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Abstract—A range aggregate query returns summarized information about the points falling in a hyper-rectangle (e.g., the total

number of these points instead of their concrete ids). This paper studies spatial indexes that solve such queries efficiently and

proposes the aggregate Point-tree (aP-tree), which achieves logarithmic cost to the data set cardinality (independently of the query

size) for two-dimensional data. The aP-tree requires only small modifications to the popular multiversion structural framework and,

thus, can be implemented and applied easily in practice. We also present models that accurately predict the space consumption and

query cost of the aP-tree and are therefore suitable for query optimization. Extensive experiments confirm that the proposed methods

are efficient and practical.

Index Terms—Database, spatial database, range queries, aggregation.
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1 INTRODUCTION

TRADITIONAL research in spatial databases often aims at
the range query, which retrieves the data objects lying

inside (or intersecting) a multidimensional hyper-rectangle.
In many scenarios (e.g., statistical analysis, data ware-
houses, etc.), however, users are interested only in
summarized information about such objects, instead of
their individual properties. Consider, for example, a spatial
database managing the hotels in a city; a query for statistical
purposes could ask for the number of hotels in a certain
district (rather than their respective locations), or the
average rate per night of these hotels. Furthermore, in
some applications such as traffic monitoring, results of
range queries (e.g., finding all vehicles in the center) are
meaningless (due to frequent object movements), while the
aggregate information (the number of vehicles) is usually
fairly stable (i.e., approximately the same number of
vehicles enter and exit the region within a short period of
time) and measurable (e.g., through sensors across the
region [12]).

Specifically, given a set S of points in the d-dimensional
space, a range aggregate (RA) query returns a single value
that summarizes the set R � S of points in a d-dimensional
hyper-rectangle q according to some aggregation function.
Aggregation functions are divided into three classes [18]:
distributive, algebraic, and holistic. Distributive aggregates
(e.g., count, max, min, sum) can be computed by partitioning
the input into disjoint sets, aggregating each set individu-
ally and then obtaining the final result by further aggregat-
ing the partial results. Algebraic aggregates can be
expressed as a function of distributive aggregates: average,

for example, is defined as sum/count. Holistic aggregates
(e.g., median), on the other hand, cannot be computed by
dividing the input into parts. In this paper, we consider
range count queries on multidimensional data points, where
the result is the size of R (e.g., the number of hotels in an
area q), but the solutions apply to any distributive, or
algebraic (but not to holistic) aggregates with straightfor-
ward adaptation.

1.1 Motivation

A RA query can be trivially answered as an ordinary range
query, i.e., by first retrieving the qualifying objects and then
aggregating their properties. This, however, incurs signifi-
cant overhead since, intuitively, the objective is to retrieve
only a single value (as opposed to every qualifying object).
A common solution is the aggregate index, which augments a
traditional spatial access method with summarized infor-
mation in intermediate entries (as elaborated in the next
section). The most popular aggregate index is the aggregate
R-tree (aR-tree) [21], [29], [26], which outperforms tradi-
tional R-trees considerably on RA retrieval.

Aggregate processing of multidimensional objects has
also been studied theoretically, leading to several interesting
results [40], [16], [41]. As explained in the next section,
despite their attractive theoretical bounds, the proposed
methods have limited practical applicability due to several
reasons. First, the asymptotical performance may contain
(potentially large) hidden constants, which renders the
actual performance of the structure prohibitively expensive
in practice. Second, theoretical bounds are insufficient for
query optimization, which requires accurate analytical
models quantifying the actual space consumption and query
cost. Third, the resulting indexes either rely on some
restrictive assumptions, or have rather complicated struc-
tures and, thus, require considerable implementation efforts.

1.2 Contributions

We first present an asymptotical performance analysis for

the aR-tree proving that its average RA query cost is
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OððK=BÞðd
0�1Þ=d0Þ, where K is the number of points in the

query window, B the disk page size, and d0 the fractal

dimensionality [14] of the data set. It is clear that the cost

degrades as the query size increases and eventually reaches

OððN=BÞðd
0�1Þ=d0Þ, where N is the data set cardinality.

Motivated by this, we develop a new access method, the

aggregate Point tree (aP-tree), which achieves logarithmic

cost OðlogB NÞ for any query on two-dimensional data. The

aP-tree requires only small modifications of the well-studied

multiversion structure, thus incurring minimum implemen-

tation overhead.We also propose algorithms for bulkloading

and dynamically maintaining the aP-tree and derive a

probabilistic cost model that quantifies its actual space and

query overhead. Finally, we show that the combination of the

aR and aP-trees leads to an index that solves RA queries in

three (or higher) dimensional spaces efficiently.
Our discussion is based on the typical memory-disk

hierarchy, where each I/O access transfers a page of B (i.e.,
the page size) units of information from the disk to the main
memory that contains at least B2 pages (a reasonable
assumption in practice). The rest of the paper is organized
as follows: Section 2 surveys the existing techniques for
evaluating RA queries (focusing on the aR-tree) as well as
multiversion structures. Section 3 provides our asymptotical
analysis of the aR-tree, identifying its deficiencies, while
Section 4 discusses the aP-tree, including the construction/
query algorithms and the cost models. Section 5 evaluates
the proposed methods through extensive experimental
evaluation with synthetic and real data sets, and Section 6
concludes the paper with directions for future work.

2 RELATED WORK

Section 2.1 discusses the aR-tree and its analysis, while
Section 2.2 overviews other related approaches. Section 2.3
elaborates the multiversion B-tree which motivates our
solutions.

2.1 The Aggregate R-Tree (aR-Tree)

The aR-tree enhances the conventional R-tree [15], [31], [8]
by keeping aggregate information in intermediate nodes.
Fig. 1a shows an example, where for each intermediate
entry, in addition to the minimum bounding box (MBB), the
tree stores the number of points in its subtree (i.e., count
aggregate function). To answer a RA query q (the shaded
rectangle), the root R is first retrieved and its entries are
compared with q. For every entry, there are three cases:

1) The (MBB of the) entry (e.g., e1) does not intersect q and,

thus, its subtree is not explored further. 2) The entry

partially intersects q (e.g., e2) and its child node is fetched to

continue the search. 3) The entry is contained in q (e.g., e3),

in which case we simply add the aggregate number of the

entry (i.e., 3 for e3) without accessing its subtree. As a result,

only two node accesses (R and R2) are necessary, while a

conventional R-tree (i.e., without the aggregate numbers)

would also visit R3. The cost savings increase with the size

of the query, which is an important fact because in practice

RA queries often involve large rectangles (e.g., in OLAP

applications, an “all” operator [18] is equivalent to a RA

query covering the whole universe).
In order to analyze the performance of the aR-tree let us

consider the case where data points and query hyper-

rectangles distribute uniformly in the d-dimensional space

(without loss of generality, assume that each axis has unit

length). Fig. 1b shows the node MBBs of an R-tree indexing

uniform points1 and a query q. The nodes accessed by the

query are the ones whose MBB intersects, but is not

contained in, the query hyper-rectangle (white rectangles

in Fig. 1b). Let PRintrðq; oÞðPRcontðq; oÞÞ be the probability

that q intersects (contains) MBB o. Then, the access probability

PRacsðq;oÞ that a node o is visited by a query q can be

computed as:

PRacsðq; oÞ ¼ PRintrðq; oÞ � PRcontðq; oÞ: ð1Þ

Given the length oj of (the MBB of) o on the jth dimension

(1 � i � d) (similarly qj for q), Kamel and Faloutsos [23]

present the following formula for PRintrðq; oÞ:

PRintr q; oð Þ ¼
Yd
j¼1

qj þ oj
� �

: ð2Þ

PRcontðq; oÞ is solved by Jurgens and Lenz in [22]:

PRcont q; oð Þ ¼
Qd
j¼1

qj � oj
� �

if qj > oj for all dimensions j

0 otherwise:

8<
:

ð3Þ

Combining (1), (2), and (3), the access probability PRacsðq; oÞ
equals:
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Fig. 1. The aR-tree. (a) An example. (b) Cost savings compared a normal R-tree.

1. For uniform distribution, nodes at the same level of the aR-tree have
square MBBs (i.e., the length of each MBB is identical on each axis) with
similar sizes [35].



PRacs q; oð Þ ¼
Qd
j¼1

oj þ qj
� �

�
Qd
j¼1

qj � oj
� �

if qj > oj for all dimensions j

Qd
j¼1

oj þ qj
� �

otherwise:

8>>><
>>>:

ð4Þ

Let si be the edge length of a MBB at the ith level,
0 � i � h� 1, where h ¼ logBðN=fÞ is the tree height and 0
stands for the leaf level. For point data, si is given by [35]:

si ¼ min fiþ1=N
� �1=d

; 1
n o

; ð5Þ

where f is the average node fanout (i.e., number of entries
in a node), and N the data set cardinality. Since the number
of nodes at the ith level is N=fiþ1ð0 � i � h� 1Þ, the
expected number of node accesses for answering a RA
query q is given by:

CostðqÞ ¼
Xh�1

i¼0

N

fiþ1

� �
� PRacs�iðq; siÞ

� �
; ð6Þ

where PRacs�iðq; siÞ is the access probability at the ith level,
obtained from (4).

The above results can be extended to nonuniform data.
Jurgens and Lenz [22] derive the alternative PRacsðq; oÞ (i.e.,
the most important component in the above equation) for
three special distributions (but their formulae do not
generalize to other distributions). Theodoridis and Sellis
[35] propose a technique that integrates (6) with histograms
to support arbitrary distributions. Their idea is to sample
data statistics around the query region and use them to
compute the appropriate N and si before evaluating (6) (i.e.,
different queries lead to distinct N and si, and, therefore,
different estimates). Faloutsos and Kamel [14] propose
another cost model that can be applied to arbitrary data
distribution using the fractal dimensionality2 d0 of the data
set. The resulting formula is similar to (4), except that all
occurrences of d are replaced with d0. The problem of the
fractal technique is that it cannot provide a separate cost
estimate for each individual query (i.e., it can produce only
a single cost corresponding to the average query perfor-
mance), thus limiting its applicability in practice.

2.2 Other Related Approaches

Based on the SB-tree [39], Zhang et al. [40] propose the
MVSB-tree that efficiently solves a range aggregate query
on two-dimensional horizontal interval data (i.e., find the
number of intervals intersecting a query rectangle) in
OðlogBðN=BÞÞ I/Os, using OððN=BÞ logBðN=BÞÞ space.
Their idea is to transform a RA query to four “less-key-
less-time” and two “less-key-single-time” queries. The
MVSB-tree can also answer RA queries on 2D points with
the same asymptotical performance by treating each point
as a special interval with zero length. The aP-tree proposed

in this paper achieves the same time and space complexity
using a simpler transformation. Further, the MVSB-tree is
applicable only to two-dimensional spaces and its analysis
is limited only to asymptotical performance.

Zhang et al. [41] develop two versions of the ECDF-B-tree
for RA queries on rectangular objects (and hence also data
points) with different space-query time trade-offs. Specifi-
cally, for d-dimensional data, the first version consumes
OððN=BÞ logd�1

B ðN=BÞÞ space and answers a query in OðB �
logdBðN=BÞÞ I/Os, while the corresponding complexities of
the second version are OðN �Bd�2 logd�1

B ðN=BÞÞ (for space)
and OðlogdBðN=BÞÞ (for query cost). These bounds are worse
than the MVSB and aP-tree (due to the wider applicability
of ECDF-B-trees); furthermore, there is no cost model for
practical performance.

Govindarajan et al. [16] present the CRB-tree that
achieves asymptotically optimal performance (i.e., linear
space consumption and logarithmic query time) for RA
query processing. The excellent performance of the
CRB-tree, however, is based on two stringent assumptions.
First, it assumes that an integer with value v is represented
by exactly log2 v bits so that multiple integers may be
compressed into a single word, which significantly in-
creases the implementation overhead. To the best of our
knowledge, all the practical indexes (including the pro-
posed aP-tree) adopt the conventional memory model that
uses a fixed number of bytes for storing each integer.
Further, it is not clear how a float number can be
compressed without precision loss. Second, the CRB-tree
must be stored in consecutively-addressed pages (i.e., an
array), so that the address of a page to be visited can be
calculated directly (thus avoiding the cost of traversing
parent levels). If this condition is not satisfied (e.g., due to
disk fragmentation), its cost increases significantly and
eventually the tree becomes as expensive as sequential scan.
Finally, the extension of the CRB-tree to higher dimensional
spaces (see [16] for details) results in a multilayered
structure that is merely of theoretical interest.

Several papers [20], [11], [17], [10] aim at accelerating
aggregate queries in “dense” data warehouses where each
dimension i ð1 � i � dÞ contains vi discrete values, and the
data set cardinality equals (or approximates)

Q
i¼1�dðviÞ

(i.e., the cardinality is exponential to the dimensionality).
These solutions are not applicable to continuous data axes.
Furthermore, even for discrete dimensions, the cardinality
of practical data sets is usually much lower (by orders of
magnitude) than

Q
i¼1�dðviÞ [37], in which case their space

overhead is prohibitive. Finally, related work on multi-
dimensional histograms [27], [28], [3], [19] aims at efficiently
obtaining approximate aggregate results (for selectivity
estimation). In this paper, we discuss exact RA processing.

2.3 The Multiversion B-Tree (MVB-Tree)

Consider a temporal database, where data are best
described as horizontal intervals in the key-time space
[32]. In Fig. 2, for instance, intervals a1, a2, a3, and b
correspond to the balances of two bank accounts a and b
(the key axis denotes the balance amount), both of which
are created at time t0 and cancelled at t3. For account a,
there is one withdrawal at t1 and one deposit at t2, while b
remains constant (10k) during the period ½t0; t3Þ. In the
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2. The fractal dimensionality of a data set differs from the “embedding
dimensionality” (i.e., the number of axes in the data space) in that, it
describes the “intrinsic” characteristics of the distribution. For example, for
a set of 2D points on a line, its fractal dimensionality equals 1 (while its
embedding dimensionality is 2). We refer our readers to [14] for a more
detailed introduction to fractal concepts.



sequel, we represent an interval as lifespan:key, where the
lifespan indicates the validity period of the key. For example,
the lifespan of a1 is ½t0; t1Þ (excluding t1) and a1 is
represented as ½t0; t1Þ :30k. A timestamp range query qt :
½qk1; qk2� retrieves all records whose key values are in the
range ½qk1; qk2� at time qt. The query in Fig. 2 (“find accounts
whose balances at time qt are between 15k and 45k dollars”)
outputs the horizontal line segments (a3) intersecting the
vertical line segment q.

The MVB-tree [7] utilizes the multiversion framework
[13] for optimal processing of timestamp range queries in
external memory. The tree is constructed in chronological
order of the interval lifespans. Specifically, an interval is
inserted at its starting time; in Fig. 2, for example, a1 and b
are inserted at time t0 as ½t0;� Þ :30k and ½t0;� Þ :10k,
respectively, where “*” means that their lifespans progress
with time (i.e., the records are alive). On the other hand, an
interval is logically deleted at its ending time by terminating
its lifespan (i.e., the record dies, but is not physically
removed from the database). At t1, for instance, interval a1
dies and its lifespan is modified to ½t0; t1Þ.

Fig. 3 illustrates a MVB-tree (at time 3), where each entry
has the form < key; tstart; tend; pointer > . For leaf entries, the
pointer (omitted in the figure for clarity) points to the actual
record with the corresponding key value, while for inter-
mediate entries, it points to a node at the next level. The
temporal attributes tstart and tend denote the time that the
record was inserted and (logically) deleted, respectively.
For each timestamp t and every node except the roots, it is
required that either none, or at least B � Pversion entries are
alive at t, where Pversion is a tree parameter and B the node
capacity (for Fig. 3 and the following examples, Pversion ¼
1=3 and B ¼ 6). This weak version condition ensures that
entries alive at the same timestamp are mostly grouped
together in order to optimize timestamp queries. Violations
of this condition generate weak version underflows, which
occur as a result of (logical) deletions.

Insertions and deletions are carried out in a way similar
to B-trees except that overflows and underflows are
handled differently. A block overflow occurs when an entry
is inserted into a full node (already containing B records), in
which case a version split is performed. To be specific, all the
live entries of the node are copied to a new node, with their
tstart modified to the insertion time. The tend of these entries
in the original node is changed from * to the insertion time.3

In Fig. 4, the insertion of < 28; ½4;� Þ > at timestamp 4 (in the
tree of Fig. 3) causes node A to overflow. A new node D is

created to store the live entries of A, and A dies (notice that
all * are replaced by 4) meaning that it will not be modified
in the future (bold entries indicate the changes from Fig. 3).

In some cases, the new node may be almost full so that a
small number of insertions would cause it to overflow again.
On the other hand, if it contains too few entries, a small
number of deletions will cause it to underflow. To avoid
these problems, it is required that the number of entries in
the new node must be in the range ½B � Psvu; B � Psvo�, where
Psvo andPsvu are tree parameters (for the following examples,
Psvu ¼ 1=3, Psvo ¼ 5=6). A strong version overflow (underflow)
occurs when the number of entries exceedsB � Psvo (becomes
lower thanB � Psvu). A strong version overflow is handled by
a key split, a version-independent split according to the key
values of the entries in the block. Notice that the strong
version condition is only checked after a version split, i.e., it
is possible that the live entries of a node are above b � Psvo due
to subsequent insertions.

Strong version underflows are similar to weak version
underflows, the only difference being that the former
happen after a version split, while the latter occur when
the weak version condition is violated. In both cases, a
merge is attempted with the copy of a sibling node using
only its live entries. If the merged node strong version
overflows, a key split is performed. Assume that at
timestamp 4 we want to delete entry < 48; ½1;� Þ > from
the tree in Fig. 3. Node B weak version-underflows since it
contains only one live entry < 43; ½1;� Þ > . A sibling, let
node C, is chosen and its live entries are copied to a new
node C0. The inclusion of < 43; ½4;� Þ > into C0 causes strong
version overflow, leading to a key split and finally nodes D
and E are created (Fig. 5).

The MVB-tree essentially includes, in a space efficient
manner, a (logical) B-tree at each timestamp consisting of all
entries whose lifespans cover the corresponding time.
Processing a timestamp query retrieves the root of the
B-tree at the query timestamp, after which the search
proceeds like a normal B-tree, guided by key, tstart, and tend.
As shown in [7], the MVB-tree requires OðN=BÞ space,
where N is the number of data intervals and B the node
capacity, and answers a timestamp range query in
OðlogB M þK=BÞ node accesses, where M is the number
of live intervals at the queried timestamp and K is the
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3. In practice, this step can be avoided since the deletion time is implied
by the entry in the parent node.

Fig. 2. Representation of temporal data.

Fig. 3. A MVB-tree example.

Fig. 4. Example of block overflow and version split.



number of output intervals. Both the space consumption
and query performance are asymptotically optimal. A
variation of MVB-trees, which reduces the tree size by a
constant factor can be found in [36]. Notice that, the
construction algorithms of the MVB-tree (as well as the
related underflow/overflow concepts) are not specific to
B-trees, but can be applied to other conventional indexes
(e.g., R-trees) to obtain the corresponding multiversion
structures [25], [33], [24]. The performance (including space
requirements and query cost) of general multiversion
structures is studied in [34].

3 ASYMPTOTICAL PERFORMANCE ANALYSIS

OF THE AGGREGATE R-TREE

The analysis of Section 2.1 focuses on the practical query
cost of the aR-tree (i.e., in terms of node accesses), leaving
its asymptotical performance open. It can been shown [1]
that in the worst case (given some specially-designed data
sets) a RA query may access all nodes in the aR-tree,
resulting in OðN=BÞ query cost. Nevertheless, aR-trees (in
general, all the R-tree-family structures) are known to
perform well for practical data sets and have been applied
extensively in the literature. Thus, judging their quality by
its worst-case cost can be misleading. An important and
useful question should be: What is their asymptotical
performance in the expected case?

In the sequel, we answer this question by utilizing the
some of the results presented in Section 2.1. Specifically, our
goal is to rewrite (6) as a function of the data set cardinality.
For this purpose, it suffices to focus on 1) the number of leaf
nodes visited, which asymptotically dominates the overall
query cost and 2) queries whose sizes are larger than the
leaf MBBs (so that in (4), we can ignore the second case)
since their costs absorb those of smaller queries. To facilitate
the derivation, we consider queries that have the same
length (denoted as qs) on all axes (the results hold for
general queries as well).

3.1 Uniform Data Distribution

The solution for the uniform case is relatively easy by
expanding (4) (i.e., the access probability PRacs�0ðq; s0Þ of a
leaf node) as follows (by the Binomial Theorem):

PRacs�0 q; s0ð Þ ¼ qs þ s0ð Þd� qs � s0ð Þd

¼
Xd
i¼0

d

i

� �
qiss

d�i
0

� �
�
Xd
i¼0

d

i

� �
qis �s0ð Þd�i

� �
:

ð7Þ

We relate the cost to the number K of data points in the
query hyper-rectangle. Since the distribution is uniform, K

equals N � qds (where N is the data set cardinality and qds
the volume of the query hyper-rectangle), leading to
qs ¼ ðK=NÞ1=d. Further, according to (5), s0 ¼ ðf=NÞ1=d,
where f is the average node fanout. Thus, (7) can be
rewritten as:

PRacs�0 q; s0ð Þ

¼
Xd
i¼0

d

i

� �
K

N

� �i
d f

N

� �d�i
d

" #
�
Xd
i¼0

d

i

� �
K

N

� �i
d �f

N

� �d�i
d

" #

¼ 1

N

Xd
i¼0

d

i

� �
K

i
df

d�i
d

� �
�
Xd
i¼0

d

i

� �
K

i
d �fð Þ

d�i
d

� �( )
:

ð8Þ

Since the cardinality N and the fanout f are constants, (8)
is asymptotically dominated by the highest power of K
that is not canceled between the first and second
summations, namely, Kðd�1Þ=d obtained at i ¼ d� 1 (note
that the term with i ¼ d is canceled). Hence, we have:
PRacs�0ðq; s0Þ ¼ Oð 1N Kðd�1Þ=dB1=dÞ. Given that there are
totally N=f leaf nodes, the number Cost0ðqÞ of leaf
accesses is

N

f
�PRacs�0ðq; s0Þ¼

N

f
O

1

N
Kðd�1Þ=dB1=d

� �
¼ OððK=BÞðd�1Þ=dÞ

(applying f ¼ OðBÞ).
This result leads to several interesting observations. First,

although a RA query does not retrieve the points inside the

query hyper-rectangle, the number K of such points

actually determines the query cost. Particularly, the cost

monotonically increases with the query size (larger queries

incur higher K), eventually reaching OððN=BÞðd�1=dÞÞ,
which can be prohibitive in practice. This is disappointing

because the aR-tree was originally motivated by the need to

efficiently process large queries (recall that its performance

is similar to that of the normal R-tree for small queries).

Second, the benefit of the aR-tree decreases as the

dimensionality increases; for high d, the complexity

approaches that of a simple sequential scan when K ¼
OðNÞ (i.e., large queries).

3.2 Arbitrary Data Distribution

A similar result holds for any data distribution, except that
d in OððN=BÞðd�1=dÞÞ will become d0, i.e., the data set’s
fractal dimensionality. To prove this, as before, we need to
rewrite (6) as a function of the data set cardinality, which,
however, is more complex because, since d0 is not an
integer, an expansion similar to that of (7) no longer holds.4
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Fig. 5. Example of weak version underflow.

4. Although the Binomial Theorem also applies to real exponents
(leading to a series), the application of the theorem here would require a
lengthy discussion on the convergence of the resulting series.



In the sequel, we provide a proof utilizing the Maclaurin

expansion.
We start with a few preliminaries. First, it is well

known that the fractal dimension d0 must be in the range

½1; d� [14]. Second, a query with extent qs on each

dimension retrieves on average K ¼ N � qd0s points [6], so

that qs ¼ ðK=NÞ1=d
0
. Assuming large data sets (i.e., high N)

and large queries (particularly, the number K of points in

q should be at least B), then qs is longer than the leaf node

extent s0 ¼ ðf=NÞ1=d
0
(as in (5)). The goal is to establish

N
f � PRacs�0ðq; s0Þ ¼ OðK=BÞðd

0�1Þ=d0 . Towards this, we have:

N

f
PRacs�0 q; s0ð Þ ¼ N=fð Þ qs þ s0ð Þd� qs � s0ð Þd

h i

¼ N=fð Þ K=Nð Þ1=d
0
þ f=Nð Þ1=d

0
h id0

� K=Nð Þ1=d
0
� f=Nð Þ1=d

0
h id0� �

¼ K=fð Þ1=d
0
þ1

h id0
� K=fð Þ1=d

0
�1

h id0
¼ O K=Bð Þ1=d

0
þ1

h id0
� K=Bð Þ1=d

0
�1

h id0� �
:

ð9Þ

Our objective now is to prove

½ðK=BÞ1=d
0
þ 1�d

0
� ½ðK=BÞ1=d

0
� 1�d

0
¼ OðK=BÞðd

0�1Þ=d0 :

Dividing both sides with K/B, this equation is equivalent to

½1þ ðB=KÞ1=d
0
�d

0
� ½1� ðB=KÞ1=d

0
�d

0
¼ OðB=KÞ1=d

0
:

Let t¼ðB=KÞ1=d
0
; then, the target is to prove ð1þ tÞd

0
� ð1�

tÞd ¼ OðtÞ as t ! 0, i.e., K approaches N (which is a large

number). Further, recall that K � B, so 0 � t � 1. By the

Maclaurin expansion,

ð1þ tÞd
0
¼ 1þ d0 � tþ ½d0 � ðd0 � 1Þ=2 � ð1þ t�Þd

0�2� � t2;

and

ð1� tÞd ¼ 1� d0 � tþ ½d0 � ðd0 � 1Þ=2 � ð1� t��Þd
0�2� � t2;

where t� and t�� are some values in ½0; t�. Notice that, for t�

and t�� in ½0; 1�,

ð1þ t�Þd
0�2 � ð1� t��Þd

0�2 ¼ Oðmaxf1; 2d0�2Þg ¼ Oð1Þ:

Therefore, ð1þtÞd
0
� ð1� tÞd ¼ 2 � d0 � tþOðt2Þ ¼ OðtÞ (since

Oðt2Þ ¼ OðtÞ for t ! 0); thus, completing the proof. We

close this section with the following theorem.

Theorem 1. Given a set of N points whose fractal dimensionality
is d0, the average query performance of the aR-tree is
OðN=BÞðd

0�1Þ=d0 , where B is the disk page capacity.

Motivated by the large query cost of the aR-tree, in the
next section, we propose the aP-tree, which achieves
logarithmic cost at the expense of higher space consump-
tion. Compared to other existing structures for RA-queries,
such as the MVSB-tree and the CRB-tree, the aP-tree is
simpler to implement since it requires only marginal
changes to the popular multiversion framework and does
not make stringent assumptions about the memory storage.

4 THE AGGREGATE POINT-TREE (aP-TREE)

Starting with two-dimensional data, Sections 4.1 and 4.2
describe the basic idea behind the aP-tree, and its concrete
(construction and query) algorithms, respectively.
Section 4.3 provides a detailed analysis on the (asympto-
tical and practical) performance of the new structure, and
Section 4.4 focuses on techniques making the aP-tree
dynamic. Finally, Section 4.5 generalizes the solution to
higher dimensionalities.

4.1 Overview

Let us consider the 2D universe, where the range of the x-
(y-)dimension is ½0; X� (½0; Y �). We convert each data point
(px; py) to a horizontal interval ½px;X�:py (adopting the
interval representation of Section 2.3) with x-(y-)projection
½px;X� (py). Fig. 6a shows the points used in Fig. 1a and
Fig. 6b illustrates the transformed intervals. If we consider
the x-(y-)axis as the time (key) dimension, each interval
½px;X�:py in Fig. 6b can be regarded as a record in the key-
time space with key py and lifespan ½px;X�. Particularly, the
lifespans of all intervals terminate at the maximum time-
stamp X (i.e., corresponding to “*” in Section 2.2). In the
sequel, we use the x-y and key-time notations interchange-
ably, whichever is more convenient.

We represent a 2DRAquery rectangle q as ½qx0 ;qx1 �:½qy0 ;qy1 �,
denoting its ranges on both dimensions. As shown in Fig. 6b,
the number of points in q, equals the number of intervals that
intersect the vertical line segment q1 (i.e., the right boundary
of q represented as qx1 : ½qy0 ; qy1 �), but not q0 (i.e., the left
boundary represented5 as ! qx0 : ½qy0 ; qy1 �). Thus, a RA query
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Fig. 6. Reduction of range aggregate to vertical range aggregate. (a) Original points and query. (b) Converted intervals and queries.

5. The symbol ! indicates that the x-coordinate of q0 infinitely
approaches (but does not equal) x0 from the left. This distinction is
necessary to include points on the left boundary of the query rectangle q.



is reduced to two vertical range aggregate (VRA) queries q1
and q0. Specifically, in the key-time space, q1 ¼ qx1 : ½qy0 ; qy1 �
retrieves the number qN1

of intervals that start before or at
timestamp qx1 , and their keys are in the range ½qy0 ; qy1 �.
Similarly, q0 ¼! qx0 : ½qy0 ; qy1 � returns the number qN2

of
intervals that start before (but not at) timestamp x0. The
result of the original RA query equals qN2

� qN1
.

A VRA query resembles the timestamp range query,
optimally solved by the MVB-tree, except that here we are
interested only in the aggregate number, instead of the
concrete points (or intervals in the key-time space). This fact
differentiates query processing and, therefore, affects the
corresponding index structure. In the next section, we show
how the aP-tree avoids the retrieval of the intervals
intersecting q1 and q0, as well as, the expensive computation
of their set difference.

4.2 Algorithms of the aP-Tree

Similar to the multiversion B-tree, the entry format of the
aP-tree is < y; ½xstart; xendÞ; agg; pointer > , where

y; ½xstart; xendÞ; pointer

correspond to the fields key; ½tstart; tendÞ; pointer in the MVB-
tree, respectively. For a leaf entry (representing a data
point), the additional field agg equals 1 for the count
aggregate;6 for an intermediate entry, it denotes the number
of leaf entries in its subtree alive in ½xstart; xendÞ. In the
sequel, we refer to the fields y and ½xstart; xendÞ of each entry
as its key and lifespan, respectively. Fig. 7a illustrates a
simple example (omitting agg and pointer of leaf entries) for
seven points at coordinates (1,5), (1,8), (1,13), (1,25), (1,27),
(1,39), (5,43), assuming node capacity of six. The leaf entry
< 5; ½1;� Þ > in node A, for example, refers to the horizontal
interval ½1; X� :5 transformed from point (1,5). The inter-
mediate entry < 5; ½1; 5Þ; 6; A > implies that there are six
entries in node A, which are alive in interval ½1; 5Þ and

whose keys are at least five. Fig. 7b shows the equivalent
tree where the leaf entries are represented in ðpx; pyÞ format.
Notice that some points (e.g., (1,5), (1,25)) are replicated in
multiple nodes by the tree construction algorithms dis-
cussed below.

4.2.1 Tree Construction

As with MVB-trees, the transformed intervals are inserted
into an aP-tree in ascending order of their starting time-
stamps, i.e., the x-coordinates of the original data points (an
external sorting is necessary to achieve this order). An
important difference is that no (logical) deletion is necessary
in aP-trees and the lifespans of all the leaf intervals
terminate at the maximum timestamp X. Consequently,
the number of live entries in any node keeps increasing
until it dies, and weak/strong version underflows never
happen. Thus, the aP-tree has only a single parameter Psvo

(no parameters Pversion and Psvu), which denotes the strong
version overflow threshold.

Insertion is similar to that in MVB-trees except that it
may be necessary to duplicate intermediate entries on the
path. As an example, assume that an interval < 55; ½10;� Þ >
(equivalently, point (10,55)) is inserted into the tree in Fig. 7.
First, the leaf node (i.e., C) that accommodates the new
entry is identified (following the intermediate entry
< 25; ½5;� Þ; 4; C > ). Then, as shown in Fig. 8a, the following
changes are applied to the root node: 1) A new entry is
duplicated from < 25; ½5;� Þ; 4; C > with, however, its xstart

set to 10, and its agg incremented by one (to 5) and 2) entry
< 25; ½5;� Þ; 4; C > dies, having its xend modified to 10. Such
entry duplication is necessary for the aP-tree (but not for the
MVB-tree) to ensure that the agg field correctly reflects the
aggregate result during the entry’s lifespan ½xstart; xendÞ. In
general, duplication is required when the xstart of the
intermediate entry is smaller than that of the interval being
inserted. Fig. 8b shows the aP-tree after the insertion of
interval < 60; ½10;� Þ > , where no new intermediate entry is
spawned (but the agg of the parent entry of C is
incremented to six).

TAO AND PAPADIAS: RANGE AGGREGATE PROCESSING IN SPATIAL DATABASES 1561

6. For count, the agg field can be omitted for leaf nodes. In case of the sum
aggregate function, agg stores the weight of the point (leaf nodes), or the
sum of the weights in the corresponding subtree (for intermediate nodes).

Fig. 7. An aP-tree. (a) Example. (b) Alternative representation.

Fig. 8. Insertions that do not trigger overflows. (a) Duplication of an intermediate entry is necessary. (b) Duplication is not necessary.



An overflow of a leaf node always triggers a strong
version overflow and is handled in the same way as the
MVB-tree. Specifically, all the entries in the overflowing
node are version copied to a new node, which is then split
into two using a key split. Fig. 9 illustrates an example,
where < 40; ½15;� Þ > is inserted into the full node C in the
tree of Fig. 8b, causing it to overflow. All the entries in C are
copied to a new node (with their tstart set to 15), which splits
into node D and E. The parent entry of C dies and two
entries are added into the root node pointing to D and E,
respectively. Due to the absence of logical deletions, the xend
fields of leaf entries are never modified (i.e., they always
remain “*”), which means that they do not need to be
actually stored. Fig. 9 shows the final aP-tree after inserting
intervals < 65; ½15;� Þ > and < 70; ½15;� Þ > (as with Fig. 8,
no intermediate duplication is necessary).

An overflow of an intermediate node is processed in the
same way as the MVB-tree; specifically, a new node is
created through a version split, after which a key split is
performed if the number of leaf entries exceeds B � Psvo,
where B is the node capacity and Psvo is the strong version
overflow threshold. The complete insertion algorithm is
summarized in Fig. 10.

4.2.2 Bulkloading the aP-Tree

Motivated by the buffer-tree technique, proposed in [2] and
later refined in [9], we present a bulkloading algorithm for
the aP-tree by associating each node with a constant
number of pooling disk pages (for the following examples,
we assume the number is 1 and each pooling page can
contain up to six entries). The idea is to “stall” insertions in

the pooling pages (of various parts of the tree) and, then,
process entries of a full pooling page in a batched manner.
We illustrate this by bulkloading the data points (i.e.,
intervals) of Fig. 9 (recall that the entries of the tree in Fig. 9
correspond to 12 points). The first six intervals (i.e., in
node A) are inserted into the (initially empty) root. Since the
node capacity is six, incremental insertion of the next
interval < 43; ½5;� Þ > would incur an overflow, leading to a
strong version overflow and a tree with two levels, thus
doubling the costs of subsequent insertions. Instead, the
bulkloading algorithm simply places the new interval in the
pooling page of the root (i.e., stalling the insertion process).

Fig. 11a shows the tree after stalling the subsequent five
intervals in the same way. Note that each “stalling”
requires accessing only one (pooling) page, in contrast to
the tree-height cost of the incremental algorithm. The
insertion processes in a pooling page are ”resumed” when
the page gets full, as is the case in Fig. 11a. The first
pooled entry < 43; ½5;� Þ > triggers a strong version over-
flow in the root. This is handled in the same way as
incremental insertion: creating a new root and two leaves
B;C (resulting in the same structure as in Fig. 7a, where
node A corresponds to the root in Fig. 11a). Then, the
algorithm decides, for each remaining entry in the pool,
which of the two leaves will accommodate it (in this case
node C for all entries). C is loaded only once and
accommodates < 55; ½10;� Þ > and < 60; ½10;� Þ > before it
gets full. Thus, the other three entries (from the pool of the
root) are stalled again, but this time in the pooling page of
C, as in Fig. 8b. The pool of the root is now empty; if there
were more records, they would be simply stalled there.
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Fig. 9. Overflow of leaf node C.

Fig. 10. The aP-tree insertion algorithm.



In our example, there is no more data and, thus, the
insertions pooled at C are resumed. As before, the first
entry < 40; ½15;� Þ > in the pool triggers a structural change
(strong version overflow of C) which is handled as in Fig. 9,
creating leaf nodes D and E. Then, the algorithm decides
the leaf nodes that will include the other two pooled entries;
in this example, both of them should be inserted to E, which
is loaded once to complete the whole construction. The final
tree has exactly the same structure as in Fig. 9. Compared to
incremental insertion, the above bulkloading algorithm
retrieves the nodes affected by multiple insertions only
once, leading to smaller amortized overhead.

4.2.3 VRA Query Algorithm

As discussed in Section 4.1, the aP-tree answers a RA query
½qx0 ; qx1 � : ½qy0 ; qy1 � using two VRA queries q1 ¼ qx1 : ½qy0 ; qy1 �
and q0 ¼! qx0 : ½qy0 ; qy1 �. The processing of q1 starts by
locating the corresponding aggregate B-tree for qx1 (recall
that an aP-tree includes a logical aggregate B-tree at every
x-coordinate), after which the search is guided by the keys
and lifespans of intermediate entries. For example, in Fig. 9,
to answer the VRA query 15:[25,45], we only consider the
root entries whose lifespans include 15; thus, entries a, c, d
are eliminated immediately. Among the remaining entries,
we purge b because the keys in its subtree are in the range
[5,25) (25 is inferred from the key value of e), which does
not intersect the query y-range [25,45]. For entry e, whose
key-range [25,43] is covered by [25,45], it suffices to simply
add its agg value (i.e., 6) without accessing its subtree. We
only need to descend those entries (e.g., f) whose key-
ranges [43, 1] partially intersects [25,45]. In this case, the
algorithm only visits one leaf node D where all four
intervals intersect the query, leading to the final answer
6þ 4 ¼ 10. The processing of VRA query q0 ¼! qx0 : ½qy0 ; qy1 �
is the same, except that intervals starting at qx0 should be
excluded. As an example, consider the query ! 15: ½25; 45�.
After retrieving the corresponding root node, we eliminate
entries (a, c, e, f) that start at or after 15. Then, the
processing proceeds as in the previous case by examining
the key-ranges of the entries. Finally, the result 4 is returned
by visiting leaf node C.

An important observation is that, in the worst case, a
VRA query can be answered by visiting two paths from the
root to the leaf level of a logical B-tree. This is because, at
each intermediate level, the key-ranges of the entries alive at
any x-coordinate (e.g., x ¼ 15 in the query example above)
are continuous and disjoint. Consequently, there can be at
most two key-ranges partially intersecting the y-range of
the query (enclosing the starting, or ending point of the

range). The key-ranges of the other entries are either
contained by (in which case their agg fields are simply
added) or disjoint with the query y-range (in which case
their subtrees are not visited). Therefore, the number of node
accesses of a RA query is at most four times the height of the
B-tree (two times for each q1 and q0).

4.3 Performance Analysis

We divide our analysis into two parts, focusing on the
asymptotical and practical performance, respectively. Our
derivation uses the symbols listed in Table 1.

4.3.1 Asymptotical Performance

We first analyze the asymptotical space consumption of the
aP-tree. Recall that a node is created from a version split
and dies by generating another version split (which spawns
a new node). When a node is created, it is guaranteed to
contain fewer than Psvo �B entries (where Psvo is the
threshold for strong version overflow and B the node
capacity); otherwise, a strong version overflow occurs and a
key split is performed. It follows that a node will generate
the next version split by receiving at least (B� Psvo �B)
insertions after its creation. Let N0 be the number of leaf
nodes. Since each insertion will create only one entry in a
leaf node, we have:

N0 � ðB� Psvo �BÞ � N ) N0 �
N

ð1� PSVOÞB
¼ O

N

B

� �
:

For a node at higher levels, the number of new entries
created by an insertion is at most 2, corresponding to the
two parent entries for the new nodes created at the next
level (through strong version overflows). Hence, an inter-
mediate node dies after at least (B� Psvo �BÞ=2 insertions.
Assuming that the number of nodes at level i isNi, we have:

Ni � ðB� Psvo �BÞ=2 � N ) Ni �
2N

ð1� PSVOÞB
¼ O

N

B

� �
:

Since every node contains at leastPsvo � B=2 ¼ OðBÞ entries at
each point during its lifespan, the height of any B-tree
is OðlogBðN=BÞÞ. Therefore, the space complexity7 of the
aP-tree is OððN=BÞ logBðN=BÞÞ nodes in the worst case.
Furthermore, since, as with conventional B-trees, each
insertion incurs at most 2 logB N node accesses, the aP-tree
can be incrementally constructedwithOðN logBðN=BÞÞ node
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Fig. 11. Bulkloading the aP-tree using pooling pages. (a) After inserting 12 entries. (b) After processing the entries pooled in root.

7. The aP-tree consumes more space than the MVB-trees OðN=BÞ due to
entry duplication that occurs in the aP-tree when the xstart of an
intermediate entry is smaller than the xstart of the interval being inserted,
as shown in Fig. 8.



accesses, which also dominates the cost of the preprocessing

sorting step. Applying the analysis in [2], [9], we can show

that the aP-tree can be bulkloaded in OððN=BÞ logBðN=BÞÞ
using the buffer-tree technique of Section 4.2. Answering a

VRA query involves visiting at most two paths from the root

of an aggregate B-tree to the leaf level, i.e., 2 logB N ¼
OðlogBðN=BÞÞ node accesses in the worst case. Given that, a

WA query is transformed into two VRA queries, a RA query

can also be answered in OðlogBðN=BÞÞ node accesses in the

worst case.

Theorem 2. A RA query for two-dimensional points can be

answered in OðlogBðN=BÞÞ query time by building an aP-tree

consuming OððN=BÞ logBðN=BÞÞ space that can be incre-

mentally constructed in OðN logBðN=BÞÞ node accesses, or

bulkloaded in OððN=BÞ logBðN=BÞÞ time.

4.3.2 Cost Models for aP-Trees

Next, we analyze the practical performance of the aP-tree,

aiming at quantifying the tradeoff between its size

consumption and query response time. It is worth mention-

ing that the performance analysis of multiversion structures

in [34] is not applicable here because it assumes an equal

number of insertions and (logical) deletions (while the

aP-tree does not involve deletions). We start by estimating

the size of the aP-tree, considering the general case where

all points have different x-coordinates. Let the live fanout fl
of a leaf node be the average number of entries in the node

alive at an x-coordinate during the node’s lifespan.

Similarly, fnl represents the live fanout of an intermediate

node. For example, in node C of Fig. 9, there are four entries

alive at x ¼ 5 and six at x ¼ 10. So, the live fanouts of C are

3 and 4, respectively, at these two x-coordinates. Note that

leaf and intermediate nodes are distinguished because their

entry formats are different.
The number of live nodes at some x-coordinate increases

due to key splits. Recall that when an overflow occurs at the

leaf level, the new leaf node will always be key split, while,

for intermediate levels, key splits happen only when the

number of entries in the new node exceeds the strong

version overflow threshold B � Psvo. To distinguish this, we

define the split point SPl of a leaf node as the number of

entries it contains when being key split. Similarly SPnl

corresponds to the split point of an intermediate node. If Bl

and Bnl are the block capacities of leaf and intermediate

nodes, respectively, we have:

SPl ¼ Bl and SPnl ¼ Bnl � Psvo: ð10Þ

As shown in [38], the fanout of a B-tree is ln2 times the split
point of a node. Hence, in our case, the relation between live
fanouts and split points is:

fl ¼ SPl � ln2 and fnl ¼ SPnl � ln2: ð11Þ

An aP-tree consists of multiple logical (aggregate) B-trees;
trees corresponding to larger x-coordinates index more
intervals and hence have higher heights. The height h of the
logical B-tree at the largest x-coordinate is:

h ¼ 2þ logfnl
N=fl
SPnl

	 

: ð12Þ

If Ni is the total number of nodes at level i, the size of an
aP-tree is:

SizeaP ¼
Xh�1

i¼0

Ni: ð13Þ

The estimation for N0, the total number of leaf nodes, is
relatively easy, observing that the only type of structural
change at the leaf level is a version split followed by a key
split. Therefore, each version split 1) increases the total
number of nodes by two and 2) the number of live nodes by
one. Notice that, after all the insertions are complete, the
number of live nodes is N=fl; thus, the total number of leaf-
level version splits is Vl ¼ n=fl � 1. Hence, we have:

N0 ¼ 2Vl þ 1 ¼ 2N=fl � 1: ð14Þ

A similar analysis, however, does not apply to the
estimation for Ni of intermediate levels because key splits
do not always happen after version splits. Furthermore,
note that higher levels will appear only after a sufficient
number of insertions. In the sequel, we say that the level-up

point (LuP) for level i is Li, if this level appears after Li

insertions. Since a new level appears when the previous
root at the lower level strong version overflows, the
estimation for Li (i � 1) is as follows:

L1 ¼ SPl and Li ¼ fl � fi�2
nl � SPnl ð1i � h� 1Þ; ð15Þ

where SPl, SPnl and fl, fnl are split points and live fanouts
for leaf and intermediate nodes, respectively. Next, we
focus on N1 before generalizing to higher levels. Since no
two points have the same x-coordinate, an entry will be
duplicated in every intermediate node along the insertion
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path. Therefore, the total number of insertions at each level
is also N . This estimation excludes the inserted entries due
to strong version overflows, which is not a problem because
the number of strong version overflows is considerably
lower than N ; thus, omitting them will not bias the results
significantly.

Recall that a node already contains a number of entries
(version copied from the previous node) when it is created.
Further, this number equals the number of live entries in the
previous node. Since the average live fanout of intermediate
nodes is fnl, it follows that a node contains fnl initial entries.
Therefore, a node will, on the average, take ðBnl � fnlÞ
entries before it dies. However, the live fanout applies only
to nodes other than roots of logical trees (i.e., for N1, it
applies after level 2 has appeared). Hence, the number of
level 1 nodes, created after the LuP L2, can be estimated as
ðN � L2Þ=ðBnl � fnlÞ, where L2 is given in (15).

At any time between LuPs L1 and L2, there is only one
live node at level 1, which is the root of the logical tree. The
live entries in the root increase gradually from 2 (when level
1 appears) to SPnl (when level 2 appears). It follows that on
the average, ðL2 � L1Þ=ðSPnl � 2Þ insertions are performed
before the live entries in the root increase. For each value of
j, by the same analysis as above, the number of newly
created nodes is

L2 � L1ð Þ= SPnl � 2ð Þ
Bnl � jð Þ ;

thus, we have the following estimation for Nl:

N1 ¼
XSPnl

j¼2

L2 � L1ð Þ= SPnl � 2ð Þ
Bnl � j

" #
þ N � L2

Bnl � fnl
: ð16Þ

Similar analysis also applies to higher levels, except level
h� 1. In general, we have:

Ni¼
XSPnl

j¼2

Liþ1�Lið Þ= SPnl�2ð Þ
Bnl�j

" #
þN�Liþ1

Bnl�fnl
ð1� i�h�2Þ:

ð17Þ

Now, it remains to clarify the estimation of Nh�1, which is
different from the other intermediate levels on two aspects:
1) There is no LuP for the higher level. 2) The number of live
entries in the root node increases up to dN=ðfl � fh�2

nl Þe.
Following the analysis of Ni,

Nh�1 ¼
XN=ðfl�fh�2

nl
Þd e

j¼2

N � Lh�1ð Þ= N=ðfl � fh�2
nl Þ

� �
� 2

� �
Bnl � j

: ð18Þ

Replacing variables in (13) correspondingly with results in
(10) to (18), we obtain the cost model that predicts the
structure size of the aP-tree. In this paper, we assume that
each disk page corresponds to one structure node; hence,
the model also gives the number of pages required by an
aP-tree. It is straightforward to extend the equation to the
general case where a node corresponds to multiple disk
pages. The estimation for query costs is relatively simple.
As discussed in the previous section, processing a VRA
query involves visiting at most two paths from the root to
the leaf level of a B-tree. Since the two paths start from the

root node of the same logical B-tree, the number of node
accesses in answering a VRA query is at most:

CostaP�VRA ¼ 2h� 1 ¼ 3þ 2 logfnl
N=fl
SPnl

	 

: ð19Þ

Thus, the cost of answering a RA query (i.e., two VRA
queries) is given by (20). The formula involves a very low
constant value irrespective of the sizes and positions of the
queries.

CostaP�RA ¼ 2CostaP�VRA ¼ 6þ 4 logfnl
N=fl
SPnl

	 

: ð20Þ

4.4 Making the aP-Tree Dynamic

As mentioned in Section 2.3, the multiversion framework
does not support insertions to the “history.” As a result, the
aP-tree allows only insertions in ascending order of data
points’ x-coordinates. If this is not true (i.e., in practice, new
points do not necessarily arrive in this order), the aP-tree
becomes static. When there are no deletions (all points ever
inserted will exist forever), we can make the aP-tree
(semi)dynamic using the external logarithmic method [5], a
general technique that enables insertions to a static index. In
the fully dynamic scenario (i.e., with deletions), however,
the logarithmic method is inapplicable as it requires the
original structure to support deletions, which is not true for
the aP-tree (and the multiversion framework in general).

To solve this problem and make the aP-tree fully
dynamic, we propose the double logarithmic method. Given
an initial data set with N points, at the initial step, we create
logB N aP-trees (denoted as I1; I2; . . . ; IlogB N and collectively
referred to as a structure set) in the same way as the
logarithmic method, so that the number jIij of points in the
ith ð1 � i � logB NÞ tree is no more than Bi points. The
insertion of each point involves 1) identifying the jth tree
such that j is the smallest integer satisfying

Pj
i¼1 jIij � Bj,

2) discarding all the structures I1; I2; . . . ; Ij, and 3) building
a new Ij from the points in the discarded structures using
the bulkloading algorithm of Section 4.2 in

OðBj=B logBðN=BÞÞ ¼ OðBj�1 logBðN=BÞÞ

I/Os (after this step, I1; I2; . . . ; Ij�1 become empty). Since we
move at least

Pj�1
i¼1 jIij > Bj � 1 (recall the way j was

chosen) points to Ij, the amortized construction cost per
point becomes OðlogBðN=BÞÞ I/Os. Further, given the fact
that, a point is always moved to a tree with larger subscript
(i.e., moved at most OðlogBðN=BÞÞ times), the total insertion
overhead per point is Oðlog2BðN=BÞÞ.

Insertions after the initial step are performed in exactly
the same way except that we keep the total number NI of
insertions (to be used later). To delete a point p, instead of
removing it from the structure set fI1; I2; . . . ; IlogB Ng (as is
the case for the original logarithmic method), we actually
insert it to another structure set, which also contains logB N
aP-trees D1; D2; . . . ; DlogB N , in the same way as described
earlier for Ii. Therefore, the total deletion overhead per point
is Oðlog2BðN=BÞÞ. We also keep track of the total number ND

of deletions. Finally, when NI þND ¼ N=2, we destroy all
the trees and perform a global rebuilding [5] with the
remaining points, i.e., those that are present in Ii but not in
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Di (note that these points can be easily maintained by a
separate B-tree on their IDs). Specifically, we create a single
aP-tree IlogB N , which needs OððN=BÞ logBðN=BÞÞ I/Os and,
thus, charging each of the ðN=2Þ insertions/deletions
Oðð1=BÞ logBðN=BÞÞ ¼ Oðlog2BðN=BÞÞ I/Os.

Given a query, we first obtain the partial result PIi from

each Ii, and PDi from eachDið1 � i � logB NÞ and compute

the final result as
P

i PIi �
P

i PDi. Since querying each tree

costs OðlogB N=BÞ, the total cost is Oðlog2BðN=BÞÞ. Notice

that, the result is correct even if a single point is inserted/

deleted multiple times, in which case there will be multiple

copies in Ii andDi. Finally, the double logarithmic method is

general and applies to all problems satisfying the following

property: The problem is decomposable [5] and the final result

can be obtained from the partial ones from the insertion/

deletion set inOð1Þ time.8 For instance, this technique can be

applied to make the MVSB-tree [40] fully dynamic. We close

the section with the following theorem that summarizes the

update and query cost of dynamic aP-trees.

Theorem 3. Given N 2D points, a dynamic aP-tree consumes
OððN=BÞlogBðN=BÞÞ space, can be incrementally maintained
in amortized Oðlog2BðN=BÞÞ I/Os per insertion/deletion and
answers a RA query Oðlog2BðN=BÞÞ I/Os.

4.5 Three-Dimensional Aggregate Trees

The aR-tree can be used for any dimensionality d, however,
suffering from the high query cost, which increases with d
as explained in Section 2.1. In order to alleviate the problem,
we develop a 3D structure that combines the properties of
aP and aR -trees. Fig. 12 motivates the concept; a 3D point
(x, y, z) can be thought of as an interval whose x-projection
is ½x;X� (X is the maximum x-coordinate), and whose
projection onto the y-z plane is point ðy; zÞ. Accordingly, a
RA query q is still reduced to two VRA queries q0; q1 each of
which retrieves the number (2 and 4 for q0; q1, respectively)
of data intervals crossing a 2D rectangle vertical to the
x-axis. The output of q equals the difference (i.e., 2) of the
results of q0; q1. Thus, we can solve the problem by
maintaining a (logical) structure (e.g., the aR-tree or the
2D aP-tree) optimized for 2D RA search at every
x-coordinate in the 3D space.9 The various logical structures
are managed by the modified multiversion framework of
the aP-tree, which permits aggregate retrieval. Particularly,
if the x-coordinate of the new point is larger than the
starting timestamp of an intermediate entry on the insertion
path, the entry is duplicated and its aggregate number
incremented.

As the logical structure at each timestamp, we adopt
the 2D aR-tree because deploying 2D aP-trees leads to a
complex multilayered structure that is less interesting in
practice. The performance analysis of the resulting 3D tree
follows that of the previous sections. First, its space complex-
ity is OððN=BÞ logBðN=BÞÞ, and it can be bulkloaded in

OððN=BÞ logBðN=BÞÞ I/Os, where N is the data set cardin-

ality and B the node capacity. Its asymptotical query cost is

identical to that of the 2D aR-tree, or specificallyOððN=BÞ1=2Þ
I/Os. Using the double logarithmic technique presented

in the previous section, the 3D tree can be made fully

dynamic, supporting insertions and deletions in amortized

Oðlog2BðN=BÞÞ I/Os per operation, while degrading the

search performance to OððN=BÞ1=2 logBðN=BÞÞ. Regarding
practical cost, the space consumption can also be computed

using (13) (applying (14) to (18)), and the number of node

accesses in processing a 3DRAquery is (atmost) twice that of

a 2D aR-tree, which is represented in (6). The same technique

can be applied for higher dimensions, i.e., a d-dimensional

aggregate tree can be obtained by a multiversion ðd�
1Þ-dimensional aR-tree, using our framework for converting

an aggregate index into its multiversion counterpart. The

resulting structure improves the d-dimensional aR-tree by a

factor of OððN=BÞ1=½dðd�1Þ�ÞÞ, but obviously the cost savings

decrease with d.

5 EXPERIMENTS

In this section, we compare the performance of aP and

aR-trees using synthetic and real data sets in two and three-

dimensional spaces (all axes are normalized to unit length).

Since we deal with the count aggregate, we only keep

aggregate information at intermediate levels. For aP-trees,

the xend field of a leaf entry (i.e., the ending timestamp of

its lifespan) is not stored (as discussed in Section 4 it is

always *). The aR-implementation is based on the R*-tree

[8]. The page size is set to 4k bytes, so that the leaf and

intermediate node capacities of the aP-tree are 255 (204) and

204 (127), respectively, in the 2D (3D10) space. The

corresponding numbers for aR-trees are 255 (204) and 170

(127). The Psvo parameter of the aP-tree is set to 0.5 in all

cases, i.e., a version split is followed by a key split if the new

node is at least half full. Performance is measured as the

average number of node accesses (NA) in answering a

workload of 500 RA queries. Each query hyper-rectangle in

the workload has the same length qL on each dimension and

its location follows the data distribution.
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8. An ordinary range search (i.e., finding the actual objects), for example,
does not satisfy this property, in which case a set difference operation must
be performed.

9. A similar idea [30], proposed for the MOLAP model (i.e., highly dense
data on a multidimensional array), is inapplicable to our case because it
assumes 1) discrete axes and 2) that the data cardinality increases
exponentially with the dimensionality. On the other hand, our solution is
more general as it applies to the MOLAP model. 10. The 3D aP-tree corresponds to the structure presented in Section 4.5.

Fig. 12. Reduction of RA queries to VRA in 3D.



5.1 Uniform Data Sets

We first evaluate the aP and aR-trees using uniform data
sets with various cardinalities. Fig. 13a plots the query cost
as a function of the query length qL (ranging from 10 to
60 percent of the axis) for aP and aR-trees indexing 150k 2D
points, together with the estimated costs for the aP-tree
(using (20)). The cost of the aR-tree increases linearly with
qL, while that of the aP-tree is constant and considerably
lower (e.g., for 60 percent query length, the aP-tree is more
than eight times faster). The estimates are exactly the same
as the actual values (In particular, since the height of the
aP-tree is 3, its actual cost equals 10 node accesses),
confirming the correctness of our derivation.

Fig. 13b shows the node accesses (using queries with
length 50 percent) as a function of the cardinality N for
uniformdata setswith 50k, 100k, 150k, 200k, and 250k points.
The performance of the aR-tree deteriorates quickly with N ,
while that of the aP-tree remains constant since there is no
change in the tree height. Figs. 13c and 13d repeat the above
experiments in the 3D space (including the maximum and
minimum query costs). In this case, our model yields a small
error (less than 10 percent) due to the fact that the aR-tree
performance cannot be fully predicted (recall that, ourmodel
in the 3D case utilizes the previous results on aR-trees). The
cost of the (3D) aP-tree now increases with the query length
because as mentioned in Section 4.5; in this case, two 2D
aR-trees (whose costs increase with qL) should be searched.

As discussed in Section 4.3, the improvement of aP-trees
comes at the expense of extra space consumption. To
evaluate the trade-off between space and query cost, Fig. 14a
(14b) compares the sizes of aP and aR-trees as a function of
the data set cardinality in the 2D (3D) space. As expected,
the aR-tree requires less space which, however, does not

justify its high query overhead (especially in 2D). Interest-

ingly, despite the fact that the size complexity of the aP-tree

is OððN=BÞ logBðN=BÞÞ, its growth is quite linear for the

cardinalities inspected. This happens because the factor

logBðN=BÞ actually corresponds to the height of the tree.

Therefore, the size of the aP-tree grows linearly as long as its

height remains constant, which is true in Figs. 14a and 14b.

5.2 Nonuniform Data Sets

In this section, we compare the aR and aP-trees using six

nonuniform data sets described as follows:

1. CFD1 (52k points) are vertex data from various
Computation Fluid Dynamic models.11

2. CFD2 (200k points) are vertex data from various
Computation Fluid Dynamic models.

3. SCG contains 62k points representing gravity data12

in California.
4. SCP contains 46k points corresponding to places in

South California.13

5. gauss contains 100k 3D points following the Gaus-
sian distribution.

6. zipf has the same cardinality and dimensionality, but
the distribution is Zipf.

As with the uniform case, we start with the query cost

comparison. Fig. 15 illustrates the number of node accesses

as a function of the query length qL for all data sets.
The aP-tree outperforms the aR-tree in all cases and the

improvement increases with qL (up to an order of
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Fig. 13. Node accesses versus query length qL (uniform data). (a) NA versus qL (N ¼ 150k, 2D). (b) NA versus N (qL ¼ 50 percent, 2D). (c) NA

versus qL (N ¼ 150k, 3D). (d) NA versus N (qL ¼ 50 percent, 3D).

11. Available at http://www.cs.du.edu/~leut/MultiDimData.html.
12. Available at http://www.gps.caltech.edu/~clay/gravity/gravity.

html.
13. Available at http://dias.cit.gr/~ytheod/research/datasets/spatial.

html.



magnitude). An interesting observation is that, for nonuni-
form distributions, the cost of the aR-tree usually drops
when the query length grows beyond a certain threshold.
This happens because the node MBBs for these data sets are
more skewed and, if the query hyper-rectangle is suffi-
ciently large, most node MBBs fall inside the query (i.e.,
they do not intersect the boundary) and are not visited. This
phenomenon does not exist for uniform distributions,
where node MBBs spread evenly across the data space.
For 2D data, the overhead of the aP-tree is again
independent of qL; for 3D data (Figs. 15e and 15f), its cost

demonstrates similar behavior to that of the aR-tree. Our
model is precise for the 2D case, while yielding error below
20 percent for the 3D case (as with Figs 13c and 13d, we also
plot the minimum/maximum query cost). Finally, Fig. 16
demonstrates the sizes of the aP and aR-trees for the above
data sets, as well as the estimated values from (13) (for
aP-trees). The difference between the two structures is
similar to that of the uniform case.

In summary, we have experimentally demonstrated the
efficiency of the proposed aP-tree, which outperforms the
aR-tree by up to an order of magnitude. Particularly, the
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Fig. 14. Structure size versus data set cardinality N (uniform data). (a) Size versus N (2D). (b) Size versus N (3D).

Fig. 15. Node accesses versus query length qL (nonuniform). (a) NA versus qL (CFD1). (b) NA versus qL (CFD2). (c) NA versus qL (SCG). (d) NA
versus qL (SCP). (e) NA versus qL (3D Gaussian). (f) NA versus qL (3D zipf).



aP-tree is especially efficient for the two-dimensional RA

query (where its query cost is constant), which is imperative

to a large number of practical applications. Further, we

confirm the accuracy of the cost models for predicting the

query cost (average error 5/20 percent for uniform/

nonuniform data) and space consumption (5 percent error

in all cases).

6 CONCLUSIONS

This paper presents a detailed study on range aggregate

queries in spatial databases. We first provide a complete

analysis for the performance of the aR-tree revealing its

inefficiency. Then, we propose the aP-tree and prove, both

analytically and experimentally, that the aP-tree consis-

tently outperforms the aR-tree. Further, compared with the

existing theoretical indexes, the aP-tree has significantly

higher applicability because it is simple and accompanied

by accurate cost models for space consumption and query

performance. An open problem is to extend the aP-tree for

supporting RA queries on rectangular data. Theoretically,

as shown in [16], any method for RA retrieval on point data

also solves rectangles with the same asymptotical perfor-

mance, by maintaining, however, a large number of

structures. A more practical solution with lower space

requirements is highly desirable (a pioneering work, yet to

be improved, can be found in [41]). Further, we are not

aware of any existing work dealing with exact aggregate

computation of joins between multiple data sets (e.g.,

retrieve the total number of (restaurant, hotel) pairs that

are within one mile from each other). Handling such

queries effectively may require novel access methods and

query algorithms. Finally, deploying similar ideas to other

aggregates (e.g., max as in [4]) is also interesting.
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