they are aligned into N1=d (N is the
data set cardinality) rows/columns with a gap gD between
two consecutive rows/columns, as illustrated in Fig. 4.
Given the density2 D of the data set, the following formulae
represent LD and gD:

LD ¼ D

N

� �1=d

; and gD ¼ 1� LD �N1=d

n1=d � 1
¼ 1�D1=d

N1=d � 1
: ð2-3Þ

Under this model, nodes at the same level have similar sizes
(i.e., if nodes r1; r2 are at the same level, then r1:lj ¼ r2:lj for
all 1 � j � d) because the data clustering does not vary
significantly across the data space. Let h be the height of the
tree (i.e., leaves are at level 0), Lij the average MBR extent of
level-i nodes ð0 � i � h� 1Þ along dimension jð1 � j � dÞ
and Ni the number of level-i nodes; then, (2-2) can be
rewritten as:

NAðqÞ ¼
Xh�1

i¼0

Ni �
Yd
j¼1

ðLij þ q:ljÞ
" #( )

: ð2-4Þ

Specifically, h and Ni are represented as

h ¼ 2þ logf
N=f

b

� �
; Ni ¼

N

fiþ1
; ð2-5Þ

where f is the average node fanout, i.e., the number of
entries in a node (= 4 in Fig. 4), typically 69 percent [52] of
the node capacity b. To facilitate the estimation of Lij,
Theodoridis and Sellis [46] further assume that objects in a
leaf node are regularly aligned in f1=d rows and columns.
As a result, each node MBR is a square defined by the
extents of f1=d entries as well as the ðf1=d � 1Þ gaps among
them. Therefore, the extent L0 of leaf nodes on each
dimension is:

L0 ¼ ðLD þ gDÞ � f1=d � 1
� �

þ LD: ð2-6Þ

This process can be applied recursively to higher levels.
Specifically, the MBRs of level-0 nodes can be regarded as a
set of aligned rectangles with gaps gD (i.e., same as the data
objects) between rows or columns. Thus, following the same
reasoning, the node extent Liþ1 at tree level iþ 1 can be
obtained from Li as:

Liþ1 ¼ ðLi þ gDÞ � f1=d � 1
� �

þ Li: ð2-7Þ

Substituting these estimates for node extents in (2-4), we can
predict the number of node accesses of a window query as a
function of the cardinality N , dimensionality d, node
capacity b, and data density D.

The above analysis can be extended to nonuniform data
(where the regular modeling no longer holds) with
histograms, based on the rationale that objects within a
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1. The R* split algorithm performs another similar pass, which sorts the
coordinates of the right boundaries. For the purpose of analysis, it suffices
to consider only one pass due to symmetry.

2. The density D of a set of rectangles is defined as the average number
of rectangles that contain a given point in the workspace. Equivalently, D
can be expressed as the ratio of the sum of the areas of all rectangles over
the area of the available workspace.

Fig. 4. The regular data model for 2D objects ðN ¼ 16; f ¼ 4Þ:



sufficiently small region are almost uniform, even though
the overall distribution may deviate significantly. Theodor-
idis et al. [47] partition the data space into H �H regular
cells (H is the resolution) and store the following statistics
in each cell c: 1) the number Nc of objects whose MBR
centroids fall in the cell and 2) the density Dc of these
objects. Consider, for example, the query in Fig. 5a that falls
in cell c22 (the subscript indicates the second row and
column) with cardinality and density N22 and D22, respec-
tively. Its cost is approximated using a conceived uniform
data set (Fig. 5b) with density D22 and cardinality NC �H2.
The reasoning is that the query only visits the nodes
containing objects in c22, and the extents of these nodes are
similar to those on the conceived uniform data set. Note
that the properties (i.e., cardinality and density) of the
conceived data set depend on the query location. For
example, for a query in c11 (i.e., the cell at the first row and
column), the corresponding uniform data set is much
sparser, and as a result, a different estimate is obtained. In
general, if the query window intersects multiple cells, the
average density of these cells is used instead. Jin et al. [17]
present an interesting solution for packed R-trees [20] (i.e.,
assuming static data known in advance) using enhanced
histograms. In this work, we focus on dynamic trees due to
their higher importance in practice.

Faloutsos and Kamel [20] point out that the distributions
of some real point data sets can be described using a simple
equation called the power law. Based on this observation,
they propose a method to capture R-tree performance using
the fractal dimension, namely, the intrinsic dimension of the
data set. Proietti and Faloutsos [30] extend the idea to
rectangular objects obeying the regal law, i.e., the probability
that the area of an object is greater than a certain value �
equals A��, where A is a constant. While they claim that this
law is satisfied in many real spatial data sets, there is no
evidence that it holds for temporal and spatio-temporal
data (actually the results of [45] suggest a different
distribution in these scenarios).

In addition, there is a considerable amount of work on
window query selectivity estimation (i.e., predicting the
output size). Relevant methods adopt various multi-
dimensional histograms [2], [1], [15], [6], sampling [4],
[16], [49], kernel estimation [9], singular value decomposition

[31], compressed grid [27], [23], [26], [51], sketches [42],
maximal independence [11], fractal [5], [29], and Euler
formula [17], [37], [25]. When the query selectivity
(equivalently, the number n of objects satisfying the
query) is available, a simple (but rather coarse) estimate
for the query cost is

P
i¼0�ðh�1Þdn=fiþ1e, where f is the

node fanout and h is the height of the tree [46], [2]. The
rationale of this formula is that a node contributes f

entries if its MBR is totally contained in the query region.

2.3 Shortcomings of Existing Analysis

Based on the above discussion, there exist three general
methodologies for predicting the R-tree node accesses when
answering window queries:

1. the Theodoridis and Sellis model for node extents
combined with (2-2) for node access probability (TS
for short),

2. techniques based on power laws (we call them
fractal), and

3. techniques based on selectivity estimation and the
formula

P
i¼0�ðh�1Þdn=fiþ1e (we call them collec-

tively as selectivity methods).

Each methodology has some serious shortcomings in
practice.

First, the assumption of TS that the extents of a node are
identical in all dimensions, as mentioned in the introduc-
tion, is not satisfied in a wide range of applications. In
temporal databases, for instance, the temporal extents of
R-tree nodes are determined by the lifespans of the objects
that they contain and may vary significantly. Specifically,
the extents should follow certain probabilistic distribution that
is related to the length distribution of objects’ lifespans.
Consequently, the node sizes can no longer be captured
by a simple formula such as (2-7).

Second, the applicability of fractal is limited to data sets
that satisfy certain laws. In case of rectangle data sets, [30]
assumes that 1) all the data objects have fixed aspect ratio
(i.e., the ratio between its height and width) and 2) a node
has similar extents on all axes (similar to [46]). Even if these
conditions are satisfied (which is not the case for temporal
or spatio-temporal data), fractal techniques produce a single
estimate that corresponds to the average cost for all possible
queries in the data space (regardless of the data distribu-
tion). Since queries at various positions lead to different
costs, a single estimate for all queries may result in large
individual errors.

Third, the correctness of selectivity relies on the assump-
tion that the MBRs of most accessed nodes are totally
contained in the query window, which is not true if 1) the
query is not sufficiently large, or 2) node extents are
elongated on particular axes. Finally, it is worth pointing
out that none of the three methods distinguishes among the
various R-tree variants (i.e., the same model is supposed to
work for all different types of R-trees), although it is well-
known that several variants have large performance
differences. Motivated by these observations, in the next
section, we present a cost model that focuses on R*-trees
and provides accurate estimation, independently of the
application domain.
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Fig. 5. Handling nonuniform distribution with histogram. (a) A query

for nonuniform data (H ¼ 3) and (b) the conceived uniform data

(100 rectangles).



3 R*-TREE ANALYSIS WITH ERFS

For our analysis, we assume that each data object is a
d-dimensional rectangle r such that: 1) its center location
follows certain distribution (called the location distribution in
the sequel) in the unit data space ½0; 1�d and 2) the length r:li
of its extent along the ith dimension is decided by the
probability distribution function Fi (referred to the length
distribution), or specifically, Fið�Þ equals the probability
Pfr:lj � �g that r:li is no larger than a certain length �. The
objective is to predict the number of R*-tree node accesses in
answering a window query q. Compared with existing
analysis, the introduction of the length distribution in-
creases the applicability of our method by allowing objects
to have arbitrarily different sizes. We start with an overview
of the proposed framework, focusing on uniform data, and
then extend the solution to general location distributions
with histograms. Table 1 contains the primary symbols to be
used in our analysis (symbols that have not appeared yet,
will be elaborated shortly).

3.1 Framework Overview

Similar to the TS model, our analysis is based on (2-4),
and aims at estimating the average node extent Lij at
each level ið0 � i � h� 1Þ and dimension jð1 � j � dÞ.
Observe that the MBR of a leaf node nL can be regarded
as the result of a series of splits from the root, whose
MBR covers the entire data space (in particular, each split
is performed along a single dimension). Let nL:s0i (the
subscript 0 means leaf level) be the number of times that
a split (on a leaf node nL) occurs along the ith dimension,
and fnL:s01; nL:s02; . . . ; nL:s0dg be the split log3 of nL. Fig. 6
shows an example of incrementally inserting 12 rectangles
(block capacity b ¼ 3). In Fig. 6a (after three objects have
been inserted), the tree consists of a single root node R
with split log f0; 0g (for x-, y-axes, respectively), meaning
that no split has been performed on either dimension. In
Fig. 6b, R splits (on the x-axis) into A and B whose split
logs are then f1; 0g. Note that the extents of both A and
B are about half that of R on the x-axis and approxi-
mately the same on the y-axis. Fig. 6c shows the situation
(after all insertions) where A and B have split along the
y-axis, leading to four leaf nodes C, D, E, F with split
logs f1; 1g. Each MBR covers about 1=4 of the data space.

Observation 1. For uniform data, each leaf node splits about
the same number of times along each dimension, or,
formally, for any two leaf nodes nL1; nL2 and any
dimension ið1 � i � dÞ; nL1:s0i � nL2:s0i.

The reasoning behind the above observation is that, for
uniform location distribution, data characteristics are the
same throughout the data space and, thus, each leaf node
should have similar split behavior. As a corollary, every leaf
node incurs approximately the samenumber s0ð¼ s01 þ s02 þ
. . .þ s0dÞ of splits (on all dimensions). Particularly, the
relation between the numberN0 of leaf level nodes and s0 is:

Observation 2. s0 � log2 N0.

To explain this, we borrow the concept of the split tree [8],
i.e., a binary tree where leaf (white) nodes record the ids of
leaf nodes of the R-tree. A black node, on the other hand,
represents a historical leaf node that has disappeared after
splitting into two nodes, whose ids are associated with the
children of that black node. Fig. 7 shows the split tree for the
R-tree in Fig. 6 (the letters in brackets correspond to the ids
of the associated R-tree nodes). Black nodes a and b, for
example, are children of node r, indicating that the root R
splits into leaf nodes A and B (Fig. 6b). It is clear that the
number of edges on the path from the root to a leaf node
corresponds to the number of splits this leaf has ever
incurred. According to Observation 1, this number should
be approximately the same for all the leaf nodes or,
equivalently, the total number s0 of splits for a leaf node
corresponds to the height (= 2 in this example) of the split
tree. On the other hand, since N0 equals the number of
white nodes (each corresponding to a leaf node in the
R-tree), the height of the split tree is represented as log2 N0,
indicating that s0 � log2 N0. The implication is that the total
number of split times for a leaf node depends only on the
data set cardinality N and the node capacity b (i.e., as
shown in (2-5), N0 ¼ N=f while f ¼ 0:69 � b).
Observation 3 (The min-marg rule). The final clustering of

an R-tree aims at minimizing the sum of perimeters of all
leaf MBRs.

The min-marg rule is consistent with the current under-
standing of the properties of a “good” R-tree. As revealed in
[34], [20], [33], the clustering in an R-tree should minimize
both the areas (or volumes for higher-dimensional spaces)
and the perimeters of the leaf nodes MBRs. Note that
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3. The concept of split log can be regarded as a simplified “split history”
as applied in X-trees [8].

TABLE 1
List of Symbols



minimizing perimeters is more important because rectan-
gles with smaller perimeters usually have smaller areas (but
not the opposite).

Next, we introduce the extent regression function, which
returns the extents of a node as a function of the number of
splits. In particular, each dimension ið1 � i � dÞ has an
independent ERFi which relies on the corresponding
length distribution Fi. Notice that ERFs provide a natural
way to describe MBR extents. Specifically, if we know that a
leaf node has split s0i times on the ith axis, then its extent L0i

on this dimension is given by ERFiðs0iÞ. In general, given a
split log fs01; s02; . . . ; s0dg, the perimeter of a leaf node
equals

P
i¼1�d ERFiðs0iÞ. Recall that, the objective of our

analysis is to obtain L0i for all dimensions ð1 � i � dÞ.
Hence, equipped with ERFs, we reduce the problem into
that of estimating the split log fs01; s02; . . . ; s0dg, which can,
in turn, be transformed into a constrained optimization
problem (taking into account Observation 3).

Observation 4. The split log fs01; s02; . . . ; s0dg of a leaf node
minimizes the objective function

P
i¼1�d ERFiðs0iÞ under

the constraint that
P

i¼1�d s0i ¼ log2 N0, where N0 is given
in (2-5).

We motivate the observation using Fig. 6 as an example.
As will be shown later, for uniform rectangle data with
small extents, ERF ðs0iÞ ¼ 1=2s0i . On the other hand,
possible permutations of ðs01; s02Þ subject to the constraintP

i¼1�d s0i ¼ log2 4 ¼ 2 include fð0; 2Þ; ð1; 1Þ; ð2; 0Þg. It can be
verified that (1, 1) minimizes the function

P
i¼1�d ERFiðs0iÞ,

which means that a leaf MBR should split once along each
dimension (leading to extent 1=2) as in Fig. 6c. Note that the
above discussion also applies to nodes of higher levels
ið1 � i � h� 1Þ. Specifically, let sij be the total number of
splits for a level-i node along the jth dimension; then, Lij is
estimated as ERFiðsijÞ. Further, since themin-marg rule also
holds for higher levels, estimating the split log is equivalent
to minimizing

P
i¼1�d ERFiðsijÞ with the constraint

P
j¼1�d sij ¼ log2 Ni, where Ni is the number of level-i nodes

computed by (2-5). In the sequel, we first discuss the
derivation of ERFs, and then elaborate on the concrete
algorithms used for estimating the split log in Section 3.3.

3.2 Derivation of ERFs

The derivation of ERFs depends on the split algorithm of
the concrete index structure. For R*-trees, the most
important step in the derivation is to solve the following
probability problem:

Problem 3.1. Let

½I1:s; I1:e�; ½I2:s; I2:e�; . . . ; ½Ibþ1:s; Ibþ1:e�

be bþ 1 independent 1D intervals such that b is the node
capacity and Ii:sðIi:eÞ is the coordinate of the starting
(ending) point of I. For each interval Iið1 � i � bþ 1Þ:

1. Its length Ii:l ¼ Ii:e� Ii:s satisfies the length dis-
tribution F (i.e., F ð�Þ equals the probability
PfIi:l � �g).

2. Its starting point Ii:s distributes uniformly inside
½0; L� Ii:l�, where L is a constant (that corresponds to
the extent of a node to be split).

3. Ii:s � Iiþ1:s for two consecutive intervals Ii and Iiþ1

(i.e., all intervals are sorted by their starting points).

Assume these intervals are split into two nodes, such that

the first node contains I1; I2; . . . ; Im, and the second one

contains Imþ1; . . . ; Ibþ1, for some constant m 2 ½1; bþ 1�. Let
Me be the largest ending point of the first m intervals:

Me ¼ maxi¼1;...;mðIi:eÞ. The goal is to compute the expected

values EðMeÞ of Me, and EðL� Imþ1:sÞ of L� Imþ1:s.

Next, we explain the relationship between Problem 3.1
and the ERF derivation. Consider, for instance, an
overflowing node that splits along dimension i, on which
its extent has length L. Intervals I1; I2; . . . ; Ibþ1 correspond
to the extents of the entries (on dimension i). Without
loss of generality, assume that the left boundary of I1:s is
at coordinate 0. The R* split algorithm (reviewed in
Section 2.1) sorts the entries by Ii:s in ascending order
and groups the first m entries (0:4b � m � 0:6b to ensure
40 percent node usage) into a new node and the
remaining ðbþ 1�mÞ entries into another one. Thus,
the extent of the first node is determined by the
maximum of the ending points of I1; I2; . . . ; Im, (i.e., Me)
and that of the second node by the starting point of Imþ1.
This is illustrated in Fig. 8 ðb ¼ 4Þ, where five entries are
distributed into two nodes with m ¼ 3 and bþ 1�m ¼ 2
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Fig. 6. The split axis. (a) Root is leaf, (b) two leaf nodes, and (c) four leaf nodes.

Fig. 7. Split tree for the R-tree of Fig. 6.



entries, respectively. The extent length of the first node
equals Me (¼ I3:e, the maximum of I1:e, I2:e, I3:e), and
that of the second node equals L� Imþ1:s ð¼ L� I4:sÞ.
Hence, the objective of Problem 3.1 is to derive the
expected lengths of the resulting two nodes.

We start with the derivation ofEðL� Imþ1:sÞ because it is
simpler. Since EðL� Imþ1:sÞ ¼ L�EðImþ1:sÞ, it suffices to
derive EðImþ1:sÞ. For this purpose, we first compute the
probability PfI:s � �g that the starting point of any interval,
which satisfies conditions 1 and 2) of Problem 3.1, is before
coordinate �, subject to the length distribution F ð�Þ.
Lemma 3.1. PfI:s � �g ¼

R �
0 fðlÞ

�
L�1 dlþ

R L
� fðlÞdl, where fð�Þ

is the probability density function of F ð�Þ.
Proof. Assuming, without loss of generality, that interval I

has length lð0 � l � LÞ, we consider two cases: 1) 0 �
l � �; and 2) � < l � L, and represent PfI:s � �g as the
sum of two conditional probabilities:

PfI:s � �g ¼ PfI:s � �j0 � l � �g þ PfI:s � �j� < l � Lg:
ð3-1Þ

Notice that since I is completely inside the range ½0; L�,
I:smust fall in the range ½0; L� l� (i.e., between a and c in
Fig. 9a).Since I:s � � if and only if I:s lies in the range
½0; ��, for case 1, we have:

P I:s � � and 0 � l � �f g ¼
Z�

0

f lð ÞP I:s � �jI:l � Lf gdl

¼
Z�

0

f lð Þ �

L� l
dl:

When l > � (case 2)), on the other hand, the starting point
I:s is guaranteed to be less than � (Fig. 9b). So,

PfI:s � � and � < l � Lg ¼ Pf� < l � Lg ¼
ZL
�

fðlÞdl:

Thus, Lemma 3.1 holds. tu
Using Lemma 3.1, we derive the probability PfImþ1:s �

�g that the starting points of at least mþ 1 (out of bþ 1)

intervals are before �. Since the probability that exactly

iðmþ 1 � i � bþ 1Þ intervals fall in the range (while the

other bþ 1� i intervals do not) is

ðPfI:s � �gÞi � ð1� PfI:s � �gÞbþ1�i;

we have

P Imþ1:s � �f g

¼
Xbþ1

i¼mþ1

bþ 1

i

� �
P I:s � �f gð Þi 1� P I:s � �f gð Þbþ1�i:

Therefore, EðImþ1:sÞ can be represented as:

EðImþ1:sÞ ¼
ZL
0

� � dPfImþ1:s � �g
d�

d�: ð3-2Þ

Having solved EðL� Imþ1:sÞ, we proceed to discuss the

other half of Problem 3.1, i.e., deriving EðMeÞ. An accurate

solution, however, is complex and requires considerable

evaluation time (therefore, it is inappropriate for query

optimization). Instead, we follow an alternative approach

that provides approximate results with arbitrary precision,

by studying the discrete version of Problem 3.1:

Problem 3.2 (discrete version of Problem 3.1). Assume that

the range ½0; L� is divided into � equal partitions with �þ 1

stamps (i.e., the ith stamp is at coordinate i � L=� for

0 � i � �). Let

½I1:s; I1:e�; ½I2:s; I2:e�; . . . ; ½Ibþ1:s; Ibþ1:e�

be bþ 1 intervals such that:

1. For each interval Iið1 � i � bþ 1Þ, its end points Ii:s
and Ii:e fall on these stamps.

2. Its length ðIi:e� Ii:sÞ follows distribution F .
3. Its location distributes uniformly inside the range

½0; L�.
4. Ii:s � Iiþ1:s, for two consecutive intervals Ii and Iiþ1.

The goal is to compute the expected value EðMeÞ for Me,

where Me ¼ maxi¼1;...;mðIi:eÞ, and m is a constant in

½1; bþ 1�.

It is easy to see that the value of EðMeÞ obtained from the

above problem equals that in Problem 3.1 when � ! 1 (in

fact, our experiments show that the approximated values

are fairly close with � ¼ 100). On the other hand,

Problem 3.2 is easier because, intuitively, we only have a

finite number of possible positions for the starting/ending

points of each interval (while the number is infinite in

Problem 3.1).
Similar to Me, we define Ms ¼ maxi¼1;...;mðIi:sÞ. To

derive EðMeÞ, Lemma 3.2 computes, given two integers

0 � � � � � �, the probability PfMs ¼ � � L=�;Me � � �
L=�g that Ms lies exactly at the �th stamp and Me lies

at or before the �th stamp.
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Fig. 8. The splitting of 1D intervals.

Fig. 9. Proof of Lemma 3.1. (a) 0 � l � � and (b) � < l � L.



Lemma 3.2.

PfMs ¼ �L=�;Me � �L=�g ¼
Xm�1

k¼1

Xbþ1

j¼m�k

Xbþ1

i¼m�k�j

Cðbþ 1; iÞ � Cðbþ 1� i; jÞ � Cðbþ 1� i� j; kÞ
��ð�; �Þi � �ð�; �Þj � �ð�; �Þk � �ð�; �Þbþ1�i�j�k

" #
;

where

Cðu; vÞ ¼
u

v

� �
if ðu > vÞ

0 otherwise;

8<
:

�ð�; �Þ ¼
0 if � ¼ �P�þ1��

l¼�þ2��

f�ðlÞ
�þ2�l otherwise;

8><
>:

�ð�; �Þ ¼
X�þ1��

l¼1

f�ðlÞ
�þ 2� l

;

�ð�; �Þ ¼

0 if � ¼ 0P���þ2

l¼1

f�ðlÞ
�þ2�l if � ¼ 1

P���þ2

l¼1

f�ðlÞ �
�þ2�l þ

P�þ1

l¼���þ3

f�ðlÞ �þ2�l
�þ2�l otherwise;

8>>>>>><
>>>>>>:

�ð�; �Þ ¼
0 if � ¼ �P���

l¼1

f�ðlÞ �þ1���l
�þ2�l otherwise;

8<
:

and f�ð’ÞÞ ¼ F ð’ � L=�Þ � F ½ð’� 1Þ � L=��.
Proof.We classify the intervals into four categories (Fig. 10),

based on their relative positions with respect to the �th

and �th stamps (referred to as stamps � and � in the

sequel). The � group includes intervals that start at �,

and end after �. The � group involves intervals that also

start at �, but end at or before �. Intervals in the � group

start before �, and end at or before �. The � group

contains intervals that start after �. It is clear that these

four groups are mutually disjoint, i.e., there cannot be

any interval appearing in more than one group.
An � interval satisfies the conditions: 1) its starting

point locates at � (among all possible positions in ½0;��),
and 2) its length is within the range ½�þ 1� �;�� ��.
Since the probability that the interval length equals l is
f�ðlÞ, it is easy to verify that the probability that an
interval becomes an � interval (subject to parameters �
and �) is given by �ð�; �Þ as represented in the lemma.
Similarly, �ð�; �Þ, �ð�; �Þ, and �ð�; �Þ denote the prob-
abilities that an interval belongs to �, �, and � categories.

Assume, without loss of generality, that there are i, j, k,
and bþ 1� ðiþ jþ kÞ intervals in groups �, �, �, �,
respectively, where bþ 1 is the total number of intervals.
In the sequel, we refer to ði; j; kÞ as an arrangement. An
arrangement is legal if the resulting intervals satisfy the
condition fMs ¼ � � L=�; and Me � � � L=�g, whereMs ¼
maxp¼1;...;mðIp:sÞ and Me ¼ maxp¼1;...;mðIp:eÞ. For a legal
arrangement,

1. k < m (otherwise, Ms < � � L=�),
2. iþ jþ k � m (otherwise, Ms > � � L=�),
3. jþ k � m (otherwise, Me > � � L=�).

Note that the probability of an arbitrary arrangement is:

bþ 1

i

� �
�

bþ 1� i

j

� �
�

bþ 1� i� j

k

� �
�

�ð�; �Þi � �ð�; �Þj � �ð�; �Þk � �ð�; �Þbþ1�i�j�k:

Consequently, PfMs ¼ � � L=�;Me � � � L=�g can be

obtained by summing the probabilities of all legal

arrangements (over all legal values of i, j, and k

satisfying conditions 1, 2, and 3, as shown in the

lemma. tu
Based on PfMs ¼ � � L=�;Me � � � L=�g and 0 � � � �,

we have:

P Me � �L=�f g ¼
X�
�¼0

P Ms ¼ �L=�;Me � �L=�f g:

Hence,

PfMe ¼ �L=�g ¼
PfMe � 0g if � ¼ 0

PfMe � �L=�g � PfMe � ð� � 1ÞL=�g if 1 � � � �:

�

Therefore, EðMeÞ can be derived as:

EðMeÞ ¼
L

�
�
X�
�¼0

ð� � PfMe ¼ �L=�gÞ: ð3-3Þ

So far, we have solved Problem 3.1 or, more specifically, the

expected extents L1 and L2 of the two new nodes after

splitting L are:

L1 ¼ EðMeÞ; and L2 ¼ L�EðImþ1:sÞ; ð3-4Þ

whereEðImþ1:sÞ andEðMeÞ are represented in (3-2) and (3-3),
respectively. It is clear that, for arbitrary object extents, the
new nodes produced by the R* split algorithm do not
necessarily have similar extents on the split dimension
(actually as mentioned in the sequel, this is the case only if
all the objects have the same sizes).

Now, we are ready to clarify the procedures of
computing the ERFi for the ith dimension, given the
corresponding length distribution Fi. First, it is easy to see
that ERFið0Þ ¼ 1 because the extent of a root covers the
entire universe4 before any split is performed. ERFiðjþ 1Þ
is obtained by taking the average extent after splitting a
node with extent ERFiðjÞ. Therefore,
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4. In general, ERFið0Þ equals the axis length of the ith dimension. Here, it
is 1 because we assume unit data space.

Fig. 10. Classifications of the intervals.



ERFiðjþ 1Þ ¼ 1=2 � ðL1 þ L2Þ; ð3-5Þ

where L1 and L2 are estimated from (3-4) by setting L to

ERFiðjÞ and m to bb=2c (i.e., on average, each split

distributes the entries evenly). It is worth mentioning that

the probability density function F used in Problems 3.1 and

3.2 is obtained from the length distribution Fif�g (along the

split dimension i). Specifically, Ff�g is the probability

Pfr:li � �g (that the extent length of data rectangle r is

shorter than � on the ith axis) with the implicit condition

r:li � L, i.e., the extent must be completely in that (length L)

of the node containing it. Hence, Ff�g equals

F ð�Þ ¼ Pfr:li � �jr:li � Lg ¼ Pfr:li � �g
Pfr:li �g ¼ Fið�Þ

FiðLÞ
: ð3-6Þ

Fig. 11 summarizes the procedures for computing the

values of ERFi.
5

3.3 Estimating MBR Extents Lij

The ERFi along each dimension is a discrete function such

that ERFiðsijÞ (where sij is an integer) gives the extent of

the level-j node (along the ith dimension) after performing

sij splits. Note that, in practice, the value of sij is usually

small. For example, if si1 ¼ si2 ¼ 20, then si (the total

number of splits performed on a node at level i) equals 40

(since si � sij). By Observation 2, this implies that the total

number Ni of level-i nodes should be more than 240. Given

that a typical fanout of a node (i.e., average number of

entries in a node) is more than 50, the database should

contain more than 500 trillion records!
Thus, for typical databases, it suffices to precompute the

values of ERFiðsiÞ for a small range of values for si (we

suggest ½0; 20�, i.e., invoke the algorithm of Fig. 11 by setting

t to 20). The precomputation overhead is small and is an

one-time effort (i.e., the results can be used for all future

queries). The computed values are stored in an ERF table

where ERFT ½i�½j�ð1 � i � d; 0 � j � 20Þ gives the value of

ERFiðjÞ (i.e., the extent of a node on the ith dimension after

j splits on this axis). With ERFT , we can estimate Lij (i.e.,

the average extent of a level-i node along the jth dimension)

with a few table lookups to solve the constrained optimiza-

tion problem as stated in Observation 4. In the sequel, we

illustrate this in 2-dimensional space as the discussion

extends to general d-dimensional space trivially. For

simplicity, we first assume that Ni (estimated in (2-5)) is a

power of 2 (i.e., Ni ¼ 2k for some integer k).
Let s01 and s02 be the number of splits performed at

the leaf level on the first and second dimensions,

respectively. As indicated in Observation 4, we can

find, among the combinations of ðs01; s02Þ that satisfy

s01 þ s02 ¼ log2ðN0Þ (review Observation 2), the pair that

minimizes ERF1ðs01Þ þ ERF2ðs02Þ. For instance, let

s01 þ s02 ¼ 15; then, the combinations of ðs01; s02Þ include

fð0; 15Þ; ð1; 14Þ; . . . ; ð14; 1Þ; ð15; 0Þg (for each combination,

the value of ERFiðs0iÞ can be found in ERFT ½i�½s0i�).
This approach generalizes to higher levels easily with

the only exception that si ¼ log2ðNiÞ. Such operations are

cheap (due to the small number of combinations) and

must be performed only once. Fig. 12 summarizes the

steps for computing Lij.
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Fig. 11. Computing ERFi.

Fig. 12. Compute Lij.

5. Equation (3-2) requires numerical evaluation. We adopt the trapezoidal

rule that evaluates a general one-layer integral
R b

a fðxÞdx by calculating the

values fðxiÞ at regular positions xi ¼ aþ i � ðb� aÞ=cð0 � i � cÞ, where c is a

constant (100 in our experiments) of the integral range ½a; b�. Then, the

integral value can be approximated as b�a
2c

Pc�1
i¼0 ½fðxiÞ þ fðxiþ1Þ�.



Next, we remove the constraint that Ni must be a power

of 2. In this case, some leaf nodes (let their number be n1)

have split s0ð¼ blog2ðNÞ0ÞcÞ times, while other leaf nodes

(let their number be n2) have split s00ð¼ dlog2ðN0ÞeÞ times.

As suggested in [8], n1 ¼ 2s0þ1 �N0 and n2 ¼ 2N0 � 2s
0
0 . For

the n1ðn2Þ nodes that split s0ðs00Þ times, their extents l1iðl2iÞ
along each dimension i can be obtained using the algorithm

in Fig. 12. Then, the final L0i is estimated as the weighted

sum of l1i and l2i:

L0i ¼
n1

N0
l1i þ

n2

N0
l2i:

Extending to higher levels is trivial (just replacing N0

with Ni). We emphasize that Lij for all levels and

dimensions can be precomputed offline, and the time to

produce a cost estimate in query optimization involves only

the cost of evaluating (2-4) with the specified query

parameters (i.e., in the order of milliseconds). Finally,

capturing the performance of nonuniform data is relatively

easy by using a histogram as introduced in Section 2.

Specifically, for a query inside a histogram cell with Nc

objects, the query cost is estimated based on a conceived

uniform data set with Nc �H2 objects.

4 APPLICATIONS OF ERFS

The first step in applying the ERF technique is to obtain the

data length distribution on each dimension. In particular, it

has been shown that such distributions, in several contexts,

can be described using mathematical models (e.g., the regal

law for spatial data [30]), while in other cases, the

distribution can always be approximated from the length

statistics of a random sample. Section 4.1 shows that

conventional spatial data sets constitute a simple instance

of the ERF application and explains, for the first time, the

reason why even though most real data sets contain objects

with various sizes, their performance can still be accurately

predicted by assuming that objects have the same extents.

Section 4.2 focuses on temporal data (including spatio-

temporal and multimedia objects), where existing analytical

methods fail, and explicitly quantifies the factors that lead

to this failure. Section 4.3 comments on the applicability of

ERFs to other access methods.

4.1 Spatial Data

We first derive the ERFs for the special case that all data

objects have the same extent. Specifically, each d-dimen-

sional rectangle has length LDi along the ith dimension

ð1 � i � dÞ, or in other words, the length distribution for

dimension ið1 � i � dÞ is step-wise: Fið�Þ ¼ 0 (if � < LDi)

and 1 (if � � LDi). ERFi can be computed by the algorithm

in Fig. 11, except that (3-3) (for EðMeÞ as in line 5 of the

algorithm) can be significantly simplified. This is because,

unlike the general case of Problem 3.1, the sorting of

I1; I2; . . . ; Ib by their starting points also implies the order of

their ending points, namely, given two intervals Ij and Ik,

Ij:s � Ik:s if and only if Ij:e � Ik:e. As a result, we have

EðMeÞ ¼ EðIm:sþ LDiÞ ¼ EðIm:sÞ þ LDi. Applying a deri-

vation similar to EðImþ1:sÞ (see Section 3.2), we have

PfIm:s � �g ¼
Xb

i¼m

m

i

� �
ðPfI:s � �gÞið1� PfI:s � �gÞb�i;

EðIm:sÞ ¼
ZL
0

� � dPfIm:s � �g
d�

d�;

ð4-1Þ

where PfI:s � �g is given in Lemma 3.1. Solving (3-2), (4-1),
and (3-4), we obtainL1 � L2 � 1=2ðLþ LDiÞ. Hence, by (3-5),
we obtain ERFi as:

ERFiðjþ 1Þ � 1=2 � ðERFiðjÞ þ LDiÞ: ð4-2Þ

When LDi is small, (4-2) becomes ERFiðjÞ � 2�j, which,
interestingly, is exactly the “coarse” form of the TS model
presented in [3]. Bohm [3] also shows that the difference
from the actual model is negligible in low-dimensional
spaces, meaning that, in this case, ERFs basically degenerate
to TS. This equation has another important implication: for
small LDi, object extents do not affect the node extents, in which
case, the performance of R*-trees can be predicted by simply
treating (rectangular) objects as points. This property is
satisfied in many real spatial data sets (containing objects
with variable but small sizes) and, therefore, the TS model,
which assumes that objects have similar sizes, can still
produce satisfactory estimation (with histograms).

Saltenis and Jensen [38] observe that scaling the
dimensions of the universe can considerably improve
query performance of R-trees, which can also be
explained with ERFs. Stepping even further, in the
sequel, we show how to use ERFs to determine the
optimal scaling that minimizes the query cost. Consider,
for example, a 2D uniform data set with N points.
Assume a query with extents q1 and q2 along the x and
y-dimensions, and that the average extents of a leaf
node are L01 and L02, respectively. The access prob-
ability for a leaf node (2-1) can be rewritten as:
q1 � q2 þ q1 � L02 þ q2 � L01 þ L01 � L02. Obviously, q1 � q2 is
not affected by node extents. Now, assume that a leaf
node splits s01 and s02 times along the x and
y-dimensions (where s01 þ s02 ¼ log2 N=f) respectively;
then, by (4-2), we have L01 ¼ 1=2S01 and L02 ¼ 1=2S02 .
Thus, it follows that L01 � L02 ¼ 1=2S01þS02 ¼ f=N , which is
also a constant. Therefore, minimizing the access prob-
ability is equivalent to minimizing q1 � L02 þ q2 � L01,
resulting in q1=q2 ¼ L01=L02, which implies that the
optimal node extent should have a similar aspect ratio to
that of the query. Assuming q1=q2 ¼ 2� > 1 (for simplicity,
consider � to be an integer), the optimal split times s01
and s02 should satisfy s02 ¼ s01 � �. Notice that this can
be achieved by simply scaling up the y-dimension 2�

times, which renders the ERFy of y-dimension to be:
ERFyðjÞ ¼ 2��j. Given that ERFx remains the same (i.e.,
ERFxðjÞ ¼ 2�j), it is easy to verify that the algorithm of
Fig. 12 indeed leads to the optimal node extents.

4.2 (Spatio)Temporal and Multimedia Data

Temporal data (including spatio-temporal and multimedia
objects) consist of 1) a temporal and 2) at least one
nontemporal dimension (e.g., salary, positions, as in Figs. 2a
and 2b). The ERFs of the nontemporal dimensions are the
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same as those for conventional spatial objects (i.e., (4-2)). As

discussed in [45], if T is the length of the history (in terms of

number of recorded timestamps) and � a positive integer

smaller than T , then the probability that an object’s lifespan

Lt (i.e., its temporal extent length) is smaller than � is

represented as (i.e., the temporal length distribution):

Ftð�Þ ¼ PfLt � �=Tg ¼
X�

i¼1

að1� aÞi�1
h i

; ð4-3Þ

where the agility a is a constant between ½0; 1� describing the

percentage of records that issue updates per timestamp. A

large agility indicates that objects’ attributes change with

high frequency (e.g., vehicle locations have higher agilities

than account balances as they are updated more often).
It has been observed [22], [7], [40] that the node extents of

R-trees indexing temporal data are usually much longer on

the time dimension than the other (nontemporal) dimen-

sions. To explain this, Fig. 13 shows the computed ERF

values (as a function of split times, obtained from the

algorithm in Fig. 11) for temporal (agility a = 1 percent,

5 percent, 20 percent, respectively, based on (4-3)) and

nontemporal (based on (4-2)) dimensions.
It is clear that the lifespan of a node decreases much

more slowly (after successive splits) than the nontemporal

dimension, implying that a split on the temporal dimen-

sions is less effective, which leads to significant overlap

between the two new nodes (after the split). Note that,

when the agility increases, the lifespans of objects become

shorter and, hence, the node extents decrease faster. In the

extreme case where the agility is 100 percent (i.e., each

object remains alive for a single timestamp), the temporal

ERF equals the nontemporal one.
In order to quantify the node extents, consider a data

set with a nontemporal and a temporal (agility 5 percent)

dimension. Assume a leaf node totally splits 12 times;

then, passing the ERF values in Fig. 13 to the algorithm

in Fig. 12, we decide that optimally a node should split

six times on both the temporal and nontemporal dimen-

sions. According to Fig. 13, the resulting extents would be

in the order of 0.1 and 0.01 on the two dimensions,

respectively (i.e., about 10 times longer on the time

dimension). Further, these values, when applied to (2-4)

together with the query parameters, produce estimates for

the corresponding query cost.

4.3 Application of ERFs to Other Structures

Although this paper focuses on R*-trees, the concept of

extent regression functions also applies to other structures,

as long as 1) Observation 3 (i.e., the min-marg rule) holds

(which essentially implies that the splitting of this structure

is “effective”), and 2) each node split is performed on one

dimension so that the extents on the other axes are not

affected. Access methods satisfying these conditions in-

clude the X-[8], A-[41], and KDB-trees [28], etc. What

distinguishes each case is the derivation of the correspond-

ing ERF based on the concrete split characteristics (in the

same way as we did for R*-trees in Section 3).
In some structures (such as the original R-tree), however,

a single split may affect the node extents on all dimensions

(e.g., by the linear or quadratic split algorithm [14]), in

which case the ERF should represent the node extent as a

function of the total number of splits ever performed on this

node (nevertheless, for each axis, there is still a specialized

ERF, based on the length distribution of objects on that

dimension). The difference from the above one-axis-split

structures is that, here the problem is no longer an

optimization issue as defined in Observation 4. The concrete

derivation, as mentioned earlier, requires a careful investi-

gation of the split algorithms, which falls out of the scope of

this paper (and is less interesting due to the inferior

performance of the original R-tree).

5 EXPERIMENTS

In this section, we experimentally evaluate the effectiveness

of the proposed method using a Pentium III 700 MHz CPU

with 256 Mbytes memory. The disk page is set to 1,024 bytes

in all cases,6 such that the node capacity of R*-trees equals

48 for 2-dimensional, and 30 for 3-dimensional spaces. We

compare our method (ERF) with the three existing

approaches discussed in Section 2, namely,

1. the TS model [46],
2. the fractal method [20], and
3. a hypothetical selectivity method, which predicts

the cost of a window query using the formulaP
i¼0�ðh�1Þdn=fiþ1e, where n is the actual number of

objects satisfying the query, f the average node
fanout, and h the height of the tree.

Note that, in practice, a selectivity prediction technique

would introduce additional error in the estimation of n and,

hence, would be less accurate than the presented results.

For each method, we measure its average relative error in

answering a workload of 200 queries with the same

parameters. If esti and acti is the estimated and actual

costs of the ith query ð1 � i � 200Þ, respectively, then the

average relative error is computed as

ð1=200Þ �
X

i¼1�200

jest� actj=act:
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Fig. 13. ERF values for temporal and nontemporal dimensions.

6. A relatively small page size combined with low data set cardinality
can also capture performance in practical situations where both values are
significantly higher.



5.1 Evaluation for Spatial Datasets

This section deals with two-dimensional data whose
attributes do not evolve with time (i.e., the context where
the previous models are derived). All the axes of the data
space have unit length. Each data set7 contains 100k
rectangles such that 1) their locations uniformly distribute
in the data space and 2) the lengths of their extents follow
uniform or exponential distributions (the extent on each
axis is generated independently). For uniform (length)
distributions, the extent length distributes uniformly in
the range ½0; LMAX�, where LMAX is a data set constant.
Exponential distributions are decided by the regal law [30],
or specifically, the probability that the area of a data MBR is
greater than a certain value � equals A��, where A is a
constant. However, unlike [30], data rectangles are not
required to have a fixed aspect ratio; instead, the lengths of
each node’s MBR on the two-axes are independently
generated.

Each query 1) is a square with the same extent length qs
(a workload parameter) on each dimension and 2) dis-
tributes uniformly in the data space. To apply TS, we need
the data set density (i.e., the parameter D in (2-3)), which is
calculated as the total area of all the data rectangles divided
by that of the data space (this is equivalent to using the
average data size to model all objects). For fractal, since
there does not exist a general technique that works for all
length distributions and types of objects (i.e., points and
rectangles), we evaluate two alternatives and report the
better result in each case. Specifically, the first method
adopts the regal law [30], while the other one ignores the
object extents and employs the method of [12] for point data
(as suggested in [1]). In both cases, we measure the fractal
dimension of a rectangle data set by using the object
centroids (the same approach was followed in [1]). In the
following experiments, the model in [12] outperforms that
in [30] in most cases. Hence, we report the performance
according to [12], unless specifically stated.

Fig. 14 shows the results for uniform length distributions.
Specifically, in Fig. 14a, we fix the query extent qs ¼ 0:05 and

vary LMAX from 0.01 to 0.2 (up to 20 percent of the data axis
length). ERF achieves high accuracy for all LMAX (maximum
error 6 percent). The performance of the other methods
deteriorates significantly as LMAX increases due to different
reasons. TS fails because the average size cannot capture the
large extent variance that occurs in case of high LMAX.
Fractal, optimized for point data, performs well only for
small rectangles (i.e., lowLMAX), so that object extents do not
bias the actual query costs considerably. Selectivity is
accurate only if most leaf nodes contribute as many
qualifying data objects as the fanout, meaning that the MBRs
of these nodes must fall inside the query window comple-
tely. A large value of LMAX increases the node MBRs and
decreases the probability for a node to fall inside the query.

Fig. 14b shows the results when fixing LMAX to the
median value 0.1 and varying the query extent qs from 0.01
to 0.09. Note that all methods improve with the query size.
This is expected because, for larger queries, 1) the query
size plays a more important role (than the node extents) in
the probability that a node is accessed (explaining the
improvement of TS, fractal, ERF) and 2) more nodes fall
completely in the query window (explanation for selectiv-
ity). ERF is again very accurate (maximum error around
7 percent) and outperforms its competitors significantly in
all cases.

Fig. 15 shows the results of similar experiments for
exponential length distributions. Fig. 15a plots the error
rates as a function of A (base of the exponential probability
function), for qs ¼ 0:05. ERF is highly accurate for all values
of A (below 5 percent error), while the other methods are
erroneous for small A, but improve as A increases. The
explanation is similar to that for Fig. 14a, given the fact that
a low value of A also leads to objects with small sizes.
Fig. 15b sets A to 4 and illustrates the error rate as a function
of the query size (the results of this experiment are obtained
using the model in [30]). As with Fig. 14b, the error of all
methods decreases for larger queries.

Recall that, to apply ERF, we first need to invoke the
algorithm of Fig. 12 in order to determine the R-tree node
extents (based on objects’ length distribution). Table 2
shows the execution time of this algorithm for the above
data sets. The processing time is less than two minutes in all
cases, and is only affected by the type of length distribution
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Fig. 14. Error for uniform length distributions (spatial data). (a) Error versus maximum data length LMAXðqs ¼ 0:05Þ. (b) Error versus query length

qsðLMAX ¼ 0:1Þ.

7. We also experimented with “conventional” spatial data [43], where the
object extentes are very small compared to the data space. The results are
omitted because, as analyzed in Section 4.1, in this case, ERF essentially
degenerates into TS, whose performance has been extensively evaluated in
[46], [47].



(i.e., it is independent of the concrete parameters of the

distributions). As discussed in Section 3.3, this processing

can be done completely offline, so that the actual overhead
to produce an estimate involves only that of evaluating (2-4)

(which is negligible).

5.2 Evaluation for Temporal and Spatio-Temporal
Data Sets

Having demonstrated the superiority of ERF for spatial data,

the remaining experiments focus on temporal and spatio-

temporal data sets, indexed by 2D and 3D R-trees,
respectively. For the temporal case, we generate time-

evolving data as follows: At the first timestamp, values of
100k search keys are uniformly generated in the range

½0; 100000�. Then, at each of the consecutive 1,000 time-

stamps, a percent (i.e., the data set agility) of the objects are
selected to produce random changes. Accordingly, a query

has two parameters: length qs along the search key

dimension and the number qt of timestamps involved. Each
workload consists of queries with the same parameters such
that, the starting point of each query’s key (temporal) range is
generated uniformly in ½0; 100000� qs�ð½0; 1000� qt�Þ. As
with Section 5.1, we compare ERF to TS, fractal, and
selectivity.

Fig. 16a shows the error rate as a function of data set
agility, setting the parameters qs ¼ 0:05 and qt ¼ 10 (time-
stamps). In Figs. 16b and 16c, the agility is fixed to
10 percent and all the methods are tested with respect to
different qs (fixing qt ¼ 10) and qt ðqs ¼ 0:05Þ, respectively.
Evidently, the previous solutions completely fail to capture
the query costs (note that the data records are 2D intervals,
parallel to the time axis, with vastly different lengths). On
the other hand, ERF performs very well in all settings,
yielding maximum error 9 percent.

In order to generate spatio-temporal data, we follow the
approach taken in [44]. Specifically, two real data sets
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Fig. 15. Error for exponential length distributions (spatial data). (a) Error versus the base of exp. function Aðqs ¼ 0:05Þ. (b) Error versus query length

qsðA ¼ 4Þ.

TABLE 2
Offline Preprocessing Time of ERF (Spatial Data)

Fig. 16. Error for temporal (two-dimensional) data sets. (a) Error versus aðqs ¼ 0:05; qt ¼ 10Þ. (b) Error versus qsða ¼ 10%; qt ¼ 10Þ. (c) Error versus
qtða ¼ 10%; qs ¼ 0:05Þ.



constitute the initial location distribution at the first time-
stamp: 1) GRC, containing poly-lines that represent 23k road
segments in Greece [50], and 2) GRM, containing
18k rectangles that represent utility network elements in
Germany [50]. Then, at each of the following 1,000 time-
stamps, a percent of the objects are selected to produce
random position changes. It is worth mentioning that, data
sets generated this way incur (slow) location distribution
changes (to uniformity) as time evolves. For both TS and
ERF, we maintain a 3D histogram (a generalized version of
the one described in Fig. 5) with H ¼ 30 (i.e., each
dimension is divided into 30 partitions). Similar to the
temporal case, each query has two parameters: 1) the spatial
extent qs (identical along the two spatial dimensions,
denoted as the percentage of the universe axis) and 2) the
temporal length qt (number of timestamps queried).
Queries’ spatial (temporal) ranges in a workload are
uniformly generated on the corresponding axes. Fig. 17
demonstrates the results for GRC and GRM.

Figs. 17a and 17d plot the error rate as a function of
agility, using query workloads with qs ¼ 0:05 and qt ¼ 10.
For Figs. 17b and 17e, a ¼ 10%, qt ¼ 10, and qs varies in the
range ½0:01; 0:09�. In Fig. 17c and 17f, a and qs are set to their
median values (10 percent and 0.05, respectively), while the
number of queried timestamps ranges between 1 and 20.
The results are consistent with that of temporal data
(Fig. 16). In all cases, our approach captures the R-tree
behavior very well, yielding errors around 10 percent, while
the other techniques again fail to predict performance.

Similar to Table 2, Table 3 shows the preprocessing time
of ERF (i.e., executing the algorithm in Fig. 12) as a function
of the agility, for the temporal and spatio-temporal data sets
examined. The overhead is the same for all data sets
because their records have the same length distributions (on
both temporal and nontemporal dimensions).

6 CONCLUSION

In this paper, we introduce the notion of the extent
regression function and develop a novel analytical frame-
work that is considerably more powerful than the previous
R-tree cost models. The merit of our technique is that it can
be easily applied for query optimization in several popular
traditional (e.g., temporal, multimedia) and emerging (e.g.,
spatio-temporal) database systems, where the existing
methods completely fail. Further, we not only present the
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Fig. 17. Error for spatio-temporal (3D) data sets. (a) Error versus aðqs ¼ 0:05; qt ¼ 10Þ for both GRC and GRM data sets. (b) Error versus

qsða ¼ 10%; qt ¼ 10Þ for both GRC and GRM data sets. (c) Error versus qtða ¼ 10%; qs ¼ 0:05Þ for both GRC and GRM data sets.

TABLE 3
Offline Preprocessing Time of ERF
(Spatial, Spatio-Temporal Data)



theory, but also demonstrate the application of ERFs in the
aforementioned scenarios, and obtain several novel insights
into the R-tree performance. Extensive experiments prove
that the proposed method provides accurate estimations in
all settings.

For the special casewhere the object extents are very small
compared to thedata space, ourmodel becomes equivalent to
that of [46], which has been widely used for conventional R-
tree applications (i.e., spatial data). Although not rigorously
proven in the paper, we conjecture that, if the data lengths
follow exponential distribution (i.e., satisfying the regal law)
anddata have fixed aspect ratio,ERFs should degenerate into
the results in [30]. However, unlike [30], which assumes that
the extents of a node are similar on all axes, our technique
leads to a different ERF for each axis, depending on the
corresponding data length distribution on that dimension.

Future work may focus on the refinement of ERFs under

various settings (e.g., in the presence of buffers [24]), and

their application in query optimization. For example, as

discussed in Section 4, ERFs can be used to decide the

optimal node extents of an index with respect to specific

query parameters and, thus, may possibly lead to the

development of new workload-aware indexes.
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