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Abstract—Efficient processing of spatial joins is very important due to their high cost and frequent application in spatial databases and

other areas involving multidimensional data. This paper proposes slot index spatial join (SISJ), an algorithm that joins a nonindexed

data set with one indexed by an R-tree. We explore two optimization techniques that reduce the space requirements and the

computational cost of SISJ and we compare it, analytically and experimentally, with other spatial join methods for two cases: 1) when

the nonindexed input is read from disk and 2) when it is an intermediate result of a preceding database operator in a complex query

plan. The importance of buffer splitting between consecutive join operators is also demonstrated through a two-join case study and a

method that estimates the optimal splitting is proposed. Our evaluation shows that SISJ outperforms alternative methods in most

cases and is suitable for limited memory conditions.

Index Terms—Spatial databases, query processing, join processing, database index, spatial index, buffer management.
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1 INTRODUCTION

SPATIAL database management systems [31] aim at the
efficient management of large collections of multi-

dimensional data (e.g., satellite images, molecular struc-
tures), found in several fields such as Geographical
Information Systems, CAD, Medical Databases, and Multi-
media Information Systems. One of the most common
spatial query operators is the spatial join, which retrieves
from two data sets all object pairs that satisfy a spatial
predicate, most often intersect (also called overlap). A spatial
join example is “find all cities that are crossed by a river.”
The high complexity of the objects and the quadratic
number of pairs that may qualify the query predicate
render efficient processing of spatial joins an important
issue.

Spatial objects are usually approximated and indexed by

their Minimum Bounding Rectangle (MBR). A spatial query is

then processed in two steps [25]: First, a filter step employs

the index to retrieve all MBRs that satisfy the query and

possibly some false hits. Then, a refinement step uses the

exact geometry of the objects to dismiss the false hits.

Traditional access methods (e.g., B-trees) are not readily

applicable for spatial queries due to the fact that there is no

total ordering of objects in space that preserves spatial

proximity [12]. As a result, a number of spatial access methods

(SAMs) have been proposed [9]. The predominant SAM,

used in many commercial systems (e.g., Illustra, Informix)

is the R-tree [13] and its variations.
Several spatial join algorithms, most of which focus on

the filter step, have been proposed during the last decade.

Some of these algorithms consider existing indexes for both

joined inputs, while others treat data sets with no index,

thus providing solutions for the case where at least one
input comes as an intermediate result of another database
operator. Here, we focus on spatial joins when only one of
the joined data sets is indexed by an R-tree. Such situations
may arise when the nonindexed input is the result of
another operator. For instance, consider the query “find all
cities with population over 5,000, which are crossed by a river”
and that cities and rivers are indexed on their spatial extent.
If only a few large cities exist, it may be natural to process
the selection part of the query before the spatial join. In this
case, the resulting cities are nonindexed and some single-
index join algorithm is required.

Existing single-index join algorithms have certain limita-
tions. For instance, the indexed nested loop join, which applies a
window query to the R-tree for each object in the nonindexed
set can be very expensive in terms of both I/O and
computational cost. The seeded tree join [22], which creates
an R-tree for the nonindexed data, is not appropriate in many
cases because of its prohibitive I/O cost. Methods like bulk
loading and matching, sorting and matching [28] apply external
sorting on the nonindexed data and totally or partially build
an on-the-fly R-tree in order to join it with the existing one.
Therefore, these methods have a disadvantage in cases where
the nonindexed input is an intermediate result of an under-
lying operator because they need to materialize it before
processing it.

In this paper, we propose slot index spatial join (SISJ), a
hash join algorithm that overcomes most of the above
deficiencies. SISJ distributes the R-tree entries at a specific
level into S partitions, called slots, and builds an in-memory
index from them. The slot index keeps for each slot the
identifiers of the nodes pointed to by the corresponding
entries along with the MBR of the entries. The nonindexed
input is partitioned into S partitions (buckets) with the same
spatial extents as the MBR of the slots. The algorithm finally
joins each bucket with the R-tree data under the nodes
pointed to by the corresponding slot, using plane sweep [29].

In addition to slot index construction heuristics [24], we
present two I/O and CPU optimization methods that are
applied in the join phase of SISJ and significantly improve
its performance. A bucket ordering heuristic joins first the
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hash buckets with a few pages on disk in order to avoid

writing and reading again their in-memory parts. This

technique reduces the number of page accesses, especially

when the nonindexed input is only slightly larger than the

available memory. A repartitioning heuristic improves the

computational performance of the algorithm and further

reduces its space requirements. After the application of

these optimization methods, the overall cost of SISJ drops

about 35 percent compared to the initial implementation.
We also provide an analytical study about the cost of SISJ

and other single-index spatial join algorithms, which is

parametric to the characteristics of the joined data sets and

the system conditions. All algorithms (with the exception of

indexed nested loops) are I/O bound, thus we focus on

their I/O cost. Based on the analysis, we present a

qualitative comparison, examining both cases where the

nonindexed input is read from disk or is produced by

another query operator. Finally, the efficiency of the

algorithms is experimentally evaluated using real and

synthetic data sets of various sizes. The importance of

buffer splitting between pipelined operators [10] is demon-

strated through a two-join case study, and a method that

estimates the optimal splitting is proposed. It turns out that

SISJ is the best algorithm in most cases because it is not

sensitive to limited memory conditions.
The rest of the paper is organized as follows: Section 2

presents background on R-trees and spatial join algorithms.

Section 3 describes SISJ and explores its optimization in

terms of both I/O and CPU time. Analytical cost models for

SISJ and other single-index join algorithms are provided in

Section 4. Section 5 contains an extensive experimental

evaluation and Section 6 concludes the paper.

2 BACKGROUND

During the past two decades, the database community

devoted many of its research efforts on the efficient

processing of spatial queries. Since most of this work

presupposes the existence of R-trees as the underlying

access method in spatial database systems, we start with a

description of this SAM and its variations. Then, we

overview the most important spatial join algorithms

focusing on the seeded tree join [22] and spatial hash join

[21] because they motivate the proposed SISJ algorithm and

have common modules with it.

2.1 R-Trees

The R-tree [13] is a height-balanced tree, similar to the Bþ-tree,
that indexes MBRs of objects in the multidimensional space.
The nodes of the tree correspond to disk pages and they are at
least 40 percent full, ensuring good disk utilization. The
entries in leaf nodes are (MBR, oid) tuples, containing object
MBRs and pointers to their exact representation. Intermediate
node entries are (MBR, ptr) tuples, where ptr points to a lower
level node and MBR is the MBR of all entries in this node. Fig. 1
shows a set of object MBRs and the graphical representation
of an R-tree used to index this data set.

R-trees were originally designed for multidimensional
range query processing. Consider the R-tree of Fig. 1 and a
query which asks for all objects that intersect window W.
The entries of the root that intersect W are found and, for
each such entry, search is applied recursively on the node
pointed to by it. The qualifying entries are shown in gray. If
an entry at a high R-tree level does not intersect W, then
there can be no qualifying object in the subtree pointed to
by this entry. For instance, W does not intersect entry B, in
node 1, thus the subtree under this entry needs not be
accessed.

Guttman [13] proposes an R-tree insertion algorithm that
splits the entries in overflowing nodes so that the resulting
nodes at the high levels of the tree have as small extents as
possible. This is led by the intuition that the smaller the area
of R-tree entries, the smaller the “dead space” inside them
(i.e., the space not covered by real objects) and, therefore,
the lowest the probability that the search algorithm will
visit nodes unnecessarily. For instance, observe that W in
Fig. 1 intersects entry D, but there is no rectangle indexed
under D that has some part in this “dead space.” Ideally, if
the dead space was zero, search could be optimal.

An alternative insertion algorithm, which, apart from the
area of the extents, considers other parameters was proposed
in [4]. The resulting access method is called R*-tree. Notice
that the only difference between the R-tree and the R*-tree is
the insertion algorithm; both access methods have the same
structure. The insertion algorithm of the R*-tree can be
summarized as follows: A new rectangle r is inserted by
starting from the root and following entries that fully contain
it until a leaf node is reached. In the case where more than one
entry at a high-level node contains r, the tie is broken by
following the one with the minimum area. If no entry contains
r, the one that is enlarged the least after the insertion is
followed (ChooseSubtree). If a leaf node overflows for the first
time, the algorithm removes 30 percent of its entries and
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reinserts them (Forced Reinsert). This allows rectangles to
move to a more appropriate node dynamically and the
structure of the tree to become less sensitive to the insertion
order. If a node overflows for a second time, it is split. The
splitting algorithm divides the rectangles into two nodes
trying to minimize their overlap and their total margin. The
margin minimization aims at node MBRs that look more like
squares, rather than narrow rectangles, improving query
performance.

If all data are available a priori, it is too time consuming
to build the R*-tree by consecutive insertions. Several bulk
loading methods that quickly build an R-tree for a static set
of rectangles have been proposed. Most of them sort the
data according to some spatial key and then pack each
group of consecutive C rectangles in a leaf node (C is the
node capacity). The tree is then built from the leaf nodes in
a bottom-up fashion and has a minimum number of nodes
and height. These methods are also called R-tree packing
methods.

Several alternative techniques can be used for sorting the
rectangles in order to build the packed R-tree. In [30], the
data are sorted according to some x-coordinate value and
the resulting tree has leaf nodes that are narrow stripes. The
resulting R-tree has poor query performance due to the
excessive number of leaf nodes intersecting a random
window. Sorting the rectangles with respect to the Hilbert
value of their center [17] generates nodes with a better
shape, but the calculation of the Hilbert value is expensive
and this method can be efficient only when the sorting key
is precomputed. Sort tile recursive (STR) [19] is a simple, yet
very effective method, which initially sorts the N rectangles
with respect to the x-coordinate of their center. This ordered
list is then split into

ffiffiffiffi
P
p�� �� groups (vertical strips), where

P ¼ N=C, and each group is sorted using the y-coordinate
of the rectangles’ center. The output from this sorting
formulates the leaves of the resulting packed R-tree. The
intuition behind this two-phase sorting is to yield square-
like leaf nodes. Yet, another method that bulk loads R-trees
that are not packed is [6]. The splitting criteria of the R*-tree
insertion algorithm are considered, while dividing the
rectangles and building the index in a bottom-up fashion.
Finally, the R*-tree bulk loading method proposed in [8]
(and used also in [26], [2]) sorts the rectangles by Hilbert
value and produces nodes that are not necessarily fully
packed, in order to decrease the overlap between them.
Recently produced nodes are organized in a cache and the
R*-tree split algorithm is used to reorganize their contents
and improve the quality of their extents.

2.2 Spatial Join Algorithms

If both data sets, A and B, to be joined are indexed by R-trees
RA and RB, then a very efficient spatial join algorithm is the
R-tree join (RJ) [5] (also called tree matching or synchronous
traversal), which synchronously traverses both trees follow-
ing entry pairs that intersect. Fig. 2 illustrates two data sets
indexed by R-trees. The intersecting entry pairs at the root
level are ðA1; B1Þ and ðA2; B2Þ. Notice that since A1 does not
intersect B2, there can be no object pairs under these entries
that intersect. RJ is recursively called for the nodes pointed by
the qualifying entries until the leaf level is reached, where the
intersecting pairs ða1; b1Þ and ða2; b2Þ are output.

Two optimization techniques decrease the computational
cost of RJ. The first, called search space restriction reduces the
quadratic number of pairs to be evaluated when two nodes
NA and NB are joined. If an entry EA 2 NA does not
intersect the MBR of NB (that is the MBR of all entries
contained in NB), it can be safely ignored. In Fig. 2, for
instance, when computing qualifying pairs in nodes A2 and
B2, entry a4 does not intersect node B2, so it cannot intersect
any entry inside it. Using this observation, space restriction
performs two linear scans in the entries of both nodes
before applying entry intersection tests and prunes out from
each node the entries that do not intersect the MBR of the
other node. The second technique (forward sweep [1]) is
based on plane sweep [29] and applies sorting in one
dimension in order to reduce the computation time of the
overlapping pairs between the nodes to be joined. A
breadth-first search version of RJ with reduced I/O cost is
presented in [14].

A number of methods exist for the case where none of
the inputs is indexed: some partition the space either
regularly [26], [18], or irregularly [21], and distribute the
objects into buckets defined by these partitions. The spatial
join is then performed in a relational hash join fashion.
Although, the above methods work well for uniformly
distributed inputs, they cannot guarantee good worst-case
performance like the algorithm in [1] which first applies
external sorting to both files and then uses an adaptable
version of plane sweep, considering that in most cases the
“horizon” of the sweep line will fit in main memory.
Recently, Arge et al. [2] extended this method to handle
both indexed and nonindexed inputs. The basic idea is to
use the existing indexes in combination with a heap
structure to access the rectangles from the trees that
intersect the sweep line.

The simplest method for the case that only one input is
indexed is the indexed nested loop join (INLJ). In accordance
with its relational join counterpart, INLJ applies a window
query to the R-tree for every object in the nonindexed data
set. The build and match join (BaM) [26], [28] builds an R-tree
from the raw input using bulk loading and joins it with the
existing tree using RJ. Sort and match(SaM) [28] employs STR
[19] to sort the rectangles from the nonindexed input but,
instead of building the packed tree, it directly matches in-
memory created leaf nodes. For each produced leaf node, a
window query is executed and plane sweep is applied to
join it with all leaf nodes from the existing R-tree that
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intersect it. Another method that constructs an R-tree and
joins it with the existing one is called seeded tree join (STJ)
[22], described in detail in the next section.

2.3 Seeded Tree Join

STJ [22] builds a second tree using RA as a seed and then
applies RJ. The motivation behind creating a seeded tree for
the second input, instead of a normal R-tree, is the fact that
an R-tree with nodes having similar extents to nodes in RA

will be more efficient during tree matching, as the number
of overlapping node pairs between the trees will be smaller.
Thus, STJ creates an R-tree that is suitable for the spatial join
and not for range searching.

The seeded tree construction is divided in two phases:
1) During the seeding phase, the top k levels (k is a parameter
of the algorithm) of RA are copied to formulate the top
k levels of the seeded tree RB. The entries of the lowest level
of RB are called slots. After copying, the slots maintain the
copied extent, but they point to empty (null) subtrees. 2)
During the growing phase, all objects from B are inserted
into RB. A rectangle is inserted under the slot that contains
it or requires the least area enlargement in order to enclose
it. Fig. 3 shows an example of a seeded tree structure. The
two topmost levels of the R-tree are copied to guide the
insertion of the second data set.

Lo and Ravishankar [22] propose some techniques that
optimize the structure of the seeded tree and a filtering
mechanism that rejects rectangles from the second set that
do not overlap any of the slots. They also present a tree
construction technique that reduces I/O page accesses
when the size of the tree exceeds the size of the available
memory buffer. If this happens, many pages may have to be
fetched and written back to disk during a single insertion,
resulting in a large I/O cost (buffer thrashing). In order to
avoid this, the objects to be inserted under a slot are written
in a temporary file. After all objects have been assigned to a
slot, an R-tree is constructed for each temporary file and is
pointed to by the corresponding slot in the seeded tree. To
implement this mechanism and minimize random I/O
accesses, at least one page is allocated in the buffer for each
slot. If the buffer is full, all slots that have more than a
constant number of pages flush their data to disk and
memory is freed.

In order for the above algorithm to work efficiently,
the number of slots S should be smaller than the number
of pages M in the memory buffer. In a different case, not
every slot can be assigned a page in main memory and
pages may have to be temporarily written to and
reloaded from the disk during the construction of the
seeded tree (another form of buffer thrashing). As a

result, the algorithm is inefficient when the fanout of the
R-tree nodes is large and the memory buffer is relatively
small. Consider, for instance, a data set of 100,000 objects,
which are indexed by a 8K page size R-tree. Under the
assumption that each node entry is 20 bytes long (16 for
the x and y-coordinates, plus four for the object id or
block reference), the capacity of a tree node is 409; thus,
the data set can be indexed by a 2-level R-tree, with
245 leaf nodes and one root. When applying STJ, we have
to copy the root level of the R-tree to the seeded tree,
which results in S ¼ 245. As a consequence, the algorithm
is inefficient for buffers smaller than 1.96 Mbytes.

2.4 Spatial Hash-Join

The spatial hash-join (HJ) method [21] is similar to the Grace
hash join algorithm used in relational databases [32]. HJ
joins two spatial inputs A and B, none of which is indexed.
The general idea of the method is to determine a set of
rectangular spatial partitions and hash data sets A and B
into them. The resulting structures are called hash buckets.
Each bucket is thus defined by the rectangle of the
corresponding partition to which we will refer to as the
“extent” of the bucket. After hashing, each pair of buckets
from A and B that correspond to the same partition (they
have the same extent) are loaded and joined to derive the
result of the spatial join.

The extents of the hash partitions are determined by data
set A. The goal of HJ is to define partitions with small
extents, little overlap, and with approximately the same
number of objects from A assigned to them. The number of
partitions S is determined, such that the average number of
hashed rectangles in a bucket can fit in memory and buffer
thrashing while partitioning is avoided (i.e., S should be
smaller than the memory buffer). Since no information
about the distribution of the rectangles in the data sets is
generally available, the initial extents of the partitions are
computed in two phases by a sample from A. Initially, S
rectangles from the sample are selected and their centers
define the partitions. Then, the other rectangles are assigned
to the partition closer to their center and the center of this
partition is adjusted accordingly. The sample is passed once
more to refine the resulting partitions. The result of this
process (called bootstrap seeding technique [20]) is a set of
points that represent the distribution of data set A.

During the hash-phase, each object rA from A is assigned
to exactly one partition, according to the following criteria.
If the rectangle is enclosed by one or more partitions, it is
assigned to the one with the minimum area (as in the R*-
tree insertion algorithm). If rA is not enclosed by any
partition (this case occurs in the beginning, where all
partitions are points), it is assigned to the one that needs the
least enlargement to contain it. After hashing all rectangles
from A, the spatial partitions will have changed and they
may overlap with each other. The resulting hash buckets
from A are stored into sequential files using the same policy
as in STJ, in order to reduce random I/Os.

Set B is then hashed into buckets with the same extent as
A’s buckets, but with a different insertion policy; the extents
of the buckets are kept fixed and an object is inserted into all
buckets that intersect it. Thus, some objects may go into
more than one bucket (replication), and some may not be
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inserted at all (filtering). The algorithm does not ensure that
the rectangles from A are evenly partitioned into the
buckets, as sampling cannot guarantee the best possible
slots. Buckets of equal size for B cannot be guaranteed in
any case, as the distribution of the objects in the two data
sets may be totally different. Fig. 4 shows an example of two
data sets, partitioned using the HJ algorithm.

After hashing set B, the join is performed by matching
each bucket bA;i from A with the corresponding bucket bB;i
from B (which has the same extent). If one bucket fits in
memory, it is loaded and the objects of the other are
prompted against it, thus requiring a single scan and a
minimal number of I/Os. Techniques like plane sweep are
used to accelerate the join phase if both buckets fit in
memory. If none of the buckets fits in memory, an on-the-fly
R-tree is built for one of them (e.g., using bulk loading [19]),
and the bucket-to-bucket join is executed in an indexed
nested-loop fashion by applying a window query for each
rectangle from the other bucket.

Experiments in [21] show that HJ is better in terms of I/O
than building two seeded trees and joining them. It is also
claimed that this algorithm is more efficient than spatial join
with precomputed R-tree indexes (RJ) if the difference
between sequential and random disk accesses is taken into
account. We believe that this comparison of HJ with RJ is
unfair. First, as shown in [24], RJ is significantly faster than
HJ in terms of CPU-time. Second, as shown in [16], when a
R-tree packing method that places sibling nodes in
sequence is used, the I/O performance of RJ is significantly
improved. In the rest of the paper, we do not consider the
difference between random and sequential I/O accesses.

3 SLOT INDEX SPATIAL JOIN

In this section, we describe slot index spatial join (SISJ), a new
algorithm that joins a nonindexed input with an R-tree. SISJ
applies hash join using the existing R-tree to guide the hash
process. We propose four policies that determine the
extents for space partitions used for hashing the non-
indexed data set and two optimization techniques that
reduce the cost of the algorithm. Finally, we present a series
of experiments that evaluate the efficiency of the proposed
heuristics.

3.1 Motivation and Description

SISJ combines ideas from STJ and HJ. The key idea is to
define the spatial partitions of HJ using the structure of

the existing R-tree. Let A be a data set indexed by the R-
tree RA and B be a nonindexed data set. Assume that we
attempt to apply HJ to join them. At a specific level of RA

each entry defines a hash bucket that contains the R-tree
data indexed by the subtree pointed to by this entry.
Thus, we can consider the partition phase of the data set
A completed. The partitions are suitable for hash join
since they contain approximately the same number of
object MBRs from A; their extent is optimized by the
R-tree insertion algorithm and each object MBR is
indexed by exactly one entry. The extents of these
partitions (e.g., the MBRs of the corresponding R-tree
entries) can be used to hash the nonindexed data set B.
Then each bucket of B can be matched with the subtree
indexed by the corresponding entry from RA.

A problem with the above method is which R-tree level
should be chosen for the definition of the spatial
partitions. The number of partitions should be small
enough to avoid buffer thrashing while hashing B. Recall
that hashing algorithms should assign at least one page
for each bucket; thus, the number of partitions should be
at most M ÿ 1 (where M is the number of pages in the
buffer). There is also a desirable lower bound for this
number; we would like the data pointed to by each R-tree
entry that defines a partition to fit in memory. If this
happens, the match phase of the join could be performed
efficiently with a minimal number of I/Os (see Section 2.4).
In many cases, finding an R-tree level with an appropriate
number of entries is not possible; the difference between
the numbers of entries in consecutive levels can be very
large, especially for trees of large fanout. In order to
overcome the buffer size limitations, (i.e., when the
number of entries is larger than the buffer size M), SISJ
groups the entries of a tree level to Sð< MÞ possibly
overlapping partitions called slots. Each slot contains the
MBR of the indexed R-tree entries, along with a list of
pointers to these entries. The collection of slots (a kind of
hash-table) is called slot index and it is small enough to be
maintained in main memory. Fig. 5a illustrates the middle
(level 1) of the three levels of an R-tree where the root
contains only two entries. If M ¼ 10, SISJ will group the
entries at level 1 in S ¼ 9 (for this example) slots (Fig. 5b).

After building the slot index, the second set B is hashed
into buckets with the same extents as the slots. As in HJ, if
an object from B does not intersect any bucket it is filtered; if
it intersects more than one bucket, it is replicated. Fig. 5b
shows some filtered and replicated objects. The join phase
of SISJ is similar to the corresponding phase of HJ. All data
from RA indexed by a slot are joined with the correspond-
ing hash-bucket for set B. When no data from B are inserted
into a bucket, the subtrees under the corresponding slot
need not be loaded. The upper rightmost slot in Fig. 5b is an
example of a filtered slot.

When joining a slot with a bucket, four cases may apply:

1. The data from both partitions fit in memory. In this
case, the join is performed using forward sweep [1],
[5]. This method is simple and its average perfor-
mance is as good as that of methods with a
theoretically better worst-case time (e.g., an inter-
val-tree method is theoretically optimal, but found in
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[1] to have similar performance with forward
sweep).

2. Only the data under the slot fit in memory. The join
is then performed using indexed nested loop join,
considering as the root of the R-tree the correspond-
ing slot; for each rectangle in the hash bucket, a
window query is applied.

3. Only the bucket from B fits in memory. An on-the-fly
in-memory R-tree is built for the bucket and the data
under the slot are “probed” against it (indexed nested
loops).

4. Neither the data under the slot nor the bucket fit in
memory. In this case, SISJ is applied recursively in a
way similar to recursive hash-join [32]. The slot acts
as the virtual root of an R-tree and the hash bucket as
the nonindexed data set. The recursion is guaranteed
to terminate even in the trivial case where all
rectangles from B intersect all rectangles from A;
the rectangles from A will be divided in partitions
and SISJ will be called until Case 2 applies, where
the recursion stops. We do not expect SISJ to be very
efficient in such situations, but our aim is to define
an algorithm that performs well on the average,
without focusing on worst-case settings that do not
appear often in practice.

Typically, the values of M and S will be large enough for
cases 1, 2, and 3 to hold for most join pairs. Notice that for
these cases, the I/O cost of matching is optimal (no disk
page is loaded more than once in the join phase). In
Section 3.3, we discuss an optimization method that can be
applied in cases 1 and 3, significantly improving the CPU
performance of the algorithm.

3.2 Slot Index Construction Policies

As stated above, S should be smaller than M in order to

avoid buffer thrashing. The lower limit of S is such that the

expected number of data from set A in each slot will fit in

memory. If PA is the number of pages that fit for the first

data set (i.e., the number of RA leaf nodes assuming that RA

is packed), then the number of blocks that fit for the data

under a slot is:

sizeðslotAÞ ¼ dPA=Se: ð1Þ

In order for the data under each slot to fit in memory

ðdPA=Se < MÞ and to avoid buffer thrashing, the value of S

should be restricted by the following inequalities:

dPA=Me < S < M: ð2Þ

There exist some cases (when M is very small compared
to PA) where the lower limit PA=M should be ignored
because it is larger or equal to M. Consider, for instance,
that the page size is 8K, the buffer size is 128K, and set A
consists of 100,000 objects (=2Mbytes); then M ¼ 128=8 ¼ 16
and PA ¼ 245. Equation (2) results in 16 < S < 16, which
does not provide a valid value for S. Thus, the lower limit is
ignored and the data under each slot are not guaranteed to
fit in memory. Notice that the upper limit cannot be ignored
because this would lead to buffer thrashing. A study about
selecting S from a valid range of values is performed in
Section 3.5.

The topmost tree level k with total number of entries
nE;k > PA=M is the level where grouping will take place1

(slot level). If nE;k is within the valid range for S, i.e.,
PA=M < nE;k < M, S is exactly nE;k and the slots will have
as extents the MBRs of these entries. If nE:k �M, we cannot
directly use the entries nE;k to partition and the slot index
should be built. A good slot index construction mechanism
will minimize the total area and overlap between the slots
and create slots with the same number of entries. We
consider four policies for creating the desired number of
slots from the nE;k entries at the slot level of RA:

1. SplitXL. Sort entry MBRs with respect to their lower
x-bound and divide them into S equal sized groups.
This method is motivated by [30].

2. SplitHC. Sort entry MBRs with respect to the Hilbert
value of their center and divide them into S equal
sized groups. SplitHC is motivated by [17].

3. SplitSTR. Sort entry MBRs using the sort tile recursive
algorithm [19] and divide them into S equal sized
groups.

4. IRS. Insert the entries into S slots using the R*-tree
insertion algorithm [4].

From the above grouping methods, the first three include
just sorting and splitting. IRS (insert, reinsert, and split) is
more sophisticated. Starting from a single empty slot, for
each entry e, the insertion algorithm of Fig. 6 is called.

The first part of IRS is equivalent to the ChooseSubtree
R*-tree algorithm that determines the best leaf node
when inserting a rectangle (see Section 2.1). Each slot
can be assigned a maximum number of entries (max-
imum slot capacity). If the entries in a slot are more than
this number, an overflow occurs. Part 2a is equivalent to
the Forced Reinsert, whereas 2b is the R*-tree split
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1. Under typical system conditions (e.g., page size 4K-8K, M in the order
of 100) and for typical size of data set A (e.g. 10K-200K rectangles) usually k
will be the root level, or the level under the root.

Fig. 5. An R-tree and a slot index built over it. (a) Entries at R-tree level 1 and (b) slot index and hashed data from B.



algorithm. IRS does not guarantee slots of equal size; the
equal size splitting criterion is not considered in order to
favor the good shape criterion. To ensure that the final
number of slots after IRS will be “around S” and
considering that slot utilization is around 70 percent [4]
(given that each slot is at least 40 percent full), we set
the maximum slot capacity to ð10=7Þ � ðnE;k=SÞ, so that
the average number of entries in a slot will be nE;k=S.
The final number of groups may not be S but will
definitely be between ð7=10Þ � S (if all groups are full)
and ð7=4Þ � S (if they are 40 percent full). If these limits
are out of the valid range, the maximum slot capacity
should be tuned correspondingly.

Notice that nE;k cannot exceed M � C, where C is the node

capacity (i.e., maximum fanout) of RA; otherwise, the upper

tree level kÿ 1 should be used for grouping (it would

contain at least M entries to be partitioned into S < M

slots). Therefore, all four policies can take place in main

memory (M � C entries occupy exactly M pages and this is a

worst case) with small computational cost. As an example

of slot index construction, consider a real data set with 131K

rectangles (T1) stored in an 8K page size R*-tree. The tree

has three levels: the entries of level 0 (i.e., object MBRs) are

shown in Fig. 7a, the 466 entries of level 1 in Fig. 7b and the

two root entries in Fig. 7c.
If S ¼ 20, grouping will take place at level 1 where the

466 entries will be arranged into 20 slots. The extents of the
slots using the four different policies are shown in Fig. 8. In
Section 3.5, we empirically compare the effect of the
different policies on the performance of SISJ.

3.3 Optimizing the Bucket Join Order

After the creation of the slots, objects from set B are hashed
using the slot index. A naive implementation of SISJ would
then flush all in-memory partitions to disk in order to free
space for the join phase. Instead of flushing all blocks, we
can perform the join trying to maintain as many nonflushed
blocks in memory, as possible (warm buffer). For instance, if
set B is smaller than the buffer, we can avoid writing

anything to disk since hashing can take place in memory

and, provided that there is enough space for the data

indexed by a slot, the hash-join can also be performed

without any extra I/O accesses. For typical cases, when set

B does not fit in memory, we have to consider an ordering

of the slot-bucket pairs that would minimize the I/O cost by

writing as few blocks as possible. The required space to join

slotA and bucketB in memory is:

join memðslotA; bucketBÞ ¼ sizeðslotAÞ þ size memðbucketBÞ
þ size diskðbucketBÞ;

ð3Þ

where sizeðslotAÞ is the number of blocks needed to fit the

R-tree data under slotA, size memðbucketBÞ is the number of

blocks in memory for bucketB and size diskðbucketBÞ is the

number of flushed blocks.
If there is not enough space in the buffer, sizeðslotAÞ þ

size diskðbucketBÞ blocks have to be loaded from disk and an

equal number of blocks have to be written from some other

hash buckets. After joining the first pair, there will be more

available memory for the second one, due to the release of

the size memðbucketBÞ pages, in addition to the pages

loaded from disk. Thus, the early join pairs will cause

more page faults than the latter ones. Since sizeðslotAÞ is

expected to be approximately the same for all partitions

(i.e., PA=S), it is natural to join the pair involving the bucket

form set B that has the minimum size diskðbucketBÞ. This

will minimize the number of pages that must be flushed to

disk (and later be reloaded) in order to make space for

loading size diskðbucketBÞ pages. A pseudocode for the

bucket join ordering algorithm is given in Fig. 9. In some

extreme cases involving large pairs of slots-buckets, we

cannot avoid flushing everything to disk. The bucket join

ordering heuristic has the advantage that it delays such a

situation because it fetches the smallest partitions first and

utilizes best the in-memory parts. The I/O savings yielded

by this method are demonstrated in Section 3.5.

MAMOULIS AND PAPADIAS: SLOT INDEX SPATIAL JOIN 217

Fig. 6. The IRS slot index construction algorithm.



3.4 Repartitioning before Plane Sweep

The natural method of joining a slot with a bucket is to load

the contents of both into memory and apply plane sweep.

When the contents are large this method has two

disadvantages. First, the available memory can be limited

for all data to fit in the buffer. In Cases 2 and 3 discussed in

Section 3.1, indexed nested loops may have a large CPU

time overhead comparing to plane sweep, and in Case 4,

recursive application of SISJ may lead to a nontrivial I/O

penalty. Second, as shown in [1], the forward sweep heuristic

and plane sweep methods in general, are CPU-intensive for

large data sets; for each rectangle in slotA or bucketB,

forward sweep may need to trace
ffiffiffiffiffi
N
p

rectangles (where N

is the total number of rectangles in a bucket/ under a slot)

in order to compute the intersection pairs that include this

rectangle (square root rule [11]). When N is large this

operation is rather expensive.
Arge et al. [1] propose a striped sweep algorithm that

regularly divides the space in s horizontal2 stripes and

partitions both data sets using them. Then, plane sweep is

used to calculate the results in each stripe. In this way, the

number of rectangles intersected by the sweep line is at

most
ffiffiffiffiffi
N
p

=s at each stripe and the total CPU cost is greatly

reduced. Nevertheless, this method has three drawbacks.

First, both data sets have to be partitioned. Second, since

each stripe has fixed bounds, rectangles of both sets are

replicated during partitioning (one rectangle may intersect

more than one stripe). Therefore, it is possible for one
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Fig. 9. An algorithm that determines a good bucket join order.

Fig. 8. A slot index for data set T1 using four grouping policies. (a) SplitXL. (b) SplitHC. (c) SplitSTR. (d) IRS.

Fig. 7. Entries of T1 R*-tree. (a) Level 0 (leaf) entries. (b) Level 1 entries. (c) Level 2 (root) entries.

2. In fact, the authors use vertical stripes because the sweep line in their
implementation is horizontal.



intersection pair to be reported in more than two stripes and
a method that removes duplicate results has to be engaged
(with a an extra computational overhead). Third, both data
sets have to fit in memory; otherwise, extra I/O accesses for
writing the partitioned results are required.

Instead of striped sweep, we propose a method that only
requires bucketB to fit in main memory. The R-tree nodes
under the slotA except from the leaves are loaded into the
buffer. Then, all rectangles of bucketB are hashed into main
memory partitions with the same extents as the leaf node
MBRs under the slot, guided by the loaded subtree
structure. Hashing is done in the same way as rectangles
from B are partitioned into buckets, i.e., each rectangle is
hashed into all partitions it intersects. We call this method
R-tree leaf node partitioning (RLNP). After RLNP, the
subtreeA structure under the slot is removed from memory
and each leaf node is loaded and matched with the
corresponding RLNP partition. Thus, each node in RA is
matched only with relevant rectangles from B and the main
memory join is performed efficiently in small areas of the
data space. The pseudocode for this slot-bucket join method
is given in Fig. 10.

Since rectangles from RA reside in exactly one leaf node,

no duplicate solutions are generated. Replication occurs,

like in the hash-phase of SISJ, but the extra memory

required to store the replicated rectangles is much less than

the extra disk space required at the replication during the

hash-phase of SISJ. This is because 1) the partitions defined

by the leaves of the R*-tree usually have a smaller overlap

than the slot extents and 2) only the ids of the rectangles
need to be replicated since the coordinates reside in

memory and can be easily accessed. Therefore, replication

introduces no extra or trivial I/O overhead when clever

caching is used.
Notice that apart from the CPU time gain due to the

small number of rectangles in the partitions joined during
plane sweep, the repartitioning method also saves I/O
accesses. While sizeðslotAÞ þ sizeðbucketBÞ pages were re-
quired to perform the join in memory before, now we need
sizeðsubtreeAÞ þ sizeðbucketBÞ pages, where sizeðsubtreeAÞ is
the number of blocks needed to fit the subtree under slotA,
excluding the leaf level. Provided that in typical cases of 4K
and 8K page sizes, the slot index level is over the leaves,
sizeðsubtreeAÞ will be just the size of the corresponding slot

in the slot index, i.e., trivial. Furthermore, while joining the
RLNP partitions with the leaf nodes, only one leaf node is
needed at a time. The required memory of a slot-bucket join
using this method is:

join memRLNPðslotA; bucketBÞ ¼
sizeðsubtreeAÞ þ size memðbucketBÞ þ size diskðbucketBÞ:

ð4Þ

Due to the fact that

join memRLNPðslotA; bucketBÞ � join memðslotA; bucketBÞ;

fewer pages will be flushed to disk, thus reducing the I/O

cost of SISJ. Implementing this optimization method is

rather simple because partitioning modules are already

used by SISJ. The algorithm is not expected to profit by

bucket join ordering and repartitioning optimization tech-

niques, if no bucketB fits in memory. However, for typical

data sets and buffer sizes, such situations seldom arise. This

is demonstrated in the experiments of the next section.

3.5 Experimental Evaluation

Three sets of experiments were conducted in order to

evaluate the relative performance of SISJ after the use of slot

index construction and slot-bucket join heuristics. We first

compare the quality of the four grouping policies (SplitXL,

SplitHC, SplitSTR, and IRS), then test the effect of the

selection of S in the performance of SISJ and, finally,

evaluate the gains of the two slot-bucket join optimization

methods. Table 1 describes several real and synthetic data

files used in the experiments. GS and GR are highly skewed

data sets containing MBRs of Greek roads and rivers. Files

AS, AL (http://www.maproom.psu.edu/dcw/) comprise street

and railroad segments, respectively, of Germany. T1

contains streets and T2 river and railroad segments of

California [7]; both files are commonly used to benchmark

spatial join algorithms [5], [21], [14], [16]. The synthetic files

G1 and G2 were created according to a Gaussian distribu-

tion with 16 clusters. The centers of the clusters were

randomly generated, and the sigma value of the data

distribution around the clusters followed a random value

between 1/20 and 1/10 of the map size. In addition to the

cardinality of the data sets, Table 1 shows their density,
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Fig. 10. An improved method for joining a slot with a bucket.



defined as the total area of the rectangles divided by the

total area of the workspace.3

Whenever a data set was indexed, an R*-tree with node
size 8K (equal to the system page size) was built. The buffer
size was set to 512K (M ¼ 64).4 Table 1 also shows the
height h of the corresponding R*-trees, the number P of
pages that fit the data sets in a sequential file and the
number T of tree nodes. An UltraSparc2 workstation (200
MHz) with 256MB of main memory was used for the
experimental evaluation.

Fig. 11 presents the effect of the four slot index
construction policies on the performance of SISJ for various
join pairs, letting S ¼ 20. The (normalized) overall cost was
computed here and in the rest of the paper after charging
10ms for each page access; a typical value for modern disks5

[32]. In all cases, IRS is better than the other policies, with
SplitXL performing very poorly because the slots have large
overlapping areas introducing extensive replication at the
partitioning of set B. The inferior performance of SplitHC
and SplitSTR compared to IRS is due to the fact that the
entries to be split have large spatial extents which do not
favor the application of packing algorithms [6]. The slot
extents created by these methods are thus worse than the
ones produced by IRS. This can also be evaluated by some
quality metrics of the partitions. For example, the area
covered by more than one partition (overlap area) as a
percentage of the total area of the slots was 142 percent,
53 percent, 34 percent, and 14 percent on the average for the

four partitioning policies. Other quality metrics like the
minimization of margins and replication ratio also prove
the superiority of IRS. In the rest of the paper, we adopt IRS
as the standard slot index construction policy.

The number of slots S may take a wide range of values
according to inequality (2). In the next experiment, we test
the effect of S on the performance of SISJ. The overall costs
of the three joins that involve real data sets are split to
hashing and join cost (Fig. 12). Notice that there is no
significant difference in performance for the various
choices. The hashing cost grows slightly with S, as more
bucket extents have to be tested and more replication is
introduced. The join time is larger for small S when the data
sets are large (e.g., T1 ffl T2) because the chance that the
contents of some slot-bucket pair will not fit in memory
increases. In general, the minimum value of S that can lead
to pairs fitting in memory is a good choice.

In the final set of experiments, we evaluate the join
ordering and repartitioning optimization methods for SISJ.
The number of slots S in the experiments was in the order of
10-25, depending on the size of the data sets. Fig. 13
presents the performance of three versions of SISJ for
various join pairs. The first version of the algorithm does
not utilize bucket join ordering or repartitioning. The
second version uses only bucket join ordering and the last
both heuristics. The bucket join ordering method has effects
only on the I/O time of the algorithm due to the delay of
page flushing. The gain is larger for the small data sets,
where few pages have been flushed before the join phase
and the partitions are small enough to avoid writing many
pages when loading the first join pairs.

The repartitioning method (applied in combination
with bucket join ordering) has a large impact on the
CPU-time performance of SISJ. The deterioration in the
performance of forward sweep is avoided due to the
small number of rectangles in each joined pair after the
repartitioning. The performance gain grows with the size
of data sets because the size of each hash-bucket
increases. Another advantage of repartitioning is that it
introduces extra filtering; the R-tree leaf nodes have less
dead space than the slots and many hashed rectangles are
filtered. There is also a small I/O gain due to the
decrease of memory demands during the slot-bucket join.
In the current experimental settings, the buckets from set
B always fit in memory and repartitioning was applicable.
In the sequel, these two methods are considered in the
standard implementation of SISJ.

4 ANALYSIS OF SINGLE-INDEX SPATIAL JOIN

ALGORITHMS

In addition to SISJ, several other algorithms can be used for
processing spatial joins when only one input is indexed.
This section provides analytical formulae for their expected
I/O performance. The analysis is provided for complete-
ness since to our knowledge, no other work provides cost
formulae for these methods (except from indexed nested
loops) that can be used by query optimizers. Moreover, it
helps to comprehend the functionality and the pros and
cons of the methods. However, it cannot be used for a
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TABLE 1
Characteristics of the Data Sets Used at the Experiments

3. Given a series of different layers of the same region (e.g. rivers, streets,
forests), its workspace is defined as the total area (not necessarily
rectangular) covered by all layers including holes, if any.

4. In all experiments throughout the paper, the data sets used have sizes
between 500Kb-3Mb. We also consider buffer sizes one order of magnitude
smaller than the data sets because we believe that they match real-life
situations best, e.g., a system that joins data sets with sizes in the order of
1Gb is expected to use a memory buffer of at least 100Mb. Thus, we also
expect that the relative differences in performance to be representative for
larger scales. The results of some experiments we did with synethic data
sets on larger scales justify this assumption.

5. Only CPU clock time could be accurately measured in the system
where the experiments were run; we had to estimate the I/O cost using
information from disk benchmarks. At the time this paper is being
published, we expect the average page access cost (10ms) to have dropped,
but so will have the computational power of modern computers, in a similar
rate. Thus, our results can be used to draw general conclusions for other
system settings.



quantitative comparison between these single-index spatial
join algorithms because their performance depends on
different system and data parameters. Instead, we make a
qualitative comparison of the algorithms’ performance,
which is parametric to the size of the memory buffer for
both cases where the nonindexed input is read from disk or
it is an intermediate result of another operator. We also
discuss the importance of splitting the memory buffer
between different join operators in the same query. A
method that estimates a good buffer splitting in a query
with two spatial joins is provided.

In the analysis, we consider that set A is indexed by
R-tree RA and B contains object identifiers and MBRs, but
not whole tuples, to include the case that it may come as a
result of another operator’s filter step. For simplicity, we
assume that the joined data sets contain uniformly dis-
tributed rectangles, whose coordinates are normalized to
take values from the unit space [0,1). The above is a typical
assumption in analytical studies of spatial queries [33], [15],
[34]. Table 2 contains a list of symbols to be used in the
sequel. In the analytical cost formulae of the algorithms, we
assume that the nonindexed input is materialized and read

from disk. Notice that we have made the same assumption

in the experiments of the previous section. If the non-

indexed input is available from an underlying operator, the

cost of reading it should be deducted from the correspond-

ing formulae.

4.1 Slot Index Spatial Join

SISJ initially loads the top k levels of RA in order to find the

appropriate slot level. Let seedA be the number of nodes inRA

from the root until k. The slot index is built in memory, thus no

additional I/O is required. Then, the loaded seedA pages are

not needed and may be removed from the buffer. Set B is

hashed into the slots requiring PB accesses for reading. After

hashing, the size of B becomesPB þ rBPB ÿ fBPB, where rB is

the fraction of replicated data and fB is the fraction of filtered

data. If we keep the buffer warm, ðPB þ rBPB ÿ fBPBÞ ÿM
pages have to be written to disk.6 Thus, the cost of SISJ’s

partition phase is:
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Fig. 11. Performance of SISJ with the four partitioning policies. (a) CPU-time (sec.), (b) page accesses, and (c) overall cost (sec.).

Fig. 12. Overall partition and join cost (in seconds) of SISJ for various values of S. (a) GS ffl GR. (b) AS ffl AL. (c) T1 ffl T2.

Fig. 13. The effects of the two optimization methods on the performance of SISJ. (a) CPU-time (sec.), (b) page accesses, and (c) overall cost (sec.).

6. When the partitioned set is smaller than M no data are flushed to disk,
but let us assume for simplicity that PB þ rBPB ÿ fBPB > M.



CSISJ-part ¼ seedA þ ð2þ rB ÿ fBÞ � PB ÿM: ð5Þ

Next, the algorithm joins the contents of the slot-bucket
pairs. The pages from set A that have to be fetched during
the join phase are the remaining TA ÿ seedA since the
pointers to the slot entries are kept in the slot index and
need not be loaded again from the top levels of the R-tree.
Moreover, some of these will not be fetched at all if a slot is
filtered. We consider the worst case and ignore the
possibility of filtered slots for data set A. We also assume
that each partition from set B fits in memory, thus the SISJ
optimization techniques can be employed. This assumption
is driven from our observations on the experiments of
Section 3.5, where only in exceptions some bucket from B
did not fit in memory; the replication ratio for SISJ when IRS
was used was 25 percent on the average. By using the
bucket join order heuristic, the partitions with the smallest
flushed part will be joined first. If FB is the number of
blocks that are flushed to disk during the join phase of SISJ,
the cost of this phase is:

CSISJÿjoin ¼ TA ÿ seedA þ ð1þ rB ÿ fBÞ � PB þ 2 � FB ÿM;

ð6Þ

as all pages flushed before or during the join phase have to
be reloaded. Summarizing, the total cost of SISJ is:

CSISJ ¼ CSISJÿpart þ CSISJÿjoin

¼ TA þ ð3þ 2rB ÿ 2fBÞ � PB þ 2FB ÿ 2 �M:
ð7Þ

4.2 Indexed Nested Loops Join

The indexed nested loop (INLJ) algorithm applies NB

window queries to RA, where NB is the cardinality of B.
The analysis of INLJ presented here is based on cost
analysis for window queries and provided in other papers
[17], [33], [15]. We assume that the memory buffer organizes
pages using an LRU policy. In addition to the size of the
joined data sets and the available buffer, the performance of
the algorithm also depends on whether data set B is
clustered, i.e., whether two consecutive window queries are
close to each other. For a typical buffer size and when RA is
shallow (the node size is large), a requested intermediate
RA node will be in the buffer with high probability, and
most page faults will occur due to fetching of leaf pages.

The number of leaf nodes that intersect a rectangle rB from
B depends on the average area of rB and the average MBR
area of a leaf node in RA [17]. Since for typical R-tree
structures (due to the large fanout), the number of leaf
nodes is almost equal to TA (i.e., the total number of RA

nodes), the latter parameter can be estimated by the size of a
cell in a grid that uniformly divides the unit space into TA
parts [33]. Let sB be the average length of an 1-dimensional
projection of rB, and let lA be the average length of an
1-dimensional projection of a leaf node MBR in RA; the
number of leaf nodes in RA that intersect rB is [17]:

NintsectðrÞ ¼ TA � ðlA þ sBÞ2 ¼ TA 1=
ffiffiffiffiffiffi
TA

p
þ sB

� �2
: ð8Þ

Equation (8) assumes that both A and B contain
uniformly distributed rectangles in a unit workspace
½0; 1Þ2. The number of page faults CqueryðrÞ generated by a
window query is the expected fraction of the NintsectðrÞ nodes
that will not reside in the buffer. If the data in B are
nonclustered (i.e., two consecutive window queries are not
close to each other with high probability), then:

CqueryðrÞ ¼ NintsectðrÞð1ÿminf1;M=TAgÞ ð9Þ

because the probability of a page that is requested for the
second and subsequent times to be in the buffer is
minf1;M=TAg. Assuming that the two data sets cover the
same area and NB � TA, the first TA window queries will
read all tree pages and the cost of the subsequent ones will
be given by (9) [15]. Thus, the total I/O cost of INLJ is:

CINLJ ¼ PB þ TA þ ðNB ÿ TAÞ � CqueryðrÞ

¼ PB þ TA þ ðNB ÿ TAÞ � TA � ð1=
ffiffiffiffiffiffi
TA

p
þ sBÞ2

� ð1ÿminf1;M=TAgÞ:
ð10Þ

When B is clustered, two consecutive window queries
are close to each other with high probability and the last
factor of (10) will be close to zero for a nontrivially small
memory buffer. In this case, the computational cost
CCPUÿINLJ of the algorithm usually dominates the I/O cost
and should be used by a query optimizer. Typically, the
rectangles in B will be small enough so that out of the C
entries of an intermediate node to be checked for intersec-
tion, only one will be followed at the next level. Let hðRAÞ
be the height of RA and Cintersection the cost of a rectangle
intersection test.7 The CPU cost of INLJ is then:

CCPUÿINLJ ¼ NB � hðRAÞ � C � Cintersection: ð11Þ

4.3 Seeded Tree Join

The seeded tree join (STJ) algorithm has common modules
with SISJ and their analysis is similar. We charge the same
I/O accesses for copying the seed levels, as for determining
the slots in SISJ, i.e., seedA. Inserting the data from B under
the slots costs PB ÿ ðM-seedAÞ I/Os, as the last M-seedA
pages will remain in the buffer. For fairness to STJ (since we
have assumed that the buckets of B in SISJ fit in memory),
we assume that each grown subtree fits in memory. Thus,
the growing phase of a subtree costs only reading its parts

222 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2003

TABLE 2
Symbols Used throughout the Analysis

of Spatial Join Algorithms

7. Four number comparisons are required to verify whether two
rectangles intersect.



that are in disk, constructing it in memory, and then writing

it back. A similar assumption was done for SISJ, where the
hashed data under a slot, or the indexed data from RA by a

slot were assumed to fit in memory. If we follow a similar

policy as the bucket join ordering in SISJ (smallest flushed

partition first), the number of the blocks FB in the buffer

that need to be flushed while constructing the grown
subtrees will be minimized. For instance, if no data under a

slot are flushed to disk, the corresponding subtree is

constructed first. After constructing the subtree and writing

it to disk, more space will be available for the second one.

Summarizing the seeded tree construction phase of STJ

costs:

CSTJ-construction ¼ seedA þ PB þ ðPB ÿ ðM-seedAÞÞ
þ 2 � FB þ TB:

ð12Þ

The I/O cost of RJ, i.e., the matching phase of STJ, has
been studied in [15], where the following formula has been

proposed:

CRJ ¼ TA þ TB þ ðNAðRA;RBÞ ÿ TA ÿ TBÞ � Probðnode;MÞ:
ð13Þ

NAðRA;RBÞ is the total number of R-tree nodes accessed

by RJ, and Probðnode;MÞ is the probability that a requested

R-tree node will not be in memory and will result in a page

fault. For typical data set densities NAðRA;RBÞ depends

solely on TA and TB [34] and the value Probðnode;MÞ can be
estimated using an exponential distribution function deter-

mined by M. For a nontrivial memory buffer, CRJ is slightly

larger than TA þ TB.
In our case, however, we have to consider the lastM-seedA

pages of the constructed subtrees, as well as the seedA pages of

the top k levels of RB, which will remain in memory (write-

reflect policy [22]) after the growing phase and some of them
may not incur page faults when requested during RJ. The

probability that a page is in the buffer when requested is

minf1;M=ðTA þ TBÞg. Thus, the total savings of not reading

pages from RB are TB �minf1;M=ðTA þ TBÞg, and the cost of

STJ matching phase is:

CSTJ-matching ¼ TA þ TB � ð1ÿminf1;M=ðTA þ TBÞgÞ: ð14Þ

The total I/O cost of STJ from (12) and (14) is thus:

CSTJ ¼ 2 � seedA þ 2 � PB ÿM þ 2 � FB
þ TA þ TB � ð2ÿminf1;M=ðTA þ TBÞgÞ:

ð15Þ

4.4 Build and Match

Build and match (BaM) involves the bulk loading of a

normal R-tree for the nonindexed input B (not a seeded one,
like in STJ). Several methods can be used for sorting the

rectangles in order to build the packed R-tree, as discussed

in Section 2.1. In this analysis and in the implementation of

BaM, we consider sort tile recursive (STR) because it is a

simple method, which as shown in [19], builds packed
R-trees of good quality. Methods proposed in [8], [6] are

more complicated and it is questionable whether they

produce better indexes. An extensive comparison of bulk

loading techniques is out of the scope of this paper.

The cost of BaM is rather simple to estimate. It includes the
cost of external sorting and the cost of tree matching. The cost
of external sorting is PB � ð2 � dlogMÿ1ðPB=MÞe þ 1Þ [32].
Typically, each group of

ffiffiffiffiffiffi
PB
p� �

pages formulated after the
last x-merge fit in memory and y-tile sorting can be performed
without extra I/Os. After buildingRB, if a write-reflect policy
is followed, like in STJ, the last M tree pages will remain in the
buffer. The I/O cost of BaM is then:

CBaM ¼ PB � ð2 � dlogMÿ1ðPB=MÞe þ 1Þ þ TA þ TB
� ð2ÿminf1;M=ðTA þ TBÞgÞ:

ð16Þ

4.5 Sort and Match

Sort and Match (SaM) sorts the rectangles from B using STR
and applies a window query to RA for each page of
consecutive rectangles in the sorted output. If B fits in
memory, sorting can be performed without any extra I/Os
and matching is cheap because after matching one page, the
space allocated for it can be appended to the LRU buffer.
However, if B does not fit in memory and external sorting is
required, SaM needs to allocate one page for each run prior
to the final merge plus

ffiffiffiffiffiffi
PB
p�� �� pages from the join buffer for

the y-tile sorting required at STR, limiting thus the memory
dedicated for matching to M ÿ dPB=Me ÿ

ffiffiffiffiffiffi
PB
p�� ��. The cost

of SaM’s match phase can be estimated using the same
analysis as in INLJ, but considering as rectangles of B the
extents of the PB pages. More specifically, PB window
queries are applied to RA, each with an average
1D projection of length 1=

ffiffiffiffiffiffi
PB
p

. Assuming uniform dis-
tribution of these queries and that PB is in the order of TA,
the whole RA will be read. If PB is larger than TA, additional
page faults will occur. In summary, the I/O cost of SaM is
the cost of external sorting plus the cost of the match phase,
derived after changing M, sB, and NB:

CSaM ¼ PB � ð2 � dlogMÿ1ðPB=MÞe þ 1Þ þ TA

þminð0; PB ÿ TAÞ � 1=
ffiffiffiffiffiffi
TA

p
þ 1=

ffiffiffiffiffiffi
PB

p� �2

� 1ÿminf1; M ÿ dPB=Me ÿ
ffiffiffiffiffiffi
PB

p��� ���� �
=TAg

� �
:

ð17Þ

Due to STR sorting, two consecutive window queries
will be close to each other with high probability [28] (i.e., the
queries are clustered). Therefore, the probability that an
incoming window query causes a page fault will be close to
zero if a nontrivial memory part is allocated for matching.
In this case, the cost of SaM drops to the cost of external
sorting and reading RA and the algorithm becomes very
efficient in terms of I/O, assuming that not many levels of
sorting and merging are required.

4.6 A Qualitative Comparison of the Algorithms

Comparing the algorithms from the above analysis is not
straightforward due to the different parameters in the cost
formulae. We will make a qualitative comparison for two
cases: 1) when the nonindexed file is read from the disk and
2) when it comes as a result of another operator.

Let us first assume that the nonindexed input is read
from disk. The I/O performance of INLJ is more sensitive to
the sizes of the data sets than to the buffer size; INLJ can be
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the most efficient algorithm if NB and TA are small, but in
general (i.e., if TA > M) its cost depends on the clustering of
B and is expected to be very high. Furthermore, as
discussed in Section 4.2, the computational cost of the
algorithm is very high for large data sets, making its
application prohibitive. For the rest of the algorithms, we
distinguish two cases, depending on the relative sizes of the
nonindexed input and the available buffer.

First, let PB < M, i.e., the nonindexed input fits in
memory and external sorting can be avoided for BaM and
SaM. The replication factor of SISJ decides the dominant
algorithm. If rB is small enough for PB þ rBPB ÿ fBPB to fit
in memory, then no materialization is required for SISJ and
both SISJ and SaM have optimal I/O cost ðCopt ¼ PB þ TAÞ.
If PB < M < PB þ rBPB ÿ fBPB, SaM is expected to outper-
form SISJ. BaM will be more costly than SaM due to the tree
construction, except for the case where both data sets fit in
memory and the tree can be constructed and maintained
without extra I/O. The same applies for STJ; in general, the
algorithms that build trees (STJ and BaM) have optimal cost
when TA þ TB < M. Otherwise, they should be outper-
formed by SaM and SISJ, given a typical replication factor
(20 percent - 40 percent).

When PB �M, sorting algorithms like SaM and BaM
cannot avoid external sorting, which may lead to a large
overhead if multiple passes of the data are required. We
consider the case when M is large enough for only one
merge to be required. The sorting cost is then 3 � PB. Even
for a large replication ratio this is usually larger than
ð3þ 2rB ÿ 2fBÞ � PB þ 2 � FB ÿ 2 �M, i.e., the hashing and
join cost of SISJ, when PB is not much larger than M. In this
case, the flushed parts in each partition will be small and so
will be FB during join. The cost of SISJ is expected to
increase linearly as the buffer size decreases because of the
linear decrease of the in-memory partitions. On the other
hand, since two consecutive matches at SaM are close to
each other with high probability and due to the LRU buffer
dedicated for matching, the cost of SaM will be the cost of
external sorting plus TA for a wide range of memory values.
Only when the number of pages, M ÿ dPB=Me ÿ

ffiffiffiffiffiffi
PB
p�� ��,

available for matching becomes very small, the join cost
ceases to be trivial and many I/Os during matching will
occur, rendering the algorithm expensive. If PB is much
larger than M, hash-based algorithms (i.e., SISJ, STJ) have an
advantage in terms of I/O over ones that use external
sorting (i.e., SaM, BaM) mainly because the latter methods
have the additional overhead of y-tile sorting, which
reduces the available memory for sorting and causes
multiple passes of the files. It must be noted than STJ could
outperform SISJ if PB is much larger than M and extensive
replication occurs in SISJ.

When data set B is a result of another subquery, the
performance of the algorithms decreases for two reasons.
First, the buffer needs to be shared between query operators
and, therefore, the available memory M for the spatial join
may be limited. Second, algorithms that require the whole
input B to be available in the beginning cannot be directly
applied without materialization of B (blocking operators).
The most suitable algorithm for pipelining intermediate
results is INLJ. The buffer can be shared between any

number of operators and multiple joins can be executed
without any materialization of intermediate results.8 Never-
theless, INLJ is too expensive when the joined data sets are
large. In case of SISJ and STJ, the slots can be determined
prior to the existence of B and the intermediate results can
be partitioned while produced. SISJ maintains the advan-
tage of being fast while demanding a flexible amount of
memory for pipelining since only S pages need to be
allocated for the partitioning phase. Although STJ can also
follow the same procedure, it does not have the flexibility of
choosing the number of slots, which can lead to a bad
memory and disk space utilization. BaM and SaM apply
external sorting before matching, requiring the whole input
B to be available. This situation can be avoided when a
fraction of the memory buffer is dedicated to create sorted
runs for a part of intermediate results. If the number of runs
written to disk is smaller than M, no extra I/Os occur due to
the unavailability of the results. In the next section, we
present a method that approximates a good buffer sharing
when three indexed inputs are joined using pipelining
between two join operators.

As a general conclusion, SISJ and SaM will typically
outperform STJ and BaM because they avoid the I/O
consuming tree construction. Whether SISJ is better than
SaM depends on the available memory and the character-
istics of the data sets, which affect the replication
introduced by SISJ. INLJ is a good option only if its CPU
cost, as estimated by (11), is smaller than the cost of the
other alternatives and either input B is clustered or TA < M.
Finally, SISJ and STJ are more suitable than SaM and BaM
when the nonindexed input comes from another operator
because they can hash the intermediate results immediately
at the time they are produced. The validity of this
qualitative comparison is evaluated in the next section
through experiments. Table 3 and Table 4 summarize the
conclusions of this analysis.

4.7 Analysis of a 2-Join Query Case

In this section, we study in detail the issue of optimal
sharing the memory buffer between a single-index algo-
rithm and an underlying operator that provides the
nonindexed input. We deal with the special case where
three data sets A, B, and C indexed by the R-trees RA, RB,
and RC are joined in a centralized uniprocessor environ-
ment that uses pipelining. Let A overlap Band B overlap C be
the join conditions. A possible way9 to execute the query is
to first execute B ffl C, and then join the intermediate
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8. INLJ can be very efficient when a small number of query results is
required because it never blocks the data flow between pipelined operators.

9. Query optimization algorithms that detrmine the best execution plan
for a multiway spatial join are presented in [23], [24].



results with A. RJ is employed for B ffl C but, since the
intermediate results are not indexed, one method from the
single-index join class has to be applied for the final join.
STJ and BaM are omitted for simplicity because they can be
considered similar to SISJ and SaM, respectively.

The performance of the 2-join query is crucially affected
by how the available memory is shared between the
operations. INLJ is more flexible in the sense that an
intermediate result of B ffl C can immediately be probed
against RA and no materialization is required. Thus, the
buffer can be shared between RJ and INLJ with various
schemes, including a unified one where both operators
share the same buffer. On the other hand, SaM and SISJ
require the whole intermediate result B ffl C to be sorted or
hashed before the final join. When SaM is considered for the
final join, while executing B ffl C it is natural to dedicate
one part of the buffer for the join and the rest for
maintaining in memory and sorting large parts of inter-
mediate results in order to avoid reading them twice during
external sorting. After B ffl C has finished, the sorted runs
are loaded, merged, and probed against RA, provided that
there is enough space for this operation. If there is not
enough space, SaM may require an extra level of sorting
and merging. When SISJ is considered for the final join, at
least S pages have to be allocated for hashing the
intermediate results of B ffl C and at most M ÿ S pages
can be dedicated to RJ. If B and C are very small, but
expected to produce many results, more than S pages
should be dedicated for hashing the results, as this would
minimize the number of flushed pages while hashing. The
whole buffer can be dedicated to the join phase of SISJ.
Fig. 14 summarizes the buffer allocation scheme for the
query when each of the three algorithms is applied at the
final join.

The buffer splitting for the 2-join query is determined by
three factors; the sizes of B and C, the size of the
intermediate result, and the size of A. In the sequel, we
describe how these factors affect the performance of the
three methods and provide a methodology that estimates a
good buffer splitting between the operators.

The cost of RJ is affected by the sizes of B and C and the
number PRJ of buffer pages allocated for the operator (i.e.,
M in (13)). The size of the intermediate result is important
for all three algorithms for different reasons. Let PINT be the
number of pages that can fit the intermediate result of
B ffl C, and NINT the number of tuples in it. INLJ applies
NINT window queries at RA, and this number mainly affects

the CPU cost of the algorithm since the intermediate results
are clustered. When RJ-SaM is applied, PINT will determine
the number of sorted runs produced from the results of RJ.
A large PINT in combination with a large PRJ will create
many short runs, which will occupy a significant part of the
buffer during merging and matching. Moreover, a large
PINT will require many buffer pages to be dedicated for the
y-tile sorting prior to matching, rendering the algorithm
inefficient. SISJ is only affected when PINT is very large and
no bucket from B ffl C can fit in memory in order to be
repartitioned. In this case, the subtrees of RA under the slots
must be small enough so that nested loops for each join pair
can be efficiently applied; otherwise, SISJ should be called
recursively.
NINT (and PINT ) can be estimated using catalog

information from the joined data sets. Following the
analysis in [34] and [15], the number of output tuples when
joining data sets B and C is:

NINT ¼ NB �NC � ðsB þ sCÞ2; ð18Þ

where sX is the average length of a 1-dimensional projection
of a rectangle in a data set X, and the rectangle coordinates
are normalized to take values from [0,1). In other words, the
size of B ffl C is the number of rectangles in B intersected by
an average rectangle in C, multiplied by the number of
rectangles in C. Given the density DB of set B, sB can be
calculated from:

sB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DB=NB

p
: ð19Þ

When joining files with nonuniform distributions, (18)
does not provide accurate join size estimation. In such
cases, a method that divides the workspace into a grid of
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equal sized cells and uses statistical information for each
cell to compute the size of the spatial join [24] can be

employed. Achaya et al. [3] propose a method for
estimating the selectivity of window queries, which can
be more accurate of the one in [24]. However, it cannot be

directly applied for spatial joins since the data space is
decomposed irregularly and the decomposition of the two
data sets may vary significantly.

Finally, the size of RA affects the buffer splitting mostly
in INLJ, where the intermediate results are immediately
probed against RA. If RA is small, not much memory is

required for the window queries, even when PINT is large.
Estimating the optimal buffer splitting at RJ-INLJ is not easy
due to the clustering of intermediate results. SaM is also

affected by the size of RA, but not as much as by the size of
the intermediate result. The cost of SISJ depends on RA only

when PINT is very large, as discussed above.
When using the above analysis, a good buffer split can be

determined by the characteristics of the three joined data
sets. We propose an optimal buffer split estimation method

as follows: The splitting space is approximated by a discrete
number of splits and, for each one, the I/O cost is estimated

for the chosen algorithm (RJ-INLJ, RJ-SaM, or RJ-SISJ). The
approximation that gives the smallest cost according to (13)
and (18) and the corresponding single-index join cost

formula for the final join method is then chosen for
execution. In general, for arbitrarily complex queries, the
optimal buffer splitting between pipelined join operators

should be applied to the execution plan determined by the
query optimization algorithm.

Another optimization issue is when to apply the

refinement step of the query [27]. In the 2-join case analyzed
above, the refinement could be applied in two steps: once
after RJ and once after the single-index join algorithm, or

only once for each triple that qualifies the filter step. If the
final result is estimated to be much larger than the

intermediate one and there is only one join predicate from
A to B or C, the refinement should be performed in two
steps; otherwise, it should be performed only once. In the

future, we plan to investigate on optimizing the order of the
filter and refinement step in complex spatial queries.

5 EXPERIMENTAL EVALUATION

We implemented all single-index join algorithms, namely,

INLJ, STJ, BaM, and SaM and employed the data sets
presented in Table 3 for their experimental comparison. STJ

was implemented in a slightly different way than the one
proposed in [22]. We do not incrementally insert the
rectangles into each grown subtree, but build the trees

bottom-up using the STR bulk loading method [19]. In this
way, 1) the resulting grown subtrees are smaller (as they are

packed), 2) the memory requirements at construction are
minimal (only h blocks have to be maintained in memory,
where h is the height of the grown subtree), and 3) each

subtree is expected to fit in memory and external sorting is
required in few cases. The algorithms are compared in both
cases where the nonindexed input is read from disk or it is a

result of another operator.

5.1 Input B is Read from Disk

In most experimental studies that include single-index
spatial join algorithms [18], [21], [22], [26], the nonindexed
inputs are read from sequential files. In order to comply
with this typical method, we first assume that input B is
read from the disk. In the first set of experiments, we keep
the memory buffer fixed to 512K and evaluate the
algorithms using different page sizes. Fig. 15 illustrates
their performance in terms of CPU time, I/O accesses, and
normalized overall cost for various join pairs and page
sizes. For each joined pair, the nonindexed data set is the
second one. In most cases, the cost of INLJ was too high and
its value is shown on the top of the corresponding bar.
Wherever there is no value for STJ, the algorithm was
inappropriate due to buffer limitations (i.e., the seeded tree
could not be constructed without buffer thrashing). This
problem could be fixed by changing the original algorithm
to group the entries at the seed levels into a smaller number
of slots. However, this would change the nature of the
algorithm since the seeded R-tree would have a different
structure than the existing one. Moreover, the height of the
seeded tree would grow and, as suggested in [5], large
differences in the heights of joined R-trees increase the
overhead of RJ (see also the performance of BaM in some
cases of Fig. 15).

SISJ outperforms the rest of the algorithms in most
cases, while SaM is a close second. In general, SISJ is
better than SaM in terms of CPU time because the
number of matches between R-tree leaf nodes and
repartitioned bucket parts is minimal (as many as the
number of leaf nodes). On the other hand, SaM
matches each produced leaf node of RB with every
RA leaf node that intersects it. The performance of SISJ
degrades only when the replication factor is too large
and the size of B increases significantly after hashing.
In GS ffl GR, for instance, SISJ is outperformed by SaM
because GR fits in memory (PGR < M), but due to the
replication factor (rGR ¼ 23:8%) the ð1þ rGR ÿ fGRÞ � PGR
pages required for the partitioned data in SISJ do not.
Therefore, SISJ flushes pages to disk having larger
overhead than SaM. In T1 ffl T2 and for small pages,
the replication factor of SISJ is also large (for 1K, 2K,
4K rT2 > 40%, for 8K rT2 ¼ 30%), and the algorithm is
again outperformed by SaM.

STJ is never better than SISJ and BaM is never better than
SaM. In most cases, STJ outperforms BaM in terms of I/O,
but it is slightly worse in terms of CPU time. The bulk
loading version of STJ overcomes the large CPU time
overhead observed in [28]. Notice, however, that STJ cannot
be applied in half of the experiments involving 4K or 8K
pages. This is a great drawback of the algorithm as large
page sizes are common in database systems. BaM behaves
very poorly in the AS ffl AL, 4K, and T1 ffl T2, 8K cases
because the resulting packed trees have smaller height than
RA, producing a very large number of CPU intensive
window queries.

Although INLJ has very good I/O performance when the
size of the data sets is smaller or slightly larger than M, it is
always much worse than the other alternatives in terms of
CPU time. For the large data sets, INLJ is I/O bound,
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whereas at GS ffl GR and AS ffl AL it becomes CPU-bound
for large page sizes due to the good utilization of the LRU
buffer. The I/O cost decreases as the page size increases,
because RA becomes shallower. On the other hand, the
computational cost increases with the page size as opposed
to the other algorithms, which are favored by large pages.
Since the extents of the window queries are small, a single
path from the root to the leaves is followed by most queries.
The CPU cost of the query, which is proportional to the
node capacity (see (11)), is not counterbalanced by the
height of the tree, which does not decrease with the same
rate as the node capacity.

In order to test the I/O behavior of the algorithms, we
also conducted experiments using various buffer sizes.
Fig. 16 illustrates the I/O cost for four join pairs, and a 4K
page size. The replication factor rB at SISJ for each pair is
also given. The I/O cost of INLJ for T1 ffl T2 and U1 ffl U2
is presented separately in Table 5 due to its very large
values. At GS ffl GR, STJ was only applicable for buffers
larger than 640K.

The main observation is that the cost of STJ and SISJ
decreases almost linearly with the buffer size. On the other
hand, BaM and SaM have constant performance for small
ranges of buffer sizes. The effects are larger for SaM, which
after a given buffer threshold causes extra page faults only
due to external sorting. As soon as set B fits in memory, the
cost of SaM falls to almost its optimal value. On the other
hand, SISJ, due to replication, does not converge to the

optimal cost as fast as SaM. Nevertheless, the stable

performance of SISJ makes it the best algorithm when B is

larger than the available memory, with the exception of the

case when the replication factor is very large (e.g.,

T1 ffl T2), where it loses the lead from SaM for some buffer

values. It is worth noticing that when the nonindexed input

is slightly larger than the available buffer, STJ outperforms

SaM. This can be explained by the fact that SaM does a bad

memory management by sorting (externally) the whole data

set. If, for example, set B were broken in two parts and SaM

were applied for each part (avoiding external sorting), the

cost of the algorithm would possibly decrease. For very

small buffers, BaM and SaM behave very badly due to the

introduction of extra sorting and merging levels.
The I/O cost of INLJ depends mainly on TA and PB. If TA

is smaller than the buffer (e.g., U1 ffl U2, buffer size >

2816K) no extra I/Os will occur and the algorithm has

optimal performance. When TA is larger than the buffer the

cost depends on the size and the distribution of the set B;

when PB is small, as in GS ffl GR and AS ffl AL, the I/O

cost converges to its optimal value very fast. On the other

hand (see Table 5), when the size of PB is large and the data

are not highly clustered, the I/O cost converges to its

optimal value slowly. However, even for very clustered

data, the CPU cost of INLJ is so high (see Fig. 15) that

renders it inapplicable for joining large data volumes.
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5.2 Input B comes from an Underlying Join
Operator

We tested the relative performance of the three methods by
running the algorithms for 2-join queries A ffl ðB ffl CÞ,
varying the size of the intermediate result. We experimen-
ted with RJ-INLJ, RJ-SaM, and RJ-SISJ, skipping STJ and
BaM because they are inferior to SISJ and SaM in all tested
cases of the previous section. A series of data sets with
100,000 uniformly distributed rectangles was generated for
the experiments. The densitiy of A was set to 0.5 and the
density of B to 0.1. Four versions of C were used with
densities 0.04, 0.1, 0.2, and 0.33 so that the number of tuples
in the intermediate result B ffl C is 25,000, 50,000, 100,000,
and 200,000, respectively. During the experiments, the
buffer size was set to 512K and the page size to 8K. Fig. 17
shows the I/O cost of the three methods for the four
versions of data set C, as a function of the buffer percentage
allocated for RJ (PRJ=M).

In the current experimental settings, RJ-INLJ achieves the
best I/O performance when the buffer is evenly shared
between RJ and INLJ. For small values of PRJ , the I/O cost
of RJ increases exponentially, and the same applies for the
window queries when PRJ is large. Surprisingly, the cost of
the algorithm for the 25K intermediate result was larger

than that of the 50K. This shows that when the intermediate

result is clustered the I/O cost of the algorithm is not

significantly affected by its size. If both RJ and INLJ used a

unified memory buffer, the cost would be 1,886, 1,880, 2,043,

and 2,155 page accesses for the four versions of C. These

values are slightly worse than those of the best buffer

splitting (around 50 percent in Fig. 17a).
RJ-SaM is not affected by the size allocated for sorting the

runs, except from the case where one page for each run plus

the amount of data needed for the y-tile sorting do not fit in

memory. In this case, an extra level of merging, which greatly

degrades the performance of the algorithm, is required (see

PRJ � 30%M and NINT ¼ 200K, PRJ � 80%M, and NINT ¼
100K in Fig. 17b). In general, extra merges should be avoided

wherever possible by tuning the buffer split correspond-

ingly. This tuning can be done following the methodology

proposed in Section 4.7. In the current experimental setting,

the largest possiblePRJ that avoids extra merges achieves the

best performance. Even though a simpler sorting scheme [30]

that avoids the memory demanding y-sorting could be

engaged for SaM, it is expected to be worse due to the bad

quality of the produced packed nodes [19]. We also

experimented by applying SaM using Hilbert values for
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sorting [17], but found it to be very expensive due to the CPU-

intensive calculation of the sorting key.
SISJ shows the most robust behavior to buffer splitting.

The largest PRJ gives the best I/O performance in all cases.

This is due to the fact that the profits in RJ are larger than

the gain from avoiding flushing extra pages in the partitions

to disk. A small S achieves the best I/O performance. There

were no cases where the some bucket or slot data did not fit

in memory at a match, even when PRJ ¼ 90%M, where S

took a small value. However, for PRJ � 70%M and NINT ¼
200K and PRJ � 80%M and NINT ¼ 100K, many buckets

from set B did not fit in memory and the repartitioning

heuristic could not be applied. For these buckets, the join

was performed by applying indexed nested loops using the

subtree under the corresponding slot, resulting in consider-

able CPU overhead. In these cases, the best overall cost is

achieved when PRJ ¼ 60%M and 70%M, respectively. As a

general conclusion for RJ-SISJ, RJ should be given the

largest possible buffer part which leads to a number of slots

S formulating buckets whose average size is smaller than

the available buffer. The optimal buffer splitting for this

case can also be approximated using the methodology

proposed in Section 4.7.
Fig. 18 presents the cost for each algorithm, when the

optimal buffer split is chosen, as a function of the

intermediate result size. Due to the clustering of the

intermediate results, the CPU overhead of INLJ dominates

the I/O cost and is analogous to NINT , i.e., the number of

window queries to be executed. The computational costs of

SaM and SISJ are almost the same and do not increase as

fast as that of INLJ due to the efficiency of the matching

method (forward sweep). SISJ retains an advantage over

SaM in I/Os, which becomes larger when PINT is much

larger than the available buffer; SaM, in this case, cannot

dedicate a large part of the buffer for RJ because it requires

fewer large sorted runs in order to apply the y-tile sorting in
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Fig. 17. I/O cost of the three alternatives as a function of the memory percentage allocated for RJ. (a) RJ-INLJ. (b) RJ-SaM. (c) RJ-SISJ.

Fig. 18. Cost of the three methods when optimal splitting is chosen as a funstion of NINT (in thousands). (a) CPU time (sec.). (b) I/O accesses.
(c) Overall cost (sec.).



memory (see Fig. 17b). The I/O cost of both algorithms
exceeds the one of INLJ for large intermediate results
because they cannot avoid materializing them. Never-
theless, the materialization is worth, especially for SISJ,
which as shown in Fig. 18c, preserves a constant advantage
over INLJ.

As a general conclusion, SISJ is more appropriate than
SaM for pipelined joins because of its large flexibility to the
buffer size. INLJ is good only for relatively small data sets
and intermediate results (<30,000 objects), due to its high
computational cost. It should be used when 1) RA is not
much larger than the memory dedicated for the window
queries, 2) the probed input is clustered, and 3) its
computational cost is comparable to the I/O cost of the
best alternative (e.g., SISJ). Nevertheless, INLJ is a fully
pipelined and parallelizable algorithm that avoids materi-
alization and it is the most suitable when a small part of join
results are required. Other schemes that may perform well
under conditions include partial sorting of the intermediate
results with respect to the key of the rectangle to be joined
next, in order to avoid extra window queries by INLJ and
application of SaM for each part of intermediate result that
fits in memory, in order to avoid external sorting.

6 CONCLUSIONS

Like its relational counterpart, the spatial join is a time and
resource demanding operation, which calls for efficient
processing methods. This paper explores the application of
slot index spatial join (SISJ), a hash join algorithm that
achieves very good performance when computing joins in
the presence of a single R-tree. SISJ builds a structure, called
slot index, over the existing R-tree by grouping the entries at
a specific level into S groups called slots. All data from the
nonindexed input are hashed into buckets with same
extents as the slot MBRs. The hash-buckets are finally
joined with the R-tree data under the corresponding slot.
We propose two optimization methods that achieve overall
performance improvement up to 35 percent compared to
the first implementation of SISJ [24].

SISJ is compared both analytically and experimentally

with four alternative methods that can be applied for

processing spatial joins in the presence of one R-tree,

namely, the indexed nested loop join, the seeded tree join, the

build and match join, and the sort and match method. The

results show that SISJ achieves constantly good perfor-

mance and outperforms other methods in most cases. INLJ

is good only when the joined data sets are relatively small

where its computational cost does not explode to high

levels. SaM is the best alternative when the replication

introduced by SISJ is large and when the nonindexed input

is slightly smaller than the available buffer. On-the-fly

building of an R-tree by using either bulk loading or the

seeded tree method is not recommended in any case. The

spatial join algorithms are also compared when used as

operators at complex spatial query processing, through a

case study where three inputs indexed by R-trees are joined.

SISJ is the most suitable method for this case because it can

immediately hash intermediate results, whereas SaM needs

to materialize them first, in order to sort them. The

experiments show that good buffer splitting between

cascading query operators is crucial for the I/O cost of a

complex query and a method that estimates an optimal

buffer splitting for an execution plan is presented.
Throughout the experiments and discussions in this

paper, we did not consider the difference between random
and sequential I/O accesses. We have also normalized the
CPU and I/O cost into the same scale, providing thus a
uniform “overall” cost. The reason for these assumptions is
that we wanted to keep the comparison model of the
algorithms simple without confusing the reader with extra
parameters about the results. In any case, the relevant
performance of the algorithms and the optimization
methods does not change after the distinction of random
and sequential I/Os. A typical search in the R-tree would
result in mostly random I/Os and a sorting or hashing
operator in mostly sequential I/Os. All methods include a
sorting or hashing module (i.e., the hash phase of SISJ, the
seed phase of STJ and the sort phase of SaM and BaM) and a
tree matching or tree searching module (i.e., the join phase
of SISJ, the RJ phase of STJ and BaM, and the match phase of
SaM), which cause the percentage of random and sequential
I/Os to be about the same. The only exception is INLJ,
which performs mostly random I/Os, but as shown in
Sections 4 and 5, the algorithm already presents a totally
different behavior from the other methods, which would
not change after the consideration of sequential I/Os. It is
an issue of future work to test the relative performance
between SISJ and the algorithm in [2]. Intuitively, the
algorithm presented there may perform better than SISJ
when the nonindexed data are read from disk because of its
powerful sorting modules and the careful trace of the
R-tree. However, this algorithm loses power when com-
bined with other operators (i.e., when the nonindexed input
is an intermediate result) because of the general weakness
of sorting-based methods to utilize the nonindexed input at
the time it is produced.

Summarizing, SISJ is a robust spatial join algorithm

that achieves good performance, based on the following

properties:

1. it avoids the expensive on-the-fly building of an
R-tree,

2. the partitions of the indexed data set are decided
upon the tree structure and hashing it is avoided,

3. the partitions of the build input are guaranteed to
have, approximately, the same number of objects, as
they point to almost the same number of R-tree entries;
skewed data are thus handled very efficiently,

4. it adapts to limited memory resources, and
5. it is suitable as a module of an execution engine that

uses pipelining because it can immediately hash
produced intermediate results.
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