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Abstract Given a query location q, Geo-Social Ranking
(GSR) ranks the users of a Geo-Social Network based on
their distance to q, the number of their friends in the vicinity
of q, and possibly the connectivity of those friends. We pro-
pose a general GSR framework and four GSR functions that
assign scores in different ways: (i) LC, which is a weighted
linear combination of social (i.e., friendships) and spatial
(i.e., distance to q) aspects, (ii) RC, which is a ratio com-
bination of the two aspects, (iii) HGS, which considers the
number of friends in coincident circles centered at q, and
(iv) GST, which takes into account triangles of friends in the
vicinity of q. We investigate the behavior of the functions,
qualitatively assess their results, and study the effects of their
parameters. Moreover, for each ranking function, we design
a query processing technique that utilizes its specific char-
acteristics to efficiently retrieve the top-k users. Finally, we
experimentally evaluate the performance of the top-k algo-
rithms with real and synthetic datasets.
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1 Introduction

Geo-Social Networks (GeoSNs) that capture social rela-
tions of users and their locations are increasingly popu-
lar. Foursquare supports over 45 million users, who have
checked-in more than 5 billion times at over 1.6 million
businesses [9]. Moreover, even conventional social networks,
such as Facebook and Twitter, have expanded their services
by introducing check-in functionality. The combination of
spatial and social information has generated novel oppor-
tunities for marketing and location-based advertising, and
additional requirements for query processing. For instance,
Foursquare has cooperated with GroupOn to provide offers
from merchants to users nearby [10]. This information, when
posted on users’ public profiles may influence their friends
to visit the same places.

Given a location q, Geo-Social Ranking (GSR) ranks the
users of a GeoSN based on their distance to q, the number of
their friends in the vicinity of q, and possibly the connectivity
of those friends. As an example, assume a merchant wishes to
post an advertisement using a location-based service; promis-
ing targets are users with high GSR scores since in addition
to being nearby merchant’s location, they can also influence
their friends in the vicinity to visit. As another example, van
Gennip et al. [20] describe a dataset containing the locations
and social interactions among street gang members in Los
Angeles, as observed by police officers. GSR on this dataset
can be used to identify possible suspects at locations with
high concentration of connected gang members.

Although GeoSNs have attracted a considerable attention
in recent years, currently there is no work on the retrieval of
the top users based on their spatial and social characteristics
with respect to a query. Previous approaches (i) focus on
retrieving groups instead of individual users [23], (ii) are
restricted to users with a specified number of friends [1,14],
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or (iii) take into account only the distances among users,
instead of their distances to a specific location [26]. In this
paper, we propose several GSR functions, and associated top-
k query processing techniques, suitable for a wide range of
applications with different characteristics.

Figure 1 motivates the need for diverse GSR functions.
The gray points refer to the locations of 14 users, the edges
represent their social relations, and the black star is a query
location q. The table shows the Euclidean distance ||q, vi ||
between q and each user vi . In some application, v1 may
be considered the top-1 user because he is the closest to q,
and has two friends (v2, v4) that are very near q. In another
scenario, user v4 may be the best, despite being farther than
v1, since he could influence 5 friends (v1, v3, v5, v7, v8)
in the area around q. Finally, v3 could also be considered
the most highly ranked user because he has 3 friends (v4, v6,
v7), reasonably close to q and tightly connected to each other
(i.e., the subgraph containing v3, v4, v6, v7 almost forms a
clique).

In order to capture different application requirements, we
introduce a general Geo-Social Ranking framework and pro-
pose four functions that cover several practical scenarios: (i)
linear combination (LC), (ii) ratio combination (RC), both
of which are GSR adaptations of two popular ranking func-
tions used in related domains, e.g., in spatial-keyword search
[8,22], (iii) h-Geo-Social (HGS) Ranking function, inspired
by the bibliographic h-index, which assigns each user a score
based on the number of friends in coincident circles centered
at q, and (iv) Geo-Social Triangles (GST) ranking function,
which in addition to distance takes into account the friends
that a user and his friends have in common, i.e., triangles that
are close to the query point.

LC provides a natural way to express real-life constraints,
such as the fact that an advertiser is only interested in users
within a range, e.g., a restaurant sending lunch promotions to
potential customers within 0.5 km. RC can be used in cases
where locality is crucial. For instance, a cinema has empty
seats for a film starting soon and sends coupons to users in
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close proximity. On the other hand, HGS is useful for cases
where the distance aspect is not critical, e.g., a concert pro-
motion targeting users with many friends in the wider area of
the concert. GST is suitable for applications where connec-
tivity is essential or desirable for ranking, e.g., a promotion
similar to that of the concert, but this time for an event (party)
that involves social interaction among the various users.

We investigate the behavior of the functions in depth, qual-
itatively assess their results, examine their correlation, and
study the effects of their parameters. Moreover, we design
query processing techniques that utilize the individual func-
tion characteristics to efficiently retrieve the top-k users.
Specifically, we show that some functions can be processed
by range queries, while others require incremental retrieval
of the results based on the branch and bound framework. All
processing algorithms utilize a well-defined set of primitive
operations that are supported by the majority of commer-
cial GeoSN APIs. Consequently, the proposed techniques
are effortlessly adapted by popular GeoSN or other novel
applications that can access those APIs. The contributions of
the paper are summarized below.

– We introduce the GSR problem and propose four diverse
functions that rank users based on their social connections
and their distances to an input location.

– We develop specialized algorithms that retrieve the top-k
users according to each function.

– We visualize the top users of different functions using a
real geo-social dataset, examine the effect of their para-
meters, measure their correlation using Kendall’s τb rank
coefficient [13], and discuss their suitability to different
application requirements.

– We experimentally evaluate the performance of the query
processing techniques using real and synthetic data.

The rest of the paper is organized as follows. Section 2
overviews related work. Section 3 formalizes the problem of
retrieving the top-k users in GeoSNs. Sections 4–7 propose
the ranking functions and the corresponding query process-
ing methods. Section 8 contains a qualitative evaluation of
the ranking functions using a real dataset. Section 9 compares
the efficiency of the top-k algorithms experimentally. Finally,
Sect. 10 concludes the paper with directions for future work.

2 Related work

Given a query point q and two positive integers m, k, the
Nearest Star Group query (NSG) returns the k star groups
of m members nearest to q; each group must have a user
who is friend with all the other users in the group [1]. Given
a query point q and two positive integers m, p, the Socio-
Spatial Group query (SSG) returns a group of m users that (i)
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minimizes the total distance to q, and (ii) each user is on the
average connected to at leastm−p other group members [23].

The above queries retrieve groups, instead of individual
users. The input parameter m on the group size causes unde-
sirable complications for GSR retrieval of single users. For
instance, although NSG can rank the central user of a star
group, it only returns users with at least m−1 friends; more-
over, if a user has more than m friends near q, only the m−1
closest is considered. The application of SSG to individual
users is not obvious. Furthermore, in addition to the group
size m, it restricts the social structure (by the m − p con-
straint).

Given a userv and a positive integer k, the Circle of Friends
query (CoF) outputs a subgraph g that consists of v and k−1
friends such that both the diameter of g and the maximum dis-
tance between any two users in g are minimized [14]. Given a
user v, the Social and Spatial Ranking query (SSRQ) finds the
top-k users based on their spatial proximity and social con-
nectivity to v [15]. CoF only considers direct friendships,
whereas SSRQ also takes into account multi-hop connectiv-
ity. Both queries focus on users instead of query points, i.e.,
they explore the neighborhood of the input user, and are inap-
plicable to GSR.

Given a user v and a set of users U , the Geo-Social Influ-
ence (GSI) metric computes the number of users inU that can
be influenced by v based on their social and spatial proximity
to v [26]. Given a user v, the Node Locality (NL) metric mea-
sures the spatial closeness between v and his friends, while
the Geographic Clustering Coefficient (GCC) combines the
social clustering coefficient of v (i.e., how close v and his
friends are to forming a clique), along with spatial criteria
(i.e., each triangle of v has a score based on the spatial prox-
imity of its members) [16]. Scellato et al. [17] introduce three
more GeoSN metrics: i) average distance (AD), ii) distance
strength (DS), and average triangle length (ATL). AD is the
average distance between a user v and his friends. DS is the
sum of the distances between v and his friends. The length of
a triangle is the sum of the distances between the members
of a triangle. ATL of v is the average length of the triangles
that v forms with his friends.

All the above metrics are used to identify characteristics
of a GeoSN, independent of a query point. Therefore, they
are not applicable to GSR. Moreover, they constitute math-
ematical definitions, without corresponding computation
algorithms. Our proposed GST method applies concepts sim-
ilar to GCC and ATL for GSR. Brown et al. [6] and Scellato
et al. [18] introduce GeoSN metrics that predict friendships
based on the history check-ins. Finally, the GeoSNs queries
of [25] focus on proximity detection between friends. Sev-
eral papers propose Geo-Social recommendation systems
[21,24,27]. All these methods are offline data mining tasks
that are based on historical data, e.g., users’ and their friends’
past check-ins.

3 Problem formulation

A social network can be modeled as an undirected graph
G = (V, E), where a node vi ∈ V represents a user and an
edge (vi , v j ) ∈ E indicates the friendship between vi and
v j ∈ V . A GeoSN is a social graph, where each node may
contain the coordinates of the corresponding user.

Let Vi be the relevant friends of user vi for a given query
location q. A Geo-Social Ranking function f (q, vi ) assigns
to each user vi a score that considers (i) the distance ||q, vi ||
between the query and vi , (ii) the distance between q and the
users in Vi , (iii) the cardinality of Vi , and (iv) possibly the
social connectivity of Vi . Factors (i) and (ii) constitute the
spatial aspect, whereas (iii) and (iv) correspond to the social
aspect.

Definition 1 (GSR Top-k query) Given a query point q, a
positive integer k and a GSR function f return a list R of
k tuples R = ({v1, f (q, v1), V1}, . . . , {vk, f (q, vk), Vk})
such that for each 1 ≤ i ≤ k:

f (q, vi ) ≥ f (q, vi+1) ∧
(�{vl , f (q, vl), Vl} /∈ R : f (q, vk) ≤ f (q, vl))

Specifically, the output contains the k users with the highest
scores, and their relevant sets, i.e., their friends that partic-
ipated in the computation of those scores. Ideally, the top-k
users should be near q and have many friends close to the
query, possibly tightly connected to each other. As discussed
in the running example of Fig. 1, different GSR functions are
essential because various applications may involve diverse
concepts of spatial and social aspects and employ different
ways to combine them for the computation of the total user
score.

In the rest of the paper, we propose algorithms that exploit
the characteristics of GSR functions to enhance performance.
Our algorithms use some social and spatial primitives: (i)
Get Friends(vi ) returns the friends of vi and their locations,
(ii) GetDegree(vi ) returns the number of vi ’s friends, (iii)
RangeUsers(q, r) returns the users within distance r from
q, (iv) NearestUsers(q, k) returns the k nearest users, and
(v) NextNearestUser(q) returns incrementally the next
nearest user to q.

These operations are easily supported by GeoSNs, e.g.,
in an adjacency list implementation of the social network,
primitives (i) and (ii) simply involve the retrieval of the
friend list of vi . The efficient processing of (iii) to (v) neces-
sitates a spatial index, which is already present in most
GeoSNs for supporting services like Facebook’s Nearby and
Foursquare’s Radar (both services return the friends that
recently checked-in near the current location of a user).
Several implementations of these primitive operations in dif-
ferent architectures are compared in [1]. Although in this
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paper we assume Euclidean space, the distance metric is
orthogonal to the ranking function; we can use other distance
functions (e.g., network), if they are supported by the system.

4 Linear combination

The linear combination (LC) of partial scores has been widely
used as a ranking function [8,28]. According to LC, the score
of a user vi is the weighted sum of the normalized social
and spatial scores of vi . For the social score, we consider
the number of relevant friends of vi , whereas for the spatial
score we consider their distances to the query point.

4.1 Ranking function

Given a query q, let |Vi | be the set that contains1 user vi and
his relevant friends for q. In LC, the social score Si of vi is
based on the cardinality |Vi |, normalized in the range (0, 1].
Specifically, Si = |Vi |

F , where F = dgmax + 1 and dgmax is
the maximum node degree in the social graph. The spatial
score Gi of vi is inversely proportional to the sum of the
distances of users in Vi to the query point q. To adjust the
spatial score in the range (0, 1], we can divide it with the
maximum possible sum of distances defined as F · C , i.e.,

Gi = 1 −
∑

v∈Vi ||q,v||
F ·C , where C is a constant (e.g., it can be

the maximum distance between the query and any user). As
we will discuss shortly, there are several choices for setting
the values of normalization parameters F and C . Indepen-
dently of these values, Eq. 1 describes the LC function, where
w ∈ (0, 1) specifies the relative importance of the social and
spatial costs; when w > 0.5, the number of relevant friends
is more important than their distance to the query.

fLC (q, vi ) = w · Si + (1 − w) · Gi ⇒
fLC (q, vi ) = w · |Vi |

F
+ (1 − w) ·

(

1 −
∑

v∈Vi ||q, v||
F · C

)

(1)

Given Eq. 1, our goal is to compute the relevant set Vi that
maximizes fLC (q, vi ). Assume that we consider the inclu-
sion of a friend u j of vi in Vi : adding u j increases the
social score by �Si = w

F and decreases the spatial score

by �Gi = (1 − w) · ||q,u j ||
F ·C . In order for u j to be included

in Vi , the positive contribution should exceed the negative:

�Si >�Gi ⇒ w

F
> (1− w)

||q, u j ||
F · C ⇒||q, u j ||< w · C

1 − w

1 The inclusion of vi in the relevant set Vi simplifies the problem for-
mulation in LC and RC.

Consequently, the relevant set of vi is defined in Eq. 2:

Vi = {vi } ∪
{

u j : u j friend of vi ∧ ||q, u j || <
w · C
1 − w

}

(2)

We refer to the circle centered at q with radius w·C
1−w

as the
relevant range. According to Eq. 2, only the users in the
relevant range can participate in the relevant sets of their
friends. Note that Eq. 2 does not restrict vi , who can be
arbitrarily far from q. To overcome this issue, we constrain
vi to be located within the bounds of the relevant range as
well. Assuming w = 0.2, C = 30 (i.e., w·C

1−w
= 7.5) in

the example of Fig. 1, users v1 to v6 are closer to q than
7.5, and in the relevant range, the rest are ignored. Observe
that as opposed to w and C , which determine the relevant
users, the parameter F only affects their relative scores.
Accordingly, we can reset F using the maximum number
of friends in the relevant range. In this example, the user
with the most friends is v4 with V4 = {v4, v1, v3, v5}, and
F = 4.

A potential weakness of LC is that the result is sensi-
tive to the value of the normalization parameter C . At one
extreme, large values of C may lead to a wide relevant range
that contains numerous users, several of which are very far
from the query. This has negative effect on both the cost of
query processing and the quality of the top-k result since the
scores take into account distant friends that are unrelated to
the query. At the other extreme, a small relevant range may
contain no users; in this case, for each vi we have Vi = {vi }
and Si = 1

F because the contribution of each user to the total
score of his friends is negative. Since the social score of all
users is constant, their ranking depends only on their distance
to q, and the top-k query would degenerate to a conventional
k nearest neighbor search.

Ideally, the relevant range should contain a number of
users K (K > k) large enough to include friends of the top-
k users, but at the same time it should preserve the query
locality. To resolve this issue, we propose two approaches
for setting C : (i) user-defined and (ii) data-dependent. In (i),
the user explicitly specifies the value of C (e.g., a merchant
may be interested in potential customers within 1 km from
his location). In (ii), the value of C is set so that the expected
number K of users within the relevant range is a function
of k (e.g., K = k4). For this estimation, we use a multi-
dimensional histogram capturing the user locations and the
cost model of [19]. Note that for both approaches, the rel-
evant range is w·C

1−w
. If w = 0.5, this value is the same as

C . If w > 0.5, the relevant range is expanded with respect
to the (user-defined or data-dependent) value of C , to allow
the inclusion of friends that are farther than C . On the other
hand, if w < 0.5 the relevant range shrinks to focus on the
users nearest to q.
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Input: Location q, positive integer k, weight w, radius C
Output: Result set R // R is sorted on fLC in desc. order

1. bs = 0, R = ∅
2. U = RangeUsers(q, w·C

1−w )
3. For each vi ∈ U
4. Vi = {vi} ∪ (GetFriends(vi) ∩ U)

5. fLC(q, vi) = w · |Vi|
F + (1 − w) · (1 − v∈Vi

||q,v||
F ·C )

6. If fLC(q, vi) > bs
7. add {vi, fLC(q, vi), Vi} to R

8. bs = score of the kth tuple in R
9. While |R| < k
10. vi = NextNearestUser(q) outside relevant range
11. add {vi, fLC(q, vi), Vi} to R
12. Return R

Fig. 2 LC top-k algorithm

4.2 Query processing

Equation 2 leads to a simple and efficient algorithm: perform
a range query to find all users within distance w·C

1−w
fromq. For

each of these users, compute the relevant set and score, and
return the k users with the highest scores. Figure 2 shows
the pseudocode for LC query processing. Line 2 applies
the RangeUsers primitive to find all users in the relevant
range. Then, for each retrieved user vi , Lines 4–5 calcu-
late the relevant set (by intersecting the results of primitives
RangeUsers and Get Friends) and the score. If the total
score of vi exceeds the kth highest score bs retrieved so far,
vi is inserted into the result set R, and bs is updated accord-
ingly. If there are fewer than k users in the relevant range,
Lines 9–11 complete the result by incrementally retrieving
the nearest neighbors of q.

We can extend LC to consider the social connectivity of the
users in the relevant sets. In particular, given the spatial range
C and preferences factor w, the linear combination connec-
tivity (LCC) function considers the same users as LC, i.e.,
those within distance w·C

1−w
fromq, and computes identical rel-

evant sets, but it assigns a score to each user vi based on Eq. 3.

fLCC (q, vi ) = w · 2 · |Ei |
F · (F − 1)

+(1 − w) ·
(

1 −
∑

v∈Vi ||q, v||
F · C

)

(3)

where Ei = {(u, v) ∈ E : u, v ∈ Vi } and 2·|Ei |
F ·(F−1)

is the
normalized density of the graph (Vi , Ei ). The only modifi-
cation to the algorithm in Fig. 2 is in Line 5, where Eq. 3
replaces Eq. 1.

5 Ratio combination

Similar to LC, the ratio combination (RC) of two different
attributes has been often used in the literature for ranking
purposes [2,22]. In GeoSN, the RC score of a user vi is pro-

portional to the cardinality of the relevant set Vi and inversely
proportional to the sum of distances between q and the users
in Vi .

5.1 Ranking function

We start with a straightforward implementation of RC,
explain its shortcomings, and then propose a more general
function. Let Vi be the set that contains vi and his relevant
friends; as we will show, Vi is different from the one obtained
by LC. According to Eq. 4, the RC score of a user vi is simply
the ratio of |Vi | over

∑
v∈Vi ||q, v||. The usage of multiplica-

tive weights (e.g., w · |Vi |) would be meaningless as it simply
multiplies each score by a constant, without affecting the rank
of the results.

fRC (q, vi ) = |Vi |
∑

v∈Vi ||q, v|| (4)

Consider the inclusion of a friend u j of vi in Vi . This addition
would increase both the cardinality of Vi (by 1) and the sum
of distances (by ||q, u j ||) yielding a new score for vi :

|Vi | + 1

||q, u j || + ∑
v∈Vi ||q, v||

Friend u j is beneficial for vi , if and only if the new score
exceeds the old one:

|Vi | + 1

||q, u j || + ∑
v∈Vi ||q, v|| >

|Vi |
∑

v∈Vi ||q, v|| ⇒

||q, u j || <

∑
v∈Vi ||q, v||

|Vi |
In other words, u j contributes to the score of vi , if and only if
his distance to q is less than the average distance of the users
currently in Vi . We call the circle centered at q with radius∑

v∈Vi ||q,v||
|Vi | the current range2 of vi . The current range leads

to an intuitive way for computing the relevant set Vi of each
user: (i) initialize Vi = {vi }, (ii) retrieve the friends of vi and
sort them in increasing order of their distance from q, (iii)
incrementally add the sorted users in Vi , until reaching the

first friend u j such that ||q, u j || ≥
∑

v∈Vi ||q,v||
|Vi | . User u j and

all subsequent friends in the ordered list are out of the current
range; thus, they cannot have a positive contribution to the
total score of vi and are excluded from Vi .

As opposed to LC, Eq. 4 does not involve normalization
parameters (e.g., F ,C). However, for small values of k, top-k
retrieval may still degenerate to k nearest neighbor search.

2 Note that the current range in RC depends on the friends already in
Vi , whereas the relevant range in LC is defined based only on w and C ,
and it is the same for all users.
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Fig. 3 RC example

q Distance 
from q

v1

1
v2

2
v3

3
v4

4

For instance, consider the four nearest users to the query q
depicted in Fig. 3, with distances 1, 2, 3, 4, respectively. The
only social connections are between v1 and v4, and between
v2 and v4. Using Eq. 4, the relevant sets of the four users are
V1 = {v1}, V2 = {v2}, V3 = {v3}, V4 = {v1, v2, v4} and their
scores are 1, 1

2 , 1
3 , 3

7 , respectively; i.e., the results of top-k
and k-NN search start differentiating for k > 2.

Intuitively, the problem exists because the relevant set
Vi does not contain users with distance larger than ||q, vi ||.
Therefore, the top-1 result is always the nearest user of the
query. The subsequent (k > 1) top-k users are also likely to
be k-NNs of the query, unless there are users farther (e.g., v4

in the above example) that are friends with those very close
to the query. To resolve this issue, we modify the scoring
function of RC using Eq. 5, where w ∈ [0, 1) increases with
the importance of the social compared to the spatial aspect.
As we will show, the subtraction of w from the numerator of
the fraction allows the extension of the current range of vi
beyond ||q, vi ||, differentiating the top-k and k-NN sets based
on the social connectivity. If w = 0, Eq. 5 reduces to Eq. 4.

fRC (q, vi ) = |Vi | − w
∑

v∈Vi ||q, v|| (5)

In order to define the new current range, we follow the same
approach as in Eq. 4; i.e., a friend u j is beneficial for vi , if
and only if:

||q, u j || <

∑
v∈Vi ||q, v||
|Vi | − w

⇒

||q, u j || <
|Vi |

|Vi | − w
·
∑

v∈Vi ||q, v||
|Vi | (6)

The process for computing the relevant sets remains the
same, but we use the new current range to define the stop-
ping condition. Specifically, Fig. 4 shows the pseudocode of
RC_Relevant Set , which returns the relevant set of a user
vi . The algorithm takes as input vi , the query location q,
the weight w, and an array A, which contains the distances
between the friends of vi and q, sorted in ascending order.
Initially,Vi is set to {vi }. Then, friends are added toVi accord-
ing to their order in A, until finding the first user u j , whose

distance to q reaches or exceeds |Vi ||Vi |−w
·

∑
v∈Vi ||q,v||

|Vi | .
Compared to Eq. 4, the incorporation of w in Eq. 5 extends

the current range by a factor |Vi ||Vi |−w
. Figure 5 plots the value

of |Vi ||Vi |−w
as a function of |Vi | and w. The extension is max-

imized for small |Vi |; e.g., if |Vi | = 1 and w = 0.5, then
|Vi ||Vi |−w

= 2, so that if vi has a friend u j within distance less

Input: user vi, location q, weight w, sorted array of distances A
Output: Relevant Set Vi

1. Vi = {vi}
2. uj = user with minimum distance in A

3. While ||q, uj || < |Vi|
|Vi|−w · v∈Vi

||q,v||
|Vi|

4. Vi = Vi ∪ {uj}
5. uj = user with the next distance in A
6. Return Vi

Fig. 4 Pseudocode of RC_Relevant Set

|Vi| w

 1

 1.5

 2

 2.5

 3

 3.5

 4

|V
i|/

(|
V

i|-
w

)

 1
 2

 3
 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

|V
i|/

(|
V

i|-
w

)

Fig. 5 Range extension versus |Vi | and w

than 2·||q, vi || fromq,u j is added toVi because this increases
fRC (q, vi ). On the other hand, the effect of w diminishes
with |Vi |; e.g., if |Vi | = 5 and w = 0.5, then the range is
extended by only 10

9 . The intuition is that as the cardinality of
Vi increases, we restrict the distance around q where we look
for relevant friends of vi , in order to preserve query locality.
In the example of Fig. 3, if w = 0.7, then the relevant sets
of the four users are V1 = {v1}, V2 = {v2, v4}, V3 = {v3},
V4 = {v1, v2, v4} and their scores are 0.3, 1.3

6 = 0.22, 0.3
3 =

0.1, 2.3
7 = 0.33, respectively. Note that the top-1 user is v4,

despite being the fourth nearest neighbor of q, because of his
friendship with v1 and v2.

5.2 Query processing

Top-k query processing using RC is based on the branch and
bound (BnB) framework. Specifically, BnB retrieves users in
an iterative manner, computes their score with respect to a
function f , maintains the k users with the highest scores, and
terminates when the upper bound score T of any unseen user
cannot exceed the score bs achieved by the retrieved users.

Figure 6 illustrates RC query processing. Users are con-
sidered incrementally according to their distance from q. For
every retrieved user vi , lines 3–5 obtain his friends, sort
them in ascending order of their distance to q, and insert
them in an array FA. Line 6 invokes Relevant Set to com-
pute the relevant set Vi . If the score of vi exceeds the kth
highest score of the users encountered so far, stored in vari-
able bs , then vi is inserted in the result R, and bs is updated
accordingly. The main intricacy refers to the termination con-
dition. Specifically, the incorporation of w in RC complicates
the computation of the upper bound score T that a not-yet
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Input: Location q, positive integer k, weight w
Output: Result set R sorted on fRC in desc. order

1. bs = −∞, T = +∞, R = ∅, index = 0
2. While bs < T
3. vi = NextNearestUser(q)
4. Ni = GetFriends(vi)
5. FA = sorted array with distances between q and users in Ni

6. Vi = RC RelevantSet(q, vi, w, FA)
7. fRC(q, vi) = |Vi|−w

v∈Vi
||q,v||

8. If fRC(q, vi) > bs
9. add {vi, fRC(q, vi), Vi} to R

10. bs = score of the kth tuple in R
11. index = index + 1
12. If index ≤ dgmax

13. RA[index] = ||q, vi||
14. For m = index + 1 to dgmax

15. RA[m] = ||q, vi||
16. Vnr = RC RelevantSet(q, vi, w,RA)
17. T = |Vnr |−w

v∈Vnr
||q,v||

18. Return R

Fig. 6 RC top-k algorithm

retrieved user vnr can reach because, if w > 0, the relevant
range of vnr may extend beyond ||q, vnr ||.

Lines 11–17 in Fig. 6 deal with the computation of T .
Let dgmax be the maximum node degree in the social graph.
The distances of the first dgmax users (i.e., the dgmax users
nearest to q) are stored in an array RA, where RA[index]
has the distance of the last retrieved user vi . The upper
bound score for any not-yet retrieved user vnr occurs when
(i) ||q, vnr || = ||q, vi || because vnr is at least as far as vi ,
and (ii) vnr is a friend with the dgmax closest users to q.
Based on this, we can compute the best possible relevant
set Vnr of vnr by invoking RC_Relevant Set (q, vi , w, RA).
The bound T corresponds to the score achieved by Vnr . If the
number of retrieved users index is below dgmax, lines 14–15
fill the remaining distances (RA[index + 1] to RA[dgmax]),
assuming that all non-retrieved users up to dgmax have the
same distance to q as the last user vi .

RC can be extended to capture the connectivity of the
relevant sets. Equation 7 presents the ratio combination con-
nectivity (RCC) function, where instead of the cardinality of
Vi used in RC, it considers the connectivity of the users in Vi .

fRCC = |Ei | − w
∑

v∈Vi ||q, v|| (7)

The relevant set Vi of vi deviates from that of RC. Specif-
ically, to compute Vi that maximizes fRCC , we utilize the
maximum weighted densest subgraph (MWDS) problem.
Given a graph with positive vertex weights, MWDS finds the
subgraph of maximum weighted density, defined as the num-
ber of edges divided by the total weight of the vertices [3]. In
our setting, the input graph to MWDS is the induced graph
of vi ’s friends, where a vertex weight represents the distance
of the corresponding user to q. Thus, the relevant set Vi will
contain vi and his friends in the result of MWDS. The RCC
processing algorithm is similar to the algorithm of Fig. 6, but

the RC_Relevant Set function is replaced by a method for
solving MWDS [3]. Finally, lines 7 and 17 compute Eq. 7.

6 h-Geo-Social Index

The h-Geo-Social (HGS) Ranking function is inspired by the
bibliographic h-index. The h-index of an author corresponds
to the maximum number h of his papers that have at least h
citations [11].

6.1 Ranking function

Let D1, D2, . . . , Dl , . . ., be an increasing sequence of pos-
itive numbers and group Gi = {vi ∪ N (vi )}, where N (vi )

denotes the set of friends of user vi . The HGS index hi of vi is
the largest integer l such that ∀m ∈ [1, l], ∃m members of Gi

within distance Dm from q. If such an l does not exist, or if vi
is further than Dl distance from q, then hi = 0. The score of a
user vi is equal to his HGS index, i.e., fHGS(q, vi ) = hi , and
the relevant set Vi contains vi and his friends within distance
Dl from q.

To set the values of D1, D2, . . ., we use the arithmetico-
geometric sequence3 presented in Eq. 8. Parameter w (w >

0) adjusts the relative importance of the social and spatial
aspects. A large value of w favors social connections since
it leads to large ranges and increases the probability that a
user has friends within the ranges near the query; w can be
set using the user-defined and data-dependent approaches
described in Sect. 4.

Dl =
l∑

b=1

w + (b − 1) · w

2b−1 (8)

Figure 7 applies HGS ranking to the running example assum-
ing w = 2.5. The dashed circles correspond to the ranges
defined by Dl for 1 ≤ l ≤ 5, i.e., D1 = w = 2.5, D2 =
5, D3 = 6.9, D4 = 8.1, D5 = 8.9. Note that the dif-
ference between consecutive ranges gradually decreases in
order to achieve query locality. Consider user v4, with friends
{v1, v3, v5, v7, v8}. Observe that (i) v4 has exactly one friend
in between each of the first 5 rings, i.e., 1 friend within
distance D1 from q, 2 friends within D2 and so on, up
to 5 friends within D5, and (ii) ||q, u4|| < D5. Thus,
fHGS(q, v4) = h4 = 6. Similarly for user v2, we have
fHGS(q, v2) = 2 since ||q, v2|| < D1 and v2 has a friend v1

within distance D1 from q, but no other friend within D3.

3 An arithmetico-geometric sequence is the result of the multiplication
of a geometric progression with the corresponding terms of an arithmetic
progression. The sequence exhibits geometric decay and approaches a
maximum value of 4 · w, i.e., limb→∞ Db = 4 · w. Other series (e.g.,
arithmetic, geometric) can also be applied.
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qv1
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D2 = 5

v14

D1 = 2.5

D3 = 6.9

D5 = 8.9

Fig. 7 HGS ranges

The ranking function of HGS allows the progressive
expansion of Vi , and the corresponding score increases,
depending on the number of friends of vi near the query.
Consider for instance that vi has 2 friends u1, u2 within dis-
tance D1. If ||q, vi || ≤ D2, then hi is at least 3. Assuming
that there are 2 more friends u3, u4 of vi farther than D1

and closer than D3, then these are also included in Vi and
hi becomes 5. The expansion continues accordingly if there
are more friends within distance D4. Consequently, HGS is
preferable for applications that benefit from this progressive
behavior, i.e., favor the inclusion of friends far from the query
for users who have many friends in the proximity.

6.2 Query processing

According to the definition of HGS, the only users with a
nonzero score are those who either are within distance D1

from q, or have at least a friend in this range. Based on this
observation, top-k query processing using HGS involves two
phases. Phase 1 performs a range query to find users within
distance D1 and retrieves their friends within distance 4 · w.
The users outside this range cannot participate to the result
because of the arithmetico-geometric sequence.4 These users
constitute the candidate results. Phase 2 computes the HGS
indexes of the candidates and returns the k users with the
largest indexes. Figure 8 illustrates the pseudocode of HGS
top-k retrieval.

Lines 2–7 correspond to phase 1, i.e., generation of the
candidate set. Lines 8–21 perform HGS computation: for
each candidate vi , the algorithm sorts vi and his friends in
ascending order of their distance to q and inserts the sorted
distances in an array FA. Starting with l = 1 (i.e., D1 = w),
while the lth distance in FA is less than Dl , the correspond-

4 This optimization is specific to Eq. 8. Other bounds would apply for
different series.

Input: Location q, positive integer k, weight w
Output: Result set R

1. R = ∅, bs = 0
2. U = RangeUsers(q, w)
3. Candidates = U
4. For each vi ∈ U
5. For each u ∈ GetFriends(vi)
6. If ||q, u|| ≤ 4 · w
7. Candidates = Candidates ∪ {u}
8. For each vi ∈ Candidates
9. Vi = ∅
10. FA = array of vi and his friends sorted on their distances to q
11. l = 1, Dl = w
12. While ||q, FA[l]|| ≤ Dl

13. Vi = Vi ∪ FA[l]
14. l = l + 1, Dl = Dl +

w+(l−1)·w
2l−1

15. If vi ∈ Vi fHGS(q, vi) = |Vi| Else fHGS(q, vi) = 0
16. If fHGS(q, vi) > bs
17. update R and bs
18. While |R| < k
19. vi = NextNearestUser(q)
20. If vi R Then add vi to R
21. Return R

Fig. 8 HGS top-k algorithm

ing user is inserted in Vi because vi has at least l friends
within Dl from q. When the loop of lines 12–14 terminates
(||q, FA[l]|| > Dl ), the score of vi is set to |Vi | provided that
vi is also in the distance range. If the score of vi exceeds the
current best (bs), the result set R and bs are updated accord-
ingly. Finally, if the result contains fewer than k users, lines
18–20 complete it by incrementally retrieving the nearest
neighbors of q, who are not already in R.

HGS ranks users based on the number of friends located
in concentric rings around the query point. Its nature renders
the incorporation of connectivity information among friends
meaningless. However, the density of Vi could be used as
an additional criterion for ordering users with the same HGS
score.

7 Geo-Social Triangles

Geo-Social Triangles (GST) are motivated by the Geo-
graphic Clustering Coefficient [16], which combines the
social clustering coefficient with spatial criteria, and the aver-
age triangle length metric [17], which is the average length of
the triangles that a user forms with his friends. Specifically,
the GST ranking function takes into account the friends that
a user and his friends have in common so that his score is
based on the number of triangles in which he participates,
and their distances from the query point.

7.1 Ranking function

Let u j , u p be two friends of vi . If u j , u p are also friends
with each other, then vi , u j , u p form a triangle. The score
of a triangle is based on the distances of its members to q,
i.e., ||q, vi ||, ||q, u j ||, and ||q, u p||. The score of vi is the
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sum of the individual scores of the triangles in which he
participates. The GST function in Eq. 9 assigns comparable
scores to triangles close to q and exponentially lower scores
to triangles with large total distances. Therefore, the top-k
users are those with many triangles near q. The relevant set
Vi contains all users that form triangles with vi .

fGST(q, vi ) =
∑

triangle vi ,u j ,u p

e− ||q,vi ||+||q,u j ||+||q,u p ||
w (9)

Parameter w (w > 0) adjusts the relative importance of the
social and spatial aspects. In particular, as w increases, the
value of fraction

||q,vi ||+||q,u j ||+||q,u p ||
w

decreases and, due to
the exponential function, the scores of triangles with different
total distances start converging to the same value. Conse-
quently, the importance of the proximity to q decreases,
favoring users with numerous triangles, even if they are far
from the query.

For instance, consider two users, v1 and v2, where v1 par-
ticipates in exactly one triangle with total distance 2, and v2

is a member of two triangles each having total distance 2.1.
If w = 0.1, then the scores of v1 and v2 are 2.2 · 10−9 and
1.6 · 10−9, respectively. On the other hand, when w = 1, the
score of v1 (0.13) is lower than that of v2 (0.24).

7.2 Query processing

Query processing is based on a branch and bound algorithm
that generates a candidate set by only considering triangles
near the query. The candidates are then refined to produce the
top-k users. Figure 9 describes GST top-k query processing.
Users are retrieved in ascending order of their distances to
query point q. Let vi be the last user; ||q, vi || is inserted in an
array RD that contains the distances of the retrieved users.
SC[vi ] and T R[vi ] maintain the current score and number
of triangles involving vi , respectively. Lines 5–6 obtain the
friends of vi , sort them in ascending order of distance to q,

Input: Location q, positive integer k, weight w
Output: Result set R

1. bs = 0, T = +∞, CR = ∅,RD = ∅, SC = ∅, TR = ∅, index = 0
2. While bs < T
3. vi = NextNearestUser(q)
4. RD[+ + index] = ||q, vi||, SC[vi] = 0, TR[vi] = 0
5. Ni = GetFriends(vi)
6. NL = sorted users of Ni with distance ≤ ||q, vi||
7. For j = 1 to |NL| − 1
8. uj = NL[j]
9. For p = j + 1 to |NL|
10. up = NL[p]
11. If uj and up are friends

12. s = e− ||q,vi||+||q,up||+||q,uj ||
w

13. SC[vi] = SC[vi] + s, TR[vi] = TR[vi] + 1
14. SC[uj] = SC[uj ] + s, TR[uj ] = TR[uj ] + 1
15. SC[up] = SC[up] + s, TR[up] = TR[up] + 1
16. update CR, bs and T
17. R = GST refinement(q, w, k, ||q, vi||, CR, SC, TR, RD)
18. Return R

Fig. 9 GST top-k algorithm

Input: q, w, k, distance dlast, arrays: CR, SC, TR, RD
Output: Result set R

1. R = ∅
2. For each vi ∈ CR
3. Complete the score of vi by retrieving all triangles of vi
4. Update R and bs
5. For each vi such that TR[vi] > 0 ∧ vi R
6. dgi = GetDegree(vi)
7. Mi = min{trmax,

dgi·(dgi−1)
2 }

8. Bi = SC[vi], j = 1
9. While TR[vi] ≤ Mi

10. Bi = Bi + e− ||q,vi||+||q,RD[j]||+dlast
w

11. j = j + 1, TR[vi] = TR[vi] + 1
12. If Bi > bs
13. Complete the score of vi by retrieving all triangles of vi
14. Update R and bs
15. Return R

Fig. 10 Pseudocode of GST _re f inement

and insert those closer to q than vi in a sorted list NL (i.e.,
NL only includes users that have already been retrieved).
Lines 7–16 form all triangles that contain vi and his friends
in NL; i.e., triangles are discovered in a lazy way, when the
farthest of the three nodes is encountered.

Specifically, for each pair u j , u p of users in NL , if u j

and u p are friends, the score of the new triangle is computed,
and the scores and counters of vi , u j , u p change accordingly.
The current top-k result CR, best score bs , and upper bound
T are also updated. The iterative examination of users ter-
minates when the best possible score of any user is below
the current best. Note that the score of vi (and all retrieved
users) is potentially incomplete because it does not consider
triangles containing vi and some user farther than ||q, vi ||. In
general, this approach avoids triangles far from q that have
exponentially small scores. However, it necessitates a refine-
ment step (Line 17) to complete the scores for the candidate
results by finding their remaining triangles.

Before proceeding to the refinement step, we discuss the
computation of the upper bound T . Let trmax be the max-
imum number of triangles in which any user participates
(trmax is query-independent and can be computed off-line
in O(|V |2.6) [12]). The best score that a non-retrieved user
vnr can obtain is the sum of the scores of the trmax highest
scoring triangles that can contain vnr . Intuitively, these trian-
gles consist of vnr and the closest users to q. Based on this
observation, we construct, at the beginning of the algorithm,
the array BT of size trmax that contains the distances of the
trmax pairs of users with the minimum sum of distances to q.
For example, let us assume that trmax = 4 and the four clos-
est users to q have distances 1, 2, 3, and 4.5, respectively. In
this case, we have BT = {1+2, 1+3, 2+3, 1+4.5}. Then,
we can simply compute T by summing up the scores of the
trmax triangles using ||q, vnr || and the distances in BT . For

instance, the score of the l-th best triangle is e− ||q,vnr ||+BT [l]
w .

Figure 10 shows the pseudocode of GST _re f inement
that implements the refinement step. In addition to q, w, k,
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the input consists of the current result set CR, the score SC ,
counter T R and distance RD arrays, and the distance dlast of
the last retrieved user. Initially, for each user vi in the current
result setCR, the algorithm completes the score by retrieving
all triangles involving vi (i.e., those also containing not-yet
retrieved users). The process is similar to lines 7–16 of Fig. 9,
but this time without a distance bound. Then, it adds vi in the
(final) result R and updates the k-th best score bs .

Lines 5–14 deal with the score computation for users, not
already in R, who participate in at least one retrieved triangle.
The rest of the users can be safely eliminated since their best
possible score is below the bound T . For such a candidate
user vi , it should hold that T R[vi ] > 0. Before retrieving all
triangles of vi , lines 6–11 determine an upper bound Bi for
his score. Let dgi be the degree of vi ; the maximum number
of triangles containing vi is Mi = min{trmax,

dgi ·(dgi−1)
2 }.

Bi is initialized to the current score SC[vi ]. The number of
non-retrieved triangles of vi can reach Mi − T R[vi ]; in the
best case, each such triangle includes a retrieved user near the
query and a non-retrieved user at distance exactly dlast . For
instance, the distance of the first such hypothetical triangle
depends on: i) ||q, vi || because of vi , ii) ||q, RD[1]|| because
of the nearest user to q (retrieved), and iii) dlast because of
the non-retrieved user. Based on this, line 10 computes the
score of the l-th best triangle, which contains the l-th nearest
user to q. If Bi exceeds the current best score bs , the actual
score of vi is computed; otherwise, vi is discarded.

8 Qualitative evaluation

We qualitatively evaluate the behavior of the four ranking
functions using a real dataset from Gowalla that includes a
social graph and multiple check-ins for each user. We keep
only the last check-in of the 5,868 users on March 17, 2010
in Austin (Texas, US). The average degree in the social graph
is 7.6, and the maximum degree is 390. The largest distance
between any two users is 32 km. Figure 11 depicts the check-
ins of the users as black dots, and their social connections
as gray edges. Section 8.1 visualizes the top-k users, Sec-
tion 8.2 evaluates the effect of the function parameters on
the results, Sect. 8.3 measures ranking functions’ correlation
using Kendall’s τb rank coefficient, and Sect. 8.4 discusses
the suitability of functions to different application scenarios.

8.1 Visualization

In all the following visualizations, we illustrate the top-3
users of different functions in the sparse and dense areas of
Fig. 11. For each setting, the query location is the same and
represented by a star shape. The top-3 users are depicted as
black points together with their rank. A bold edge indicates
the social connection between a top user and a relevant friend.

Fig. 11 Check-ins and social network

Relevant friends are drawn as small black points. To facilitate
comparison of results by different functions, we use u f−i to
denote the top-i user of function f , e.g., uLC−1 corresponds
to the top-1 result of LC, uHGS−2 to the second best user of
HGS and so on.

Figure 12a depicts the result of the LC function in the
sparse area, assuming w = 0.5 (i.e., equally important social
and spatial scores) andC = 1 km (user-defined). The relevant
range is the circle centered at q with radius w·C

1−w
= 1 km. The

top-1 user uLC−1 is farther than uLC−2 and uLC−3 (distances
0.93, 0.46, 0.65 km, respectively) because he has two friends
(uLC−2, uLC−3) in the range, whereas the other users have
only 1 (uLC−1). Figure 12b repeats the experiment using
the RC function and w = 0.5. Observe the different scale
of the diagrams, illustrated in the bottom left corner. The
top-2 users are the same as LC, but uRC−3 is different from
uLC−3. Specifically, uRC−3 is out of the relevant range (dis-
tance 1.39 km) and therefore not considered at all by LC. On
the other hand, he out-ranks uLC−3 in RC due to his friend-
ship5 with uRC−1 and uRC−2. The circle centered at q with
radius 3.34 km contains all users retrieved by RC; the rest are
eliminated by the BnB search because they cannot reach the
score of uRC−3.

Figure 12c presents the results of HGS with w = 0.5 km.
The concentric circles correspond to the ranges of the
arithmetico-geometric sequence (the outermost ring is at
2 km). The top-1 user is the same as that of the previous
functions because he has the maximum HGS index (10). On
the other hand, uHGS−2 and uHGS−3 appear for the first time;

5 A directed bold edge from vi to v j means that v j ∈ Vi .
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Fig. 12 Top-3 users in sparse area. a LC: w = 0.5, C = 1 km. b RC: w = 0.5, c HGS: w = 0.5 km. d GST: w = 1

Fig. 13 Top-3 users in dense area. a LC: w = 0.5, C = 1 km. b RC: w = 0.5. c HGS: w = 0.5 km. d GST: w = 1

despite both being relatively far from q (distance 1.53 and
1.9 km, respectively), they have high HGS indexes (9 and 8),
i.e., they could potentially influence numerous users not too
far from the query. Figure 12d focuses on the GST function
assuming w = 1. For the sake of clarity, we only show the tri-
angles in the range defined by the distance of the last retrieved
user before the refinement step (i.e., all users/nodes of these
triangles are in the circular range of Fig. 12d). The dotted
lines connect the two friends of a top user, ”closing” a trian-
gle. The top users participate in a similar number of triangles
and their scores differ due to the triangle distances. Note that
although the actual user distances (0.46, 0.93, 1.53 km for
uGST−1, uGST−2, and uGST−3) are not explicitly considered
in the scores, users near q are likely to yield smaller triangle
distances than farther ones.

Figure 13 repeats the visualizations for the dense area
using the same parameters for all functions. As shown in
Fig. 13a, for LC the relevant range contains numerous users;
thus, relevant sets are considerably larger compared to the
sparse area. Specifically, uLC−1 (distance 0.79 km) has five
friends, uLC−2 (distance 0.66 km) has four friends, and
uLC−3 (distance 0.85 km) has four friends. On the other hand,
for RC (Fig. 13b) the relevant sets are very small: OnlyuRC−1

(distance 0.34 km) and uRC−2 (distance 0.52 km) contribute
to the score of each other. Recall that if w = 0.5, the cur-
rent range of a user is extended by a factor of 2. Because

in dense areas the nearest users (e.g., uRC−1) are very close
(e.g., 0.34 km) to the query, it is likely that even the extended
range will contain very few of their friends. Therefore, RC
prefers locality to social connectivity.

For HGS (Fig. 13c), the scores of the top users are 16,
10, and 8 and their distances are 1.21, 0.66, and 0.76 km,
respectively. The behavior of HGS is rather opposite to that
of RC since it favors users that may be relatively distant, but
have many friends in the proximity of the query. Accord-
ing to GST, the top users are at distances 0.76, 0.79, and
0.66 km and participate in 591, 299, and 365 triangles, respec-
tively. Although uGST−3 is closer and has more triangles
than uGST−2, the friends participating in these triangles are
farther than those of uGST−2. For clarity, Fig. 13d includes
a small subset of the triangles. Finally note that whereas
for sparse areas the results of different functions have large
overlap (e.g., uGST−1 = uLC−2, uGST−2 = uLC−1 and
uGST−3 = uHGS−2), for dense areas they exhibit high
variability because there are numerous users and thus more
choices for the selection of the top results.

8.2 Function parameters

All functions involve a parameter w used to adjust the rel-
ative importance of the social and spatial aspects. Although
w is different for each function, in general, increasing its
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Table 1 LC - Effect of K
(w = 0.5)

K # US C # FR (Dist) # FR (Dist) # FR (Dist)

Sparse k3 27 1.59 8 (0.93) 7 (1.53) 7 (1.392)

k4 122 2.99 11 (0.93) 11 (1.53) 11 (1.9)

k5 232 4.92 14 (0.93) 14 (0.46) 13 (0.93)

k6 878 6.68 59 (3.34) 31 (5.98) 27 (6.4)

Dense k3 27 0.44 0 (0.29) 0 (0.29) 0 (0.29)

k4 69 0.65 1 (0.34) 1 (0.52) 1 (0.43)

k5 266 1.02 5 (0.79) 4 (0.66) 4 (0.85)

k6 584 1.94 18 (1.59) 18 (1.19) 16 (1.31)

Table 2 LC - Effect of w

(C = 1 km)
w # US RR # FR (Dist) # FR (Dist) # FR (Dist)

Sparse 0.1 0 0.1 0 (0.46) 0 (0.5) 0 (0.56)

0.3 0 0.42 0 (0.46) 0 (0.5) 0 (0.56)

0.5 11 1 2 (0.93) 1 (0.46) 1 (0.65)

0.7 56 2.3 11 (0.93) 11 (1.53) 11 (1.9)

0.9 3773 9 243 (8.3) 215 (3.34) 204 (8.47)

Dense 0.1 0 0.1 0 (0.29) 0 (0.29) 0 (0.29)

0.3 22 0.42 0 (0.29) 0 (0.29) 0 (0.29)

0.5 265 1 5 (0.79) 4 (0.66) 4 (0.85)

0.7 1244 2.3 54 (1.31) 40 (1.59) 40 (2.23)

0.9 4108 9 253 (2.66) 234 (5.64) 224 (4.66)

value favors the social connectivity at the expense of query
locality. Moreover, LC involves the additional parameter C
that defines the relevant range around q. In the sequel, we
discuss how the values of w and C affect the top-k results.
For consistency with the visualization experiments, we set
k = 3. All distances are shown in kilometers.

We start with LC andC . Recall thatC can be set explicitly
by the user, or it can be computed by a cost model [19] so that
the expected number K of users within the relevant range is
a function of k. For this experiment, we follow the second
approach. Specifically, we set C so that K equals k3, k4, k5,
and k6 (k = 3). For each value of K , Table 1 shows the com-
puted value ofC and the actual number (#US) of users within
distanceC fromq. The last three columns contain the number
of relevant friends (#FR) and the distance for the top-3 users,
respectively. In the first (second) half of the table, the query
point is the same as the one used for the sparse (dense) area
of the visualization experiments. The value of w is set to 0.5.

Predictably, the relevant range and consequently the num-
ber of relevant users increase with K . In order to comprehend
the difference between sparse and dense areas, let us consider
that the target number of relevant users is K = 35 = 243.
Naturally, the computed value of C for the sparse area
(4.92 km) is larger than that (1.02 km) for the dense area.
Although in both cases, the actual number of users, 232 and
266, respectively, is similar and close to the expected 243, the
relevant sets of the top users have rather different cardinality.

Specifically, in the sparse area the top users have 14, 14, and
13 relevant friends, whereas in the dense area the correspond-
ing numbers are 5, 4, and 4. This can be explained by the
fact that social connections exhibit higher locality in sparse
areas (e.g., neighbors in the suburbs), while dense areas (e.g.,
downtown) are more likely to contain unconnected users.

Another interesting observation is that the distance of the
top-3 results increases with the relevant range. For instance,
in the sparse area, when C = 1.59 km, the distances of the
top-3 users are 0.93, 1.53, 1.392 km; when C = 6.68 km, the
corresponding distances are 3.34, 5.98, 6.4 km. This happens
because the number of friends, and therefore the social scores
of some users, not necessarily near the query, increases sig-
nificantly due to the range expansion. In this example, the top
users for C = 6.68 km have 59, 31, and 27 friends, whereas
the top users for C = 1.59 km have only 7, 6, and 6 friends.

Table 2 investigates the effect of w (w ∈ (0, 1)) in LC, for
C = 1 km. The #US column contains the number of users
within distance C from q and the RR column refers to the
relevant range (in km) computed as w·C

1−w
. Recall that small

values of w favor locality. Consequently, for w ≤ 0.3, LC
degenerates to nearest neighbor search in both the sparse and
dense areas (note that the top users have zero friends). At
the other extreme, w = 0.9 increases the relevant range to
9 km, favoring users with numerous friends in the range. For
the same relevant range, the top users in the dense area have
more friends than those in the sparse area.
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Table 3 RC - Effect of w
w # US BR # FR (Dist) # FR (Dist) # FR (Dist)

Sparse 0.1 8 0.92 0 (0.46) 0 (0.5) 0 (0.56)

0.3 27 1.7 0 (0.46) 0 (0.5) 2 (0.93)

0.5 133 3.34 2 (0.93) 2 (0.46) 3 (1.39)

0.7 166 3.84 2 (0.93) 3 (1.39) 3 (1.4)

0.9 196 4.43 2 (0.93) 3 (1.39) 3 (1.4)

Dense 0.1 21 0.4 0 (0.29) 0 (0.29) 0 (0.29)

0.3 525 1.78 0 (0.29) 0 (0.29) 0 (0.29)

0.5 3875 7.43 1 (0.34) 1 (0.52) 0 (0.29)

0.7 5515 15 1 (0.34) 1 (0.52) 2 (0.66)

0.9 5866 23.02 3 (0.66) 1 (0.34) 1 (0.52)

Table 4 HGS - Effect of w
w (km) # US HGS1 (Dist) HGS2 (Dist) HGS3 (Dist)

Sparse 0.5 26 11 (0.93) 10 (1.53) 9 (1.9)

1 57 16 (1.53) 16 (0.46) 15 (0.93)

1.5 78 32 (3.34) 18 (5.51) 18 (1.53)

2 179 161 (3.34) 90 (7.9) 77 (7.52)

2.5 184 233 (3.34) 136 (7.9) 130 (9.94)

Dense 0.5 199 18 (1.21) 12 (0.66) 11 (0.76)

1 1144 227 (2.66) 124 (3.09) 102 (2.6)

1.5 1949 242 (2.66) 201 (5.64) 196 (4.66)

2 2239 250 (2.66) 230 (5.64) 218 (4.66)

2.5 3807 261 (2.66) 252 (5.64) 232 (4.66)

Table 3 studies the effect of w (w ∈ [0, 1)) on RC. The
#US column shows the total number of users examined by
the BnB technique, and the BR column refers to the corre-
sponding range, i.e., the distance (in km) of the last retrieved
user. Similar to LC, for small values of w, top-k retrieval
degenerates to k-NN in both the sparse and the dense areas.
As opposed to LC, however, increasing the value of w does
not have a significant effect on the number of relevant friends,
which does not exceed 3 even for w = 0.9 because RC favors
locality.

Table 4 focuses on HGS, where w (w > 0) determines
the values of the arithmetico-geometric sequence. The #US
column refers to the total number of users examined by the
query processing algorithm. HGSi is the score of the top-i
user. Even for the smallest value w = 0.5 km in the sparse
area, the HGS indexes of the top users are 11, 10, and 9.
Recall that D1 = w = 0.5 km and D2 = 1 km, whereas the
distances of these users are 0.93, 1.53, and 1.9 km. Although
none of the top-3 users is within 0.5 km from q, they all have
at least a friend within 0.5 km and two friends within 1 km.
The HGS indexes increase with w, reaching up to 260 for
the top user in the dense area, if w = 2.5 km. This user is the
best result for all values with w ≥ 1, but with different HGS
index in each case. Similar to the values of HGS indexes,
the average distances of the top users also increase with w

because distant users, who have many friends near q, may
become part of the result.

Table 5 investigates the effect of w (w > 0) on GST. The
#US column contains the total number of users examined by
the BnB technique, and the BR column refers to the distance
of the last retrieved user, before the refinement step. The
last three columns illustrate the number of triangles (#TR)
containing the top-3 users and the average distance (AD) of
these rectangles. Large values of w reduce the importance
of the distance of individual triangles, favoring users with
numerous triangles, even if they are relatively far from the
query. This explains why both the number of triangles and
their average distance increase with w in the dense area, for
the top-3 users. On the other hand, for the sparse area, the
result is insensitive to w because there are some users in the
vicinity of the query that participate in many more triangles
than the rest.

8.3 Rank correlation

Kendall rank correlation coefficients [13] have been widely
used to measure the statistical dependence between two rank-
ing functions. Let R1 and R2 be the top-k results of two
ranking functions on the same query. Kendall’s coefficients
require that R1 and R2 rank the same set of users. Since this
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Table 5 GST - Effect of w
w # US BR # TR (AD) # TR (AD) # TR (AD)

Sparse 0.5 56 2.59 129 (7.1) 104 (6.45) 54 (6.66)

1 99 2.89 129 (7.1) 104 (6.45) 124 (7.4)

1.5 172 4.03 129 (7.1) 104 (6.45) 124 (7.4)

2 329 5.51 129 (7.1) 104 (6.45) 124 (7.4)

2.5 980 6.95 129 (7.1) 104 (6.45) 124 (7.4)

Dense 0.5 2713 3.2 299 (8.89) 365 (11) 591 (12.1)

1 3369 4.93 591 (12.1) 299 (8.89) 365 (11)

1.5 3631 6.11 1869 (14.2) 1135 (12.21) 591 (12.1)

2 3849 7.17 1869 (14.2) 1135 (12.21) 591 (12.1)

2.5 3989 7.89 2624 (15.4) 1869 (14.2) 1795 (14.73)
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Fig. 14 GSR functions correlation (Kendall’s τb versus k). a Sparse
area. b Dense area

may not be true in our setting, we append the missing users
at the end of each result set. For example, suppose that R1 =
{u1, u2, u3} and R2 = {u2, u4, u5}. To relate these results, we
set R1 = {u1, u2, u3, u4, u5} and R2 = {u2, u4, u5, u1, u3}.
Additionally, we assume that the users appended to a ranking
list are assigned the same ordering value, e.g., users u1 and
u3 are both ranked at the fourth position in R2.

In our evaluation, we utilize Kendall’s τb ranking coeffi-
cient that supports duplicate ranks, i.e., two users can have
the same ranking [4]. τb takes into consideration the num-
ber of concordant pairs (ui , u j ), i.e., all pairs where ui and
u j have the same order in both R1 and R2, and the number
of discordant pairs, where their order is different (e.g., ui is
ranked higher than u j in R1, but lower in R2). The coefficient
is in the range −1 ≤ τb ≤ 1: i) -1 indicates that the rankings
are reverse of each other, i.e., all user pairs are discordant,
ii) 0 implies independence of the two ranking functions, i.e.,
equal number of concordant and discordant pairs, and iii) 1
implies that the ranking functions are in perfect agreement,
i.e., all pairs are concordant. The correlation among differ-
ent ranking functions is not transitive, i.e., if ranking function
f1 has a positive (or negative) value of τb with f2, and f2
with f3, then this does not imply that f1 has a positive (or
negative) correlation with f3.

Figures 14a, b plot τb for all pairs of ranking functions
versus k in sparse and dense areas, respectively. The values
of the function parameters are the same as those used in the

visualization experiments, i.e., LC: w = 0.5, C = 1 km, RC:
w = 0.5, HGS: w = 0.5 km, and GST: w = 1. For sparse
areas and k > 30, LC and HGS have a positive correlation
because there are fewer than k users within the query proxim-
ity, and both algorithms complete the result set using nearest
neighbor search. In dense areas, they have more concordant
pairs since users with many friends within the relevant range
have high HGS and LC scores. HGS is anti-correlated to RC
because it favors the inclusion of friends far from the query
point. LC and RC are almost independent in both sparse and
dense areas. Moreover, the top-k results of LC and RC have
some similarities (i.e., concordant user pairs) since both favor
users close to the query point. However, RC prefers local-
ity to social connectivity, which results in differences at the
top-k results (i.e., discordant user pairs). The combinations
involving GST are the most negatively correlated because
GST is the only function that considers inter-connectivity.
The negative and zero correlation among functions indicates
their unique characteristics and justifies the need for different
functions to accommodate diverse application requirements.

8.4 Summary

The presence of parameter C in LC can be both a draw-
back and an advantage. On the one hand, it may arbitrarily
eliminate potentially good results. For instance, in Fig. 12a,
for C = 1 km, the top-1 user has distance 0.93 km. Conse-
quently, ifC were below 0.93 this user would not be retrieved.
Moreover, a very small value may reduce top-k retrieval to
k-NN search, whereas a large value may lead to irrelevant
users. On the other hand,C provides a natural way to express
real-life constraints, such as the fact that an advertiser is only
interested in users within a range, e.g., a restaurant sending
lunch promotions to potential customers within 0.5 km.

In RC, friends are included in the relevant set of a user
only if they can decrease the average distance to the query
point. Consequently, each inclusion impedes the addition of
more friends because it tightens the range. Thus, even if a
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user has many friends in the proximity of the query, only
the few closest ones are considered in his score (in Table 3,
the number of relevant friends for the top users is at most
3). Accordingly, RC can be used in cases where locality is
crucial. For instance, a cinema has empty seats for a film
starting soon and sends coupons to users in close proximity.
Friends of these users are relevant, only if they are also very
near.

On the other hand, HGS favors the inclusion of friends
far from the query for users who have many friends in the
vicinity. However, HGS also has a drawback: assume that
there are two users with the same HGS index 10. The friends
of the first user are evenly spread through the 10 ranges,
while those of the second one are concentrated near the query.
Although both users have the same score, the second should
be preferable6 because the average distance of his friends
is much smaller. HGS is useful for cases where the distance
aspect is not critical, e.g., a concert promotion targeting users
with many friends in the wider area of the concert.

As opposed to the other functions that consider only the
number of relevant friends, GST explicitly takes into account
the connectivity of friends in the form of triangles. Locality
is measured using the distances of triangles, instead of the
individual users. GST is suitable for applications where this
connectivity is essential or desirable for ranking, e.g., a pro-
motion similar to that of the concert, but this time for an
event (party) that involves social interaction among the vari-
ous users. Finally, performance criteria may also play a role
in the selection of the appropriate function because, as we
show in the next section, query processing techniques may
involve substantially different costs.

9 Performance evaluation

The proposed algorithms were implemented in C++ under
Linux Ubuntu and executed on an Intel Xeon E5-2660
2.20 GHz with 96 GB RAM. All data are stored in the main
memory. The social graph is kept as a hash table (in the form
of key-value pairs), wherein each key is a user id and the value
is an adjacency list with the user’s friends ids. The locations
of users are maintained by a regular spatial grid. The imple-
mentation of primitive operations is based on the framework
of Armenatzoglou et al. [1] for centralized, main-memory
architecture. Specifically, social primitives perform look-up
operations on the hash table, while spatial primitives execute
range and nearest neighbor queries on the spatial grid. Sec-
tion 9.1 evaluates the efficiency of our methods using the real
dataset described in Sect. 8; Section 9.2 focuses on scalabil-

6 An analogy for the conventional h-index is two authors that have the
same h-index, but the second has more citations.
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Fig. 15 Execution time versus k (real data). a Sparse, b dense

ity issues using synthetic data. We report the average values
over 20 executions with random query locations.

9.1 Real data

Figure 15 assesses the query time (in milliseconds) as a func-
tion of the result set size k in the sparse and dense areas of
the real dataset. The values of the function parameters are
the same as those used in the qualitative evaluation, i.e., LC:
w = 0.5, C = 1 km, RC: w = 0.5, HGS: w = 0.5 km, and
GST: w = 1. LC and HGS outperform RC and GST in all
cases. The value of k does not have a significant impact on
their performance because they are based on range queries,
except for LC in the sparse area where top-k retrieval reduces
to k-NN search for large values of k. On the other hand, the
execution time of RC and GST increases with k, since the
kth best score decreases, and consequently more users need
to be examined by the branch and bound framework. GST
is consistently the most expensive because it examines the
adjacency list of all the friends for each retrieved user. In
dense areas, the performance of HGS and LC deteriorates
since their relevant ranges contain numerous users, whereas
RC and GST are not seriously affected because the branch
and bound thresholds are insensitive to the data density.

In the diagrams of Fig. 15, each function examines a dif-
ferent search space around the query to retrieve the same
number of users k. In the following experiment, we con-
trol the function parameters so that they explore the same
search space and consequently consider the same number
of users. LC and HGS are based on range queries and can
therefore be explicitly set to cover a specified search space.
For LC we use: w = 0.5, C = 1 to 5 km, and for HGS:
w = {0.25, 0.5, 0.75, 1, 1.25} (the search space is 4 · w).
Since for GST and RC the search space cannot be defined
explicitly, we adjust the value of w so that the query termi-
nates with the user closest to the boundaries of the search
space.

Figure 16 plots the running time in sparse and dense areas
as a function of the range of the search space. HGS is the
fastest algorithm for both sparse and dense areas, because it
examines the minimum number of users, i.e., users within
distance w from q and their friends whose distance to q does
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b dense
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Fig. 17 Execution time versus preference setting (real data). a Sparse,
b dense

not exceed 4 · w. LC is the second fastest approach in sparse
areas, but it is outperformed by RC in dense areas because the
set intersection operations performed by LC become increas-
ingly expensive as the number of users grows. Finally, GST
is the most expensive algorithm since it takes into account
the social connectivity of the result sets.

All functions involve a parameter w that can be used to
adjust the trade-off between the social and the spatial aspects.
However, the meaning and value range of w are different in
each function. In order to study the effect of w on perfor-
mance, we use the values of w shown in Tables 2, 3, 4 and 5,
for LC, RC, HGS and GST, respectively. Figure 17a, b illus-
trates the running time in sparse and dense areas, for k = 32 .
The x-axis corresponds to the value of w at a particular row in
the tables, e.g., the first value is 0.1, 0.1, 0.5, and 0.5 for LC,
RC, HGS, and GST. Since a large weight emphasizes social
connectivity over spatial proximity, the search space and the
running time increase with w. LC exhibits the most signifi-
cant impact because the search space is directly determined
by w.

9.2 Synthetic data

To evaluate the scalability of the algorithms, we used the
method of Armenatzoglou et al. [1] to construct synthetic
GeoSNs of different user cardinality (n) and average degree
(dgavg). In particular, Armenatzoglou et al. [1] generate a
social graph using the Barabasi–Albert model [5]. Then,
starting from a random user at a random location, it assigns
locations to the users based on their distances to their friends,
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Fig. 18 Execution time versus n and dgavg (synthetic data, k = 32). a
Time versus n(dgavg = 60). b Time versus dgavg(n = 6M)

which are randomly derived from a power-law distribution.7

The users are spread in an overall area of 13,500 km2. The
value of w is set to 0.5 in all ranking functions except GST,8

where w = 0.01.
Figure 18a plots the running time versus n, for dgavg = 60

and k = 32. The relative performance of the algorithms is
consistent with Fig. 15, where HGS is the fastest method.
The performance of LC deteriorates with the cardinality due
to the higher number of users in the relevant range. On the
other hand, as discussed in the previous subsection, RC and
GST are not seriously affected by the data density.

Figure 18b measures the running time versus dgavg (n =
6M and k = 32). The impact of dgavg on LC is minimal
because the number of users within the relevant range is
independent of the social connectivity. For other methods,
the cost increases with dgavg due to different reasons. In
HGS, the number of candidate users who have friends in
the initial range grows. For RC and GST, the maximum
social degree (dgmax) and the number of triangles (trmax)
yield looser bounds. For instance, if dgavg = 20, we have
dgmax = 2212 and trmax = 2650, while if dgavg = 80,
dgmax and trmax are 3834 and 27,475, respectively.

In summary, the most efficient top-k methods in our set-
tings are HGS and LC, which often outperform the rest by
orders of magnitude. RC has relatively low cost for high user
density and small values of k. GST is consistently the most
expensive algorithm, but the only one that explicitly consid-
ers connectivity.

10 Conclusion

With the proliferation of GPS-enabled devices and sophisti-
cated location-based services, ranking the users with respect
to their position and friends near a query point is becoming
increasingly important. In this paper, we present four ranking
functions that cover a wide range of application requirements.

7 Analysis on real GeoSN datasets has shown that the distances between
pairs of friends follow a power law [7].
8 The Barabasi–Albert generator produces graphs with small expected
number of triangles. Therefore, we assign high importance to the spatial
proximity in order to avoid examining a large fraction of the dataset.
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For each function, we develop a specialized algorithm to
retrieve the top-k users. We extensively evaluate each func-
tion on both the quality/characteristics of the results and the
efficiency of the associated algorithm.

In the future, we plan to focus on improved query process-
ing algorithms, especially for functions, such as GST, which
are expensive. Moreover, we intend to explore novel func-
tions that may exhibit different characteristics, as well as their
combination for meta-ranking; e.g., we could integrate HGS
with another method in order to favor users whose friends are
concentrated near the query. Finally, we plan to investigate
the adaptation of the proposed methods to related application
domains, such as spatial-keyword search in GeoSNs.
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