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Abstract fices; for large domains, however, the overhead can be
significant due to repetition of scan.

In this paper we study how indexing may be utilized
by CSP algorithms to direct search and avoid linear scan
of domains. As an application, we deal with CSPs, where
the values are temporal intervals and the constraints are
disjunctions of temporal relations as defined in [Allen,
1983]. Such problems may occur in planning or temporal
databases. A previous work that uses indexing in tempo-
ral databases is [Dean, 1989]. In contrast to our method,
where intervals are indexed according to their position in
space, that method directs search using a conceptual hi-
erarchical structure, thdiscrimination tree Algorithms
that combine CSP search and indexing to facilitate re-
trieval of structural queries in large spatial databases
were presented in [Papadias al, 1998]. Here, we ex-
tend this work by investigating the application of di-

. rected search in temporal databases and study the per-
1 Introduction formance gain of directed search under various problem

Many problems in a variety of application domains canconditions using different CSP algorithms. _
be modeled and solved as constraint satisfaction prob- The rest of the paper is organized as follows. Section 2

Most studies concerning constraint satisfaction
problems (CSPs) involve variables that take val-
ues from small domains. This paper deals with
an alternative form of temporal CSPs; the num-
ber of variables is relatively small and the do-
mains are large collections of intervals. Such
situations may arise in temporal databases where
several types of queries can be modeled and
processed as CSPs. For these problems, system-
atic CSP algorithms can take advantage of tem-
poral indexing to accelerate search. Directed
search versions of chronological backtracking
and forward checking are presented and tested.
Our results show that indexing can drastically
improve search performance.

lems (CSPs). A binary CSB defined by: introduces data structures and search methods for tempo-
« asetofnvariablesv, ... ral intervals. Section 3 shows how conventional methods

« for each variablev, a domain D; of m values: for solving CSPs can be modified to accelerate search
{Ug,.Uy, using indexing. Section 4 experimentally compares di-

rected search algorithms with methods that do not use
indexing. Finally, Section 5 concludes the paper with
directions for future work.

» for each pair of variablesv{ v}, i#, a binary con-
straintC;, which is a subset @;xD;.
An assignment {; U, ,V; < U, } is consistent if

iaj ?

(Ug » Up, ) O Gy. The goal is to find one or all solutions, 2 Temporal CSPs

i.e., n-tuples Uy ,..,Ug s Ujs 4o U ) SUCh that for L i
' ‘ ] The class of problems that we deal with in this paper

each {.j}, i#, {v < Uig ) Vj = Ug, } IS consistent. .includes CSPs where domain values are well defined
Several systematic search heuristics that aim to mini-

mize the number of consistency checks have been r|r]tervals indiscretetime, and each binary constrai@j
cy X P'%s a disjunction of the permissible set of Allen's [1983]
posed. Based on the general ideaatktracking,these

methods trv to improve theéackward step e.q. back- temporal relations between andv;. Notice that the cur-
. . y P p€.g.bac rent issue is different from traditional temporal reasoning
jumping or the forward step e.g. forward checking

. . ) . . roblems (e.g. [van Beek, 1992]) where the aim is to
[Haralick and Elliot, 1980]. Hybrid algorithms combine prob . . ;
different types of backward and forward steps [Prosser'dent'fy a consistent scenario for a set of continuous

1993]. The aforementioned search methods appl e\{ariables, given information about their relationships.
; . 2 : 'S apply .)ﬁ-|ere, wesearchinto domains of intervals for variable
haustive search in the variable domains while ass'gnmgssignments that satisfy the given constraints

or pruning values. When the number of potential values This temporal CSP can be solved by employing tradi-

for a variable is small (i.e. less than 100) linear scan SUft'ional search techniques. Each time a variable is visited,
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consistent assignments. When the variable domains ate s M

small, classic CSP algorithms behave well, but as theTable 1: Bounding conditions for intermediate node entries
domain size increases, linear scan for consistent values
expensive.

CSP algorithms can avoid linear scans by employin

(ﬁ-tree packiny Thus, the R-tree construction farin-
éervals costO(nlogn)

. . . R-trees are very efficient in answeringnge intersec-
mf;rval-_?g:ed dat?] sf'guctglrets_ that mdegiethcete\:jarla(k))le 4%on queries, i.e., find all intervals that intersect (share a
mains. searc r sotutions can Oiee upon - common point with) aguery interval In addition, the

satisfactionof the temporal constraints, using the data;o o chical nature of R-tree facilitates general selection
structure to minimize the number of consistency checks retrieval of intervals that satisfy any tempo-

Since search through the domains is repeated a Iargﬁenes’ €.,

number of times, directed search has a significant effe | condition with respect to a query interval. As an ex-
' 9 mple, consider the query: “find all intervals that start
on performance.

For the indexing of variable domains we use R_tree|mmed|atelyafter interval b” applied to the R-tree of

Guttman. 19841 a data structure aimed at indexin igure 1. Retrieval starts from the root of the tree; due to
[Guttman, 1984], ucture ai INAEXINGHe relative positions df and2, there can be no interval
multidimensional rectangles in spatio-temporal data-

bases. The data rectangles are stored into leaf node'tg;d-?-ﬁi li%/ethseuchtor';snltjrr?dgaitss:)e;ﬁﬁé&nmggla::leéyoa;l;tg:

each intermediate r_lo_de contains a pointer to a IOWeI'iand, entryl can contain qualifying intervals and is re-
level node and theninimum bounding rectanglef the cursively searched. Both entridgsand B may point to a

;?gt%l%gi].w tgsspa%%zrgv.en Cbhootflerss:aerec?] t;?]cdaqr?g tsr: Mery answer and they are followed; the only solution is
Ing ' INCUSt fierval c. Typically, the retrieval cost is proportional to

(e.g., lllustra, Infqrmlx) dpe to Fhelr eff|C|en.cy, dynamic the number of solutions; when this is small, worst case
nature and relatively simple implementation. Alterna-

. . . erformance is logarithmic to the number of stored inter-
tively, any interval-based data structure, such as mterv% 9

Is.
trees and segment trees [Preparata and Shamos, 198 — - : i
can be employed. Let g=[q.leftqg.right] be a query interval; Table 1

shows, for each temporal relation, theunding condi-

Figure 1 illustrates how a 1—d|me_nS|onaI R-tree can bf?ions that anintermediate-leveinterval | should satisfy
used for interval storage and retrieval, assuming maxi-

; . n order to potentially point to a query answerThis is
mum tree node capacity equal to 3. Thg Qat:_;l mterwals the criterion of following an R-tree node during retrieval.
to k) are stored in the leaf nodes. Artificial mte_rval; NG the previous exampleb(meets X the intermediate
the higher tree nodes are formulated by grouping INteri0des to be searched should satisfgft < b.right and
vals from the level below (e.ga,b andf are grouped in

: \ : s I.right > b.right. Intermediate interval is pruned be-
A). The end points of an intermediate node interval ar ause it violate.left < b.right. When the query is a

mg Ifftm(;_skt] ar;edtrrlghtfm;)st etnct{i pomtts ;inrfthervlnlterval]s t')tdisjunction of temporal relations, the disjunction of the
EXES. € R-ree for a static set o ervals ca Bounding conditions is applied during search. For in-

built tlr; a bottomd—up .fatshlon ?‘ftfr:.so”'“g tlhef[?] Wl'tr]lt re'stance, if the search predicatesiwmrts O during O fin-
Spect to one end-point, €.g. In this exampie the le On%hes the bounding conditions for an intermediate level



entry | arel.left < g.left andl.right > g.right. Although is employed, the above method is used to find the vari-
for the examples throughout the paper we use the tree able with the largest weight and place it first. The order
Figure 1, for our implementation we assume that eacbf subsequent variables is dynamically changed accord-
variable domain is different and indexed by a separate Rng to their domain sizes during search.

tree. The next section describes algorithms that use these ) )

indexes to prune the search space (the methods can Bel Directed Search Backtracking

easily applied when some domains/trees are common). |ntegration of directed search into backtracking (BT) is
rather simple. Whenever a variableis visited, its con-
3. Directed Search for Temporal CSPs  sistent values are retrieved from the corresponding R-

Classic local consistency methods, likec and path ~ F€€ R Dy applying the instantiations of the previous
variablesv;, i<j, as query intervals, and the constraints

consistency perform well for small domains, because inC-- as retrieval conditions. During retrieval, the conjunc-
this case there is a high probability that a value will br:gjIJ ' 9 ' |

pruned. However, for large variable domains and densio” ©f b(;]un;j!n? Cong.'t'f”SR’ tdeflrred Iby :tax;h ?lrefclt |
constraint graphs usually they do not pay-off. Thereforethe searc ahm errr_lef |ahe lree levers. - eh eat level,
we do not consider conventional local consistency methi€ €ntries that satisfy the constrajt with each vari-
ods for pre-processing, but apply the temporal networl?b_ll_ev" Iare_zfretﬂeved as ccl)n5|ster:jt valuesvﬁo_rd he fol
maintenance algorithm from [Allen, 1983] prior to search o clarily the retrieval procedure, consider the fol-
in order to infer undefined constraints and refine the ex\°ViNg éxample. Let the quergverlap(v,,vs) L over-
isting ones. This is equivalent to a path consistency algd2PP€d b¥(vz,vs) and the instantiationg, — f, v, — hin
rithm that does not check value consistency, bom-  F9uré 1 (I.e.vs should overlag to the right andh to the
straint graph consistencyand its complexity is, there- left). In orc_ier to retrieve all consistent values Vg first
fore, independent from the domain sizes. For instancd® Pounding conditionsBC) according tov, andv, are
consider a constraint graph of three variables, wigge caiculated using Table 1BC;s = {l.left < f.right and
= meets C,3 = during, andCy3 is undefined. Thémplied I.right > f.right} _and _BC23 = {l.left < h.left andl._rlght >
constraintCys is thenoverlap O starts 0 during. If C,;  N-1€f¢. The conjunction of the above constraints results
was defined, then theipdated constraint is Cyz [J in the bounding c_ond|t|onsl.ﬂeft < f.right gndl.nght >
{overlap 0 starts [ during}. Notice that this reasoning h.left}, used to guide R_—tree search. Retrleval starts _from
method detects inconsistency prior to search, e.g. wheh€ f00L where entrg is pruned as it does not satisfy
Cys O{overlapO startsC during}= 0. left< f.right. Similarly, e_ntryA V|olatesA.r|_ght > h.left
Efficiency of CSP search depends on the order b nd the sub-tre_e below is pruned. Only intervals under
which variables are instantiated [Dechter and Meiri, ntry B can satisfy botiC;s and Cs. Finally, d and e

1994]. The usual rule fostatic variable orderingSvo)  constitute the consistent assignments vgrNotice that
schemes is to “place the most constrained variable first’ihe whole process costs 4 consistency checks at the in-

; ; : ; . fermediate levels and 6 at the leaf level (each interval
A simple w ly this rule i rt the variables in X : .
simple way to apply this rule is to sort the variables nderB is tested against both andv,), whereas a linear

decreasing order of their degree in the constraint grapﬁ’. Id t14 ist heck
Since in our problem the constraint edges do not have thgan would cos consistency checks. .
The above method can be applied with alternative

same tightness, we follow another method: instead ofims of backtracking (e.g.. backjumping, dynamic

“adding 1" for each edge that goes out from a variableb Kiracki ina int i bombaoods In th
we add aweightthat represents the tightness of the con2acktracking) using information abombgoods In the
straint edge. For a temporal relationweight) is the next subsection we illustrate how forward checking can

inverse of the probabilifyP(r) that r will be satisfied €MPIOYy the index to prune the domains of future vari-

between two arbitrary intervals. In typical cases, the re‘:’lbles'

Ia_tion with the largest weight isqual and the rglations 3.2 Directed Search Forward Checking
with the smallestpbefore and after. If a constraint is a ) _ o ]
disjunction of primitive relations, the weight is the in- After a variable instantiation, forward checking (FC)
verse sum of the relation weights that participate in th&arksin the domains of all future variables the values
disjunction, e.g., that are consistent with the current variablehgck-

1 forward). When a subsequent variable is to be instanti-
P(meet} + P(starts) ated only the marked values will be considered. This

The weight of a variable is then the sum of the weights OEnarkmg mechamsm can be th(.)Uth of ah;naar'lndex
in the variable domain that points to the consistent val-

all constraint edges adjacent to it. SVO will instantiate A that int diat bl being |
the “heaviest” variable first and the one with the smallesP€S: Assume that an intermediate variables being in-

weight last. Whenever dynamic variable ordering (DVO)Stantiated. The domain of each future varialg<j) has
already been pruned by the instantiation of variables be-

! The probabilities of temporal relations can be estimated either { rel vi- As tr?e :lnfear |ngec>j(es_ of _some \_/ar_lablef(s: mag/ still
sampling the input data, or by using probabilistic estimation forP€ 1arge, check-forward during instantiationwpican be

mulae given the distribution of interval positions and sizes. rather costly. For these variables we apply directed

weigh{meetd] startg =




search using the R-tree and filter the results using the The problems were randomly generated by modifying
linear index. Filtering with respect to the linear index isthe parameters rsm,n,p,> (see [Dechter and Meiri,
needed, because directed search is performed on th€94]), wheren is the number of variables the cardi-
whole domain (i.e., an interval which satisfies the currenhality of the domainsp; the probability that a random
constraint withy; may have been pruned out by a previ-pair of variables is constraineddnstraint network den-
ous instantiation). The issue to be investigated is when tsity), andp, the probability that a random assignment for
apply directed search instead of linear scan. a constrained pair is inconsisterofistraint tightnegs

A good heuristic is to employ directed search at a fuThe centers of the intervals in the variable domains are
ture variable only when the number of remaining consisuniformly distributed and their sizes take values with an
tent values is large, and the search constraint is tight, stverage 1.5% of the workspace. The intervals in each
the search would benefit from the R-tree. For exampledomain are indexed by R-trees with node capacity equal
let C;3 = beforeand C,5 = equal After v, is instantiated, to 20.
directed search is applied to prune the domaing aihd In order to identify the hard region of the problems we
v3. Whenv, is given a value it is worth applying directed use theconstrainednesmeasurdGentet al,, 1996]:
search again while checking forward for consistent val- log,(So) . log,(Sol

g - . K=1- =1- D

ues ofvs;, because the domain gf is still large andCy; n nlog, m
is a tight constraint. The results of directed search that log, I_| m;

do not satisfybefore with respect to the value of are = _
filtered out. Now letC;s = equaland Cys = before After The hard region for an ensemble of problems is when

v, is given a value, the domain of is expected to be- X=1, whereas problems witk<<l and x>>1 are easy

come very small; thus, during instantiation ef linear and solubleand easy and insolublerespectively. The
scan ofD; is cheaper than using the tree. denominator of eq. (1) denotes tBize of the problem

This mechanism is called double indexin the sense and Sol denotes the number of solutions in a random

that we keep both the whole domain R-tree and the lined¥roblem of the class. _If the binary constraints are inde-
index of consistent values and use either both, or onlpendentSolcan be estimated by:

. . . . . n
the linear index. Directed search is applied whenetke ~ Sol=[m, 0 |—| P(C;) )
pectednumber of values that satisfy the search condi- - 1<, J<niz]

tions is smaller than the number of values in the lineayqarep(c;), as described in the previous section, is the
index. The numbe'r of retrlevg'd'values is estlmatgd USINGrobability that two intervals frond; and D; satisfy C;.

the temporal relation probabilities. For instanceCif= Tne first product in (2) corresponds to the total number
overlap P(overlap)= 0.02 andD;|= 1000, then 20 inter- ¢ n yyples of intervals, while the second one to the
vals in the domain ok; are expected to be consistent ,opapility that a tuple constitutes a solution. For acyclic
with the value of a previous variable If while instanti-  hetyorks the constraints are independent and (2) will
ating v;, the remaining consistent values \gffrom for-  give 4 good estimation of the problem solutions. When

mer checks is smaller than 20, linear scan agycles exist the constraints are no longer independent,
check_forwardvi,v;) will be preferred to directed search. | applying (2) for the minimum spanning tree of the

Alternatively, versions of the variable R-trees could begraph (w.r.t. the constraint tightness) will give an over-

maintained at each instantiation level, where only congetimation of the expected solutions.

sistent values would remain in the data structure, and We first tested the performance improvement achieved
search could be performed at each check-forward. We the path consistency (PC) method of Section 3 for

not use this method because dynamic operations on daé%yclic networks p, = (n-1)/(n(n-1)/2) = 2h), by run-

structures (i.e. insertion, deletion, construction) are USUsing experiments fon=10 andm=1000, and several val-
ally expensive. ues ofp, around the hard region. For each valugpive

. solved an ensemble of 100 problems and measured the
4 Experiments average cost for finding one solution. Usually, random
In this section we compare the performancedivécted CSPs are generated with every constraint having exactly
BT (dirBT) anddirected FC(dirFC) with plain versions the same tightness. Because this cannot be done for the
of the algorithms based on linear scan. FC and dirFC ugaurrent problem, we chose disjunctions of temporal rela-
the fail first (FF) DVO heuristic [Haralick and Elliot, tions which may be different for each constraint, but
1980]. BT and dirBT apply the SVO heuristic describedhave average tightness withit1 0 of the target valug,.
in Section 3, because, as suggested in [Bacchus and vahe hard regionK = 1) is whenp,=0.99953 This large
Run, 1995], BT with DVO does at least as much work awalue ofp, is due to the large domain size and the spar-
FC with DVO, thus it is just a FC-DVO algorithm with seness of the graph. In general, problems with sparse
redundant checks. graphs are easy [Dechter and Pearl, 1987] and the few
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existing constraints must be very tight in order to generwhich would lead to backtrack-free search [Dechter and
ate a small number of solutions. Pearl, 1987]. This method is also expected to profit from
Figure 2 shows the cost (in terms of consistencyndexing.
check$) of directed search BT and FC, with and without For cliques, the hard region cannot be estimated using
PC. The dotted vertical lines include the phase transition(1), due to the dependency of the constraints. In order to
i.e. the first ensemble that included an insoluble problendentify it, we experimented with various values mf
(left line) and the last ensemble that included a solubl@he diagram of Figure 4 illustrates the behavior of algo-
one (right line). As expected, the performance gain of PCithms for a wide scope of tightness values. Notice that
is significant since the inferred constraints drasticallythe hard region corresponds to a larger rangp,dhan
prune the search space. In the sequel we use PC for baththe case of tree graphs. While the cost difference be-
directed search and plain versions of the algorithms. Thiveen directed and regular versions of the algorithms is
nearest point to 50% solubility (crossover point) was atgain about an order of magnitude for lametheir per-
p> = 0.99925 k = 0.93748), where 54% of the problems formance converges as the constraints become loose.
were soluble. Whenp, < 0.7 most of the constraints contain relations
The second set of experiments compares the cost of defore or after. On the average, each such constraint
rected versus undirected search for trpe< 2/n) and prunes out around 50% of the values in a domain, and
cligue (; = 1) graphs. The experimental settings are thalirected search is only about twice as fast as linear scan.
same as in the previous experiments10 andm=1000; As a general conclusion, the performance gain of di-
each ensemble contains 100 problems for each value ofcted search in comparison to linear scan grows with the
p, around the hard region). Figure 3 illustrates the costonstraint tightnesg,. dirFC is, as expected, more effi-
for tree graphs. The directed search versions outperforgient than dirBT due to its relevance with FC which in
the original algorithms by more than one order of magmost cases outperforms BT. In the sequel we focus on
nitude. Tree constraint graphs can alternatively be solvethe performance gain of dirFC with respect to FC for
by the application ofarc consistencyprior to search, various problem settings.
The next experiment compares FC and dirFCnfol0,
2\We consider as consistency checks the comparisons that  Clique topology, and various valuesmfandp,. Figure 5
take place at all levels of the R-trees. shows how many times dirFC is faster than FC (average




of 50 instances per experimental setting). The gray horiby hierarchically applying CSP algorithms at each R-tree
zontal lines present the phase transition for eacland level is described in [Papadiasal, 1999].

the symbol on the line indicates the position of the
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