
Abstract
Most studies concerning constraint satisfaction
problems (CSPs) involve variables that take val-
ues from small domains. This paper deals with
an alternative form of temporal CSPs; the num-
ber of variables is relatively small and the do-
mains are large collections of intervals. Such
situations may arise in temporal databases where
several types of queries can be modeled and
processed as CSPs. For these problems, system-
atic CSP algorithms can take advantage of tem-
poral indexing to accelerate search. Directed
search versions of chronological backtracking
and forward checking are presented and tested.
Our results show that indexing can drastically
improve search performance.

1 Introduction
Many problems in a variety of application domains can
be modeled and solved as constraint satisfaction prob-
lems (CSPs). A binary CSP is defined by:

• a set of n variables v1, ... ,vn
• for each variable vi a domain Di of mi values:

{
iimi uu ,...,1 }

• for each pair of variables {vi, vj}, i≠j, a binary con-
straint Cij, which is a subset of Di×Dj.

An assignment {
ji jajiai uvuv ←← , } is consistent if

(
iiau ,

jjau) ∈ Cij . The goal is to find one or all solutions,
i.e., n-tuples (

11au ,..,
iiau ,..,

jjau ,..,
nnau) such that for

each {i,j }, i≠j, {
ji jajiai uvuv ←← , } is consistent.

Several systematic search heuristics that aim to mini-
mize the number of consistency checks have been pro-
posed. Based on the general idea of backtracking, these
methods try to improve the backward step, e.g. back-
jumping, or the forward step, e.g. forward checking
[Haralick and Elliot, 1980]. Hybrid algorithms combine
different types of backward and forward steps [Prosser,
1993]. The aforementioned search methods apply ex-
haustive search in the variable domains while assigning
or pruning values. When the number of potential values
for a variable is small (i.e. less than 100) linear scan suf-

fices; for large domains, however, the overhead can be
significant due to repetition of scan.

In this paper we study how indexing may be utilized
by CSP algorithms to direct search and avoid linear scan
of domains. As an application, we deal with CSPs, where
the values are temporal intervals and the constraints are
disjunctions of temporal relations as defined in [Allen,
1983]. Such problems may occur in planning or temporal
databases. A previous work that uses indexing in tempo-
ral databases is [Dean, 1989]. In contrast to our method,
where intervals are indexed according to their position in
space, that method directs search using a conceptual hi-
erarchical structure, the discrimination tree. Algorithms
that combine CSP search and indexing to facilitate re-
trieval of structural queries in large spatial databases
were presented in [Papadias et al., 1998]. Here, we ex-
tend this work by investigating the application of di-
rected search in temporal databases and study the per-
formance gain of directed search under various problem
conditions using different CSP algorithms.

The rest of the paper is organized as follows. Section 2
introduces data structures and search methods for tempo-
ral intervals. Section 3 shows how conventional methods
for solving CSPs can be modified to accelerate search
using indexing. Section 4 experimentally compares di-
rected search algorithms with methods that do not use
indexing. Finally, Section 5 concludes the paper with
directions for future work.

2 Temporal CSPs
The class of problems that we deal with in this paper
includes CSPs where domain values are well defined
intervals in discrete time, and each binary constraint Cij

is a disjunction of the permissible set of Allen's [1983]
temporal relations between vi and vj. Notice that the cur-
rent issue is different from traditional temporal reasoning
problems (e.g. [van Beek, 1992]) where the aim is to
identify a consistent scenario for a set of continuous
variables, given information about their relationships.
Here, we search into domains of intervals for variable
assignments that satisfy the given constraints.

This temporal CSP can be solved by employing tradi-
tional search techniques. Each time a variable is visited,

Improving search using indexing: a study with temporal CSPs

Nikos Mamoulis and Dimitris Papadias
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

http://www.cs.ust.hk/{~mamoulis, ~dimitris}

its whole domain has to be scanned in order to identify
consistent assignments. When the variable domains are
small, classic CSP algorithms behave well, but as the
domain size increases, linear scan for consistent values is
expensive.

CSP algorithms can avoid linear scans by employing
interval-based data structures that index the variable do-
mains. The search for solutions can be directed upon
satisfaction of the temporal constraints, using the data
structure to minimize the number of consistency checks.
Since search through the domains is repeated a large
number of times, directed search has a significant effect
on performance.

For the indexing of variable domains we use R-trees
[Guttman, 1984], a data structure aimed at indexing
multidimensional rectangles in spatio-temporal data-
bases. The data rectangles are stored into leaf nodes;
each intermediate node contains a pointer to a lower
level node and the minimum bounding rectangle of the
rectangles in this node. We chose R-trees because they
are becoming a standard in both research and industry
(e.g., Illustra, Informix) due to their efficiency, dynamic
nature and relatively simple implementation. Alterna-
tively, any interval-based data structure, such as interval
trees and segment trees [Preparata and Shamos, 1985],
can be employed.

Figure 1 illustrates how a 1-dimensional R-tree can be
used for interval storage and retrieval, assuming maxi-
mum tree node capacity equal to 3. The data intervals (a
to k) are stored in the leaf nodes. Artificial intervals in
the higher tree nodes are formulated by grouping inter-
vals from the level below (e.g., a,b and f are grouped in
A). The end points of an intermediate node interval are
the leftmost and rightmost end points of the intervals it
indexes. The R-tree for a static set of intervals can be
built in a bottom-up fashion after sorting them with re-
spect to one end-point, e.g. in this example the left one

(R-tree packing). Thus, the R-tree construction for n in-
tervals costs O(nlogn).

R-trees are very efficient in answering range intersec-
tion queries, i.e., find all intervals that intersect (share a
common point with) a query interval. In addition, the
hierarchical nature of R-tree facilitates general selection
queries, i.e., retrieval of intervals that satisfy any tempo-
ral condition with respect to a query interval. As an ex-
ample, consider the query: “find all intervals that start
immediately after interval b” applied to the R-tree of
Figure 1. Retrieval starts from the root of the tree; due to
the relative positions of b and 2, there can be no interval
indexed by the root entry 2 that starts immediately after
b. Thus the sub-tree under 2 is pruned. On the other
hand, entry 1 can contain qualifying intervals and is re-
cursively searched. Both entries A and B may point to a
query answer and they are followed; the only solution is
interval c. Typically, the retrieval cost is proportional to
the number of solutions; when this is small, worst case
performance is logarithmic to the number of stored inter-
vals.

Let q=[q.left,q.right] be a query interval; Table 1
shows, for each temporal relation, the bounding condi-
tions that an intermediate-level interval I should satisfy
in order to potentially point to a query answer x. This is
the criterion of following an R-tree node during retrieval.
In the previous example (b meets x) the intermediate
nodes to be searched should satisfy I.left ≤ b.right and
I.right > b.right. Intermediate interval 2 is pruned be-
cause it violates 2.left ≤ b.right. When the query is a
disjunction of temporal relations, the disjunction of the
bounding conditions is applied during search. For in-
stance, if the search predicate is starts ∨ during ∨ fin-
ishes, the bounding conditions for an intermediate level

A B

a b f c d e

D

k j g i

1 2

C

hlevel 0

level 1

level 2

a

b

c

d

e

f k

h

g

i

j

1

2

A

B

C

D
level 1

level 0

R-tree

intervals

level 2
root

Figure 1: Organizing a set of intervals into a 1-d R-tree

Relation Illustration I.left I.right
b: q before x q x unbounded > q.right

m: q meets x q x ≤ q.right > q.right

o: q overlaps x q
x < q.right > q.right

s: q starts x q
x ≤ q.left > q.right

d: q during x q
x < q.left > q.right

f: q finishes x q
x < q.left ≥ q.right

e: q equal x q

x
≤ q.left ≥ q.right

fi: q finished by x q
x < q.right ≥ q.right

di: q contains x qx < q.right > q.left

si: q started by x x q ≤ q.left > q.left

oi: q overlapped by x qx < q.left > q.left

mi: q met by x qx < q.left ≥ q.left

bi: q after x qx < q.left unbounded

Table 1: Bounding conditions for intermediate node entries

entry I are I.left ≤ q.left and I.right ≥ q.right. Although
for the examples throughout the paper we use the tree of
Figure 1, for our implementation we assume that each
variable domain is different and indexed by a separate R-
tree. The next section describes algorithms that use these
indexes to prune the search space (the methods can be
easily applied when some domains/trees are common).

3. Directed Search for Temporal CSPs
Classic local consistency methods, like arc and path
consistency, perform well for small domains, because in
this case there is a high probability that a value will be
pruned. However, for large variable domains and dense
constraint graphs usually they do not pay-off. Therefore,
we do not consider conventional local consistency meth-
ods for pre-processing, but apply the temporal network
maintenance algorithm from [Allen, 1983] prior to search
in order to infer undefined constraints and refine the ex-
isting ones. This is equivalent to a path consistency algo-
rithm that does not check value consistency, but con-
straint graph consistency, and its complexity is, there-
fore, independent from the domain sizes. For instance,
consider a constraint graph of three variables, where C12

= meets, C23 = during, and C13 is undefined. The implied
constraint C13 is then overlap ∨ starts ∨ during. If C13

was defined, then the updated constraint is C13 ∧
{ overlap ∨ starts ∨ during}. Notice that this reasoning
method detects inconsistency prior to search, e.g. when
C13 ∧ { overlap ∨ starts ∨ during}= ∅.

Efficiency of CSP search depends on the order by
which variables are instantiated [Dechter and Meiri,
1994]. The usual rule for static variable ordering (SVO)
schemes is to “place the most constrained variable first”.
A simple way to apply this rule is to sort the variables in
decreasing order of their degree in the constraint graph.
Since in our problem the constraint edges do not have the
same tightness, we follow another method: instead of
“adding 1” for each edge that goes out from a variable,
we add a weight that represents the tightness of the con-
straint edge. For a temporal relation r, weight(r) is the
inverse of the probability1 P(r) that r will be satisfied
between two arbitrary intervals. In typical cases, the re-
lation with the largest weight is equal, and the relations
with the smallest, before and after. If a constraint is a
disjunction of primitive relations, the weight is the in-
verse sum of the relation weights that participate in the
disjunction, e.g.,

weight(meets ∨ starts) =
)()(

1

startsPmeetsP +
The weight of a variable is then the sum of the weights of
all constraint edges adjacent to it. SVO will instantiate
the “heaviest” variable first and the one with the smallest
weight last. Whenever dynamic variable ordering (DVO)

1 The probabilities of temporal relations can be estimated either by
sampling the input data, or by using probabilistic estimation for-
mulae given the distribution of interval positions and sizes.

is employed, the above method is used to find the vari-
able with the largest weight and place it first. The order
of subsequent variables is dynamically changed accord-
ing to their domain sizes during search.

3.1 Directed Search Backtracking
Integration of directed search into backtracking (BT) is
rather simple. Whenever a variable vj is visited, its con-
sistent values are retrieved from the corresponding R-
tree Rj by applying the instantiations of the previous
variables vi, i<j, as query intervals, and the constraints
Cij as retrieval conditions. During retrieval, the conjunc-
tion of bounding conditions, defined by each vi, direct
the search at intermediate R-tree levels. At the leaf level,
the entries that satisfy the constraint Cij with each vari-
able vi, are retrieved as consistent values for vj.

To clarify the retrieval procedure, consider the fol-
lowing example. Let the query overlap(v1,v3) ∧ over-
lapped by (v2,v3) and the instantiations v1 ← f, v2 ← h in
Figure 1 (i.e., v3 should overlap f to the right and h to the
left). In order to retrieve all consistent values for v3, first
the bounding conditions (BC) according to v1 and v2 are
calculated using Table 1; BC13 = { I.left < f.right and
I.right > f.right} and BC23 = { I.left < h.left and I.right >
h.left}. The conjunction of the above constraints results
in the bounding conditions {I.left < f.right and I.right >
h.left}, used to guide R-tree search. Retrieval starts from
the root, where entry 2 is pruned as it does not satisfy
2.left < f.right. Similarly, entry A violates A.right > h.left
and the sub-tree below is pruned. Only intervals under
entry B can satisfy both C13 and C23. Finally, d and e
constitute the consistent assignments for v3. Notice that
the whole process costs 4 consistency checks at the in-
termediate levels and 6 at the leaf level (each interval
under B is tested against both v1 and v2), whereas a linear
scan would cost 14 consistency checks.

The above method can be applied with alternative
forms of backtracking (e.g., backjumping, dynamic
backtracking) using information about nogoods. In the
next subsection we illustrate how forward checking can
employ the index to prune the domains of future vari-
ables.

3.2 Directed Search Forward Checking
After a variable instantiation, forward checking (FC)
marks in the domains of all future variables the values
that are consistent with the current variable (check-
forward). When a subsequent variable is to be instanti-
ated only the marked values will be considered. This
marking mechanism can be thought of as a linear index
in the variable domain that points to the consistent val-
ues. Assume that an intermediate variable vi is being in-
stantiated. The domain of each future variable vj (i<j) has
already been pruned by the instantiation of variables be-
fore vi. As the linear indexes of some variables may still
be large, check-forward during instantiation of vi can be
rather costly. For these variables we apply directed

search using the R-tree and filter the results using the
linear index. Filtering with respect to the linear index is
needed, because directed search is performed on the
whole domain (i.e., an interval which satisfies the current
constraint with vi may have been pruned out by a previ-
ous instantiation). The issue to be investigated is when to
apply directed search instead of linear scan.

A good heuristic is to employ directed search at a fu-
ture variable only when the number of remaining consis-
tent values is large, and the search constraint is tight, so
the search would benefit from the R-tree. For example,
let C13 = before and C23 = equal. After v1 is instantiated,
directed search is applied to prune the domains of v2 and
v3. When v2 is given a value it is worth applying directed
search again while checking forward for consistent val-
ues of v3, because the domain of v3 is still large and C23

is a tight constraint. The results of directed search that
do not satisfy before with respect to the value of v1 are
filtered out. Now let C13 = equal and C23 = before. After
v1 is given a value, the domain of v3 is expected to be-
come very small; thus, during instantiation of v2, linear
scan of D3 is cheaper than using the tree.

This mechanism is called a double index, in the sense
that we keep both the whole domain R-tree and the linear
index of consistent values and use either both, or only
the linear index. Directed search is applied when the ex-
pected number of values that satisfy the search condi-
tions is smaller than the number of values in the linear
index. The number of retrieved values is estimated using
the temporal relation probabilities. For instance, if Cij =
overlap, P(overlap) = 0.02 and |Dj|= 1000, then 20 inter-
vals in the domain of vj are expected to be consistent
with the value of a previous variable vi. If while instanti-
ating vi, the remaining consistent values of vj from for-
mer checks is smaller than 20, linear scan at
check_forward(vi,vj) will be preferred to directed search.

Alternatively, versions of the variable R-trees could be
maintained at each instantiation level, where only con-
sistent values would remain in the data structure, and
search could be performed at each check-forward. We do
not use this method because dynamic operations on data
structures (i.e. insertion, deletion, construction) are usu-
ally expensive.

4 Experiments
In this section we compare the performance of directed
BT (dirBT) and directed FC (dirFC) with plain versions
of the algorithms based on linear scan. FC and dirFC use
the fail first (FF) DVO heuristic [Haralick and Elliot,
1980]. BT and dirBT apply the SVO heuristic described
in Section 3, because, as suggested in [Bacchus and van
Run, 1995], BT with DVO does at least as much work as
FC with DVO, thus it is just a FC-DVO algorithm with
redundant checks.

The problems were randomly generated by modifying
the parameters <n,m,p1,p2> (see [Dechter and Meiri,
1994]), where n is the number of variables, m the cardi-
nality of the domains, p1 the probability that a random
pair of variables is constrained (constraint network den-
sity), and p2 the probability that a random assignment for
a constrained pair is inconsistent (constraint tightness).
The centers of the intervals in the variable domains are
uniformly distributed and their sizes take values with an
average 1.5% of the workspace. The intervals in each
domain are indexed by R-trees with node capacity equal
to 20.

In order to identify the hard region of the problems we
use the constrainedness measure [Gent et al., 1996]:

mn

Sol

m

Sol
n

i
i

2

2

1
2

2

log

)(log
1

log

)(log
1 −=−=

∏
=

κ (1)

The hard region for an ensemble of problems is when
κ≈1, whereas problems with κ<<1 and κ>>1 are easy
and soluble and easy and insoluble, respectively. The
denominator of eq. (1) denotes the size of the problem
and Sol denotes the number of solutions in a random
problem of the class. If the binary constraints are inde-
pendent, Sol can be estimated by:

∏∏
≠≤≤=

⋅=
jinji

ij

n

v
v CPmSol

,,11

)((2)

where P(Cij), as described in the previous section, is the
probability that two intervals from Di and Dj satisfy Cij .
The first product in (2) corresponds to the total number
of n-tuples of intervals, while the second one to the
probability that a tuple constitutes a solution. For acyclic
networks the constraints are independent and (2) will
give a good estimation of the problem solutions. When
cycles exist the constraints are no longer independent,
but applying (2) for the minimum spanning tree of the
graph (w.r.t. the constraint tightness) will give an over-
estimation of the expected solutions.

We first tested the performance improvement achieved
by the path consistency (PC) method of Section 3 for
acyclic networks (p1 = (n-1)/(n(n-1)/2) = 2/n), by run-
ning experiments for n=10 and m=1000, and several val-
ues of p2 around the hard region. For each value of p2 we
solved an ensemble of 100 problems and measured the
average cost for finding one solution. Usually, random
CSPs are generated with every constraint having exactly
the same tightness. Because this cannot be done for the
current problem, we chose disjunctions of temporal rela-
tions which may be different for each constraint, but
have average tightness within ±10-4 of the target value p2.
The hard region (κ = 1) is when p2≈0.99953. This large
value of p2 is due to the large domain size and the spar-
seness of the graph. In general, problems with sparse
graphs are easy [Dechter and Pearl, 1987] and the few

existing constraints must be very tight in order to gener-
ate a small number of solutions.

Figure 2 shows the cost (in terms of consistency
checks2) of directed search BT and FC, with and without
PC. The dotted vertical lines include the phase transition,
i.e. the first ensemble that included an insoluble problem
(left line) and the last ensemble that included a soluble
one (right line). As expected, the performance gain of PC
is significant since the inferred constraints drastically
prune the search space. In the sequel we use PC for both
directed search and plain versions of the algorithms. The
nearest point to 50% solubility (crossover point) was at
p2 = 0.99925 (κ = 0.93748), where 54% of the problems
were soluble.

The second set of experiments compares the cost of di-
rected versus undirected search for tree (p1 = 2/n) and
clique (p1 = 1) graphs. The experimental settings are the
same as in the previous experiments (n=10 and m=1000;
each ensemble contains 100 problems for each value of
p2 around the hard region). Figure 3 illustrates the cost
for tree graphs. The directed search versions outperform
the original algorithms by more than one order of mag-
nitude. Tree constraint graphs can alternatively be solved
by the application of arc consistency prior to search,

2 We consider as consistency checks the comparisons that
take place at all levels of the R-trees.

which would lead to backtrack-free search [Dechter and
Pearl, 1987]. This method is also expected to profit from
indexing.

For cliques, the hard region cannot be estimated using
(1), due to the dependency of the constraints. In order to
identify it, we experimented with various values of p2.
The diagram of Figure 4 illustrates the behavior of algo-
rithms for a wide scope of tightness values. Notice that
the hard region corresponds to a larger range of p2 than
in the case of tree graphs. While the cost difference be-
tween directed and regular versions of the algorithms is
again about an order of magnitude for large p2, their per-
formance converges as the constraints become loose.
When p2 < 0.7 most of the constraints contain relations
before or after. On the average, each such constraint
prunes out around 50% of the values in a domain, and
directed search is only about twice as fast as linear scan.

As a general conclusion, the performance gain of di-
rected search in comparison to linear scan grows with the
constraint tightness p2. dirFC is, as expected, more effi-
cient than dirBT due to its relevance with FC which in
most cases outperforms BT. In the sequel we focus on
the performance gain of dirFC with respect to FC for
various problem settings.

The next experiment compares FC and dirFC for n=10,
clique topology, and various values of m and p2. Figure 5
shows how many times dirFC is faster than FC (average

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0.9989 0.99901 0.99913 0.99925 0.99937 0.99947 0.99956 0.99966

dirBT
dirFC
dirBT-PC
dirFC-PC

constraint tightness (p2)

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0.9989 0.99901 0.99913 0.99925 0.99937 0.99947 0.99956 0.99966

BT
FC
dirBT
dirFC

constraint tightness (p2)

Figure 2: cost of directed search with and without PC Figure 3: comparison of directed and plain search for trees

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99

constraint tightness (p2)

BT
FC
dirBT
dirFC

0

10

20

30

40

0.6 0.66 0.72 0.78 0.84 0.9 0.96
constraint tightness (p2)

m=2000

m=1000

m=500

m=200

m=100

Figure 4: comparison of directed and plain search for cliques Figure 5: Performance gain of dirFC for various domain sizes

of 50 instances per experimental setting). The gray hori-
zontal lines present the phase transition for each m, and
the symbol on the line indicates the position of the
crossover point. With the exception of m=100-200 and
very small tightness values (p2<0.65), dirFC outperforms
FC several times. For small domains the constraints
should be very tight in order for the intermediate R-tree
node comparisons to pay-off. However, directed search
is intended for large domains (e.g., in spatio-temporal
databases the cardinality often exceeds 105), and in such
cases the performance gain is significant. For this ex-
periment, we limited m to 2000, so that FC could termi-
nate in reasonable time.

#vars p2 %soluble FC dirFC gain
5 0.9996 58% 562466 21974 25.6
10 0.75 42% 2118699 299047 7.1
15 0.68 43% 2715124 848629 3.2
20 0.61 46% 4660763 2922984 1.6
25 0.58 42% 8570553 6619067 1.3

Table 2: Performance gain of dirFC compared to FC for vari-
ous number of variables

In order to test the implication of the number of vari-
ables, we fixed m=1000, p2 to be around the crossover
point, the graph topology to clique, and generated 100
random problems for several values of n. Table 2 pres-
ents, for each ensemble, the value of p2, the percentage
of soluble problems, and the mean consistency checks of
FC and dirFC. The last row of the table shows how many
times dirFC was faster than FC. As the number of vari-
ables increases, the value of p2 at the crossover point
decreases. As a result, the costs of dirFC and FC con-
verge due to the relaxation of constraints which deterio-
rates R-tree search, making it comparable to linear scan.

5 Discussion
This paper studies a specific CSP problem, where vari-
able domains are large collections of well defined inter-
vals and constraints are temporal relations. We show
how systematic CSP algorithms can take advantage of
indexing to accelerate search. Although we experimented
with two representative algorithms, chronological back-
tracking and forward checking, directed search can be
applied with a variety of algorithms and heuristics (e.g.
arc consistency). In typical database applications, where
m is in the order of 105 or above and n<10, the perform-
ance gain of directed search is large.

Application of data structures is not limited to the
temporal CSP discussed here. Any problem, where vari-
ables have large domains and the nature of constraints
facilitates directed search, can benefit from it. This par-
ticularly applies for spatial and multimedia databases
where several types of content-based queries can be
modeled as CSPs (e.g., find all triplets (v1,v2,v3) of ob-
jects such that v2 is inside v1, and v1 is northeast of v3).
An alternative approach that solves the above problem

by hierarchically applying CSP algorithms at each R-tree
level is described in [Papadias et al., 1999].

Acknowledgement
This work was supported by grant HKUST 6151/98E
from Hong Kong RGC and grant DAG97/98.EG02.

References

[Allen, 1983] James F. Allen. Maintaining Knowledge
about Temporal Intervals. Communications of the ACM
26(12): 832-843, 1983.

[Bacchus and van Run, 1995] Fahiem Bacchus, Paul van
Run. Dynamic variable reordering in CSPs. In Proceed-
ings of CP-95, 1995.
[Dean, 1989] Thomas Dean. Using Temporal Hierar-
chies to Efficiently Maintain Large Temporal Databases.
Journal of ACM 36(4): 687-718, 1989.
[Dechter and Meiri, 1994] Rina Dechter, Itay Meiri. Ex-
perimental Evaluation of Preprocessing Algorithms for
Constraint Satisfaction Problems. Artificial Intelligence
68(2): 211-241, 1994.

[Dechter and Pearl, 1987] Rina Dechter, Judea Pearl.
Network-Based Heuristics for Constraint-Satisfaction
Problems. Artificial Intelligence 34(1): 1-38, 1987.

[Gent et al., 1996] Ian P. Gent, Ewan MacIntyre, Patrick
Prosser, Toby Walsh. The Constrainedness of Search. In
Proceedings of AAAI-96, 1996.

[Guttman, 1984] Antonin Guttman. R-trees: A Dynamic
Index Structure for Spatial Searching. In Proceedings of
ACM SIGMOD, 1984.

[Haralick and Elliot, 1980] Robert M. Haralick, Gordon
L. Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. Artificial Intelligence
14(3): 263-313, 1980.

[Papadias et al., 1998] D. Papadias, N. Mamoulis and V.
Delis. Querying by Spatial Structure. In Proceedings of
VLDB, 1998.

[Papadias et al., 1999] D. Papadias, P. Kalnis, N.
Mamoulis. Hierarchical Constraint Satisfaction in Spa-
tial Databases. In Proceedings of AAAI-99, 1999.

[Preparata and Shamos, 1985] F. Preparata, M. Shamos.
Computational Geometry. Springer, 1985.

[Prosser, 1993] Patrick Prosser. Hybrid Algorithms for
the Constraint Satisfaction Problem. Computational In-
telligence, 9(3): 268-299, 1993.

[van Beek, 1992] Peter van Beek. Reasoning about
qualitative temporal information. Artificial Intelligence
58: 297-324, 1992.

