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ABSTRACT by a river which alsacrossesan industrial area” in an R-tree

supported system. The solutions are obtained by computing the
One of the most important types of query processing in spatialresult of one pairwise join (e.g., rivecsossingindustrial areas)
databases and geographic information systems ispidugal join using the corresponding R-trees and an appropriate (pairwise)
an operation that selects, from two relations, all object pairs spatial join algorithm (e.g., [BKS93]); then joining the resulting
satisfying some spatial predicatenAiltiway joincombines data  rjvers with the relation cities employing a method (e.g., [LR94])

?"gri”?‘ted f{lom rgore than tV\:jofrelatipnsf. AIthotL_ngh_ _severall applicable when only one R-tree (for cities) is available. An
€chniques have been proposed for palrwise spatial JoIns, ONlyq g ont execution plan can be determined using cost models for
limited work has focused on multiway spatial join processing.

This paper solves multiway spatial joins by applying systematic pairvyise spatigl joins [TSS98] and optimization methods  for
search algorithms that exploit R-trees to efficiently guide search, "élational queries.

without building temporary indexes or materializing intermediate This paper follows a different direction, and discusses processing
results. In addition to general methodologies, we propose costof multiway spatial joins using only R-trees without

thdeli and an optimization algorithm, and evaluate them naterializing intermediate results. Papadias et al. [PMD98],
through extensive experimentation. motivated by an interesting correspondence between multiway

Keywords joins and constraint satisfaction problems (CSPs), combine
Multiway Spatial Joins, R-trees, Constraint Satisfaction. systematic search algorithms (used for CSPs) and R-trees for the
retrieval of object combinations matching (exactly or
1. INTRODUCTION approximately) some input configurations. Mamoulis and
A multiway spatial join can be defined as follows: Given a set of Papadias [MP98] employ these methods for a special case of
spatial relations Ri,..,R,...R,...R}, where R = {Ui1,....Uin}, multiway spatial joins where there exists a join condition
and a set of binary spatial predicat@; { 1< ij < n}, find all between all pairs of inputs. Here we apply and extend our work
n-tuples {Usw. - Uix-.Ujys-Unz) / O ij, 1< 0j € N, Gi(UixUiy)}- to arbitrary join conditions. In addition, we provide analytical
In most cases the Spatial predicate\je”ap(intersect, Crosses formulae fOI’ the eXpeCted cost and test aCCUraCy with eXtenSiVe

but alternatively any predicate, such mear, northeast meet ~ €xperimentation. Finally we propose optimization techniques that
could be used. When=2, the above definition corresponds to yield significant improvement over the original algorithms.

pairwise spatial joins, for which several processing techniquesThe rest of the paper is organized as follows: Section 2 describes
have been developed. Some of these techniques assume tfR-trees and the most common types of queries for which they

existence of spatial indices (R-trees) on both relations to behave been utilized. Section 3 proposes multiway join processing

joined (e.g., [BKS93]), while others deal with non-indexed methodologies using R-trees and section 4 describes cost models
inputs (e.g., [LR94; KS97]). and a query optimization algorithm based on data and query

Following the relational database methodology, multiway spatial Properties. Section 5 contains an experimental evaluation using

joins (1>2) could be processed by integration of pairwise join Vvarious datasets and join graph topologies, and, finally, section 6

algorithms [MP99a]. Consider the query: “find all cite®ssed  concludes the paper.

2. QUERY PROCESSING USING R-TREES
) . The R-tree data structure is a height-balanced tree where each
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium,,qe corresponds to a disk page in secondary memory. The root
on Principles of Database Systems (PODS), 1999. is at levelh-1, whereh is the height of the tree, and the leaf
nodes are at level 0. The Minimum Bounding Rectangles
(MBRs) of the data objects are stored in the leaf nodes and
intermediate nodes are built by grouping MBRs of the lower
level. We make the distinction between an R-tree idfde and
its entriessc that correspond to MBRs included Mi] ; s.ref
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Figure 1 R-trees

points to the corresponding noblgk] at the next (lower) level.  This paper, like most related spatial database literature, focuses

Each R-tree node (except from the root) should contain at least aon minimizing the cost of filtering. R-tree performance is usually
number of entries, called minimum R-tree node utilizatian measured in terms of the number of nodes that should be
Figure 1 illustrates three relations (covering the same workspace)gccessed during the search process.dUe¢ the dimensionality
and the corresponding R-trees, assumingrtr and maximum of the data space anWsS = [0,1)d the d-dimensional unit
node capacityC is 3 rectangles (in real 2D applicatiofisis workspace. Given an R-tré® (with heighthg) and a windowq
normally 50-400 depending on the page size). (with |g| average extent on each dimension), Hweectivity
Selection and join queries are the fundamental operations in anf(R’q’l) of g on the entries dR a_t levell is de_flned ashe ratl_o
DBMS, including spatial databases. In this section we briefly of the ex_pected number_qf entries overlapping q over their total
present the techniques employed by query processors to suppoﬂumber("e" the probability that a random entry intersegs

spatial selections and joins using R-trees, and describe relateJheOd_o_”d'S and S_ellls [TS%] provide the following formula for
analytical models. selectivity, assuming unit workspace and square node rectangles

("uniformity assumptioiKF93]):

A spatial selection retrieves from a dataset, the entries that

satisfy some spatial predicate with respect to a reference objectvhere $r | is the average extent (on each dimension) of an entry
g. The most common type of spatial selections aiedow sr, of the R-treeR at levell. The numbeMNA(R,q,l) of node
queries where the predicate verlapandqg defines a window accesses at levelequals the number of entries intersectedjby

in the workspace. The processing of a window query using R-in the upper level+1, i.e., the total number of entries at level
trees involves the following procedure (Figure 2): Starting from 1+1 (denoted byNg 1) times the probability that an entry
the top node, exclude the entries that are disjoint with the queryintersectsy (selectivity):

window, and recursively search the remaining ones. If, for

instance, we are looking for all rivers that intersect cifywa NA(R,G,))=Nr,+1'S(R,q,1+1)=Ng 1 (|5 w1|+/q[)® (2

retrieve the root entries of the second tree that oveiléin shis
case B). Then we search inside; Bor potential solutions (no
objects in Bcan overlap g.

The total cost of a window quei@ostyg is the sum of node
accesses at each level, i.e., the number of entries that intgrsect
at all intermediate levels plus the access of the root:

1 WindowQuery(Rtree_Node N[i], windog) - et

2 FOR all g0 N[i] with sk n g2 0 DO - - B 3

3 IF Ni] |s[11 leaf nodgTHEN CoshR @) =1+ ZNA(R'q'I)_“ Zl a Equ"|+|q) o

4, output (g)

5 ELSE* intermediate nodes */ This formula is based on the performance analysis of TP&T
6 ReadPage(sef) [TS96] defines the R-tree properties,), Nr 1, and $r | involved
7 WindowQuery(N[K], q) in Eg. 3 as functions dfir andDr, denoting the cardinality and

density of the dataset, thus computinglA(R,q,l) and
Costvo(R;,q) by using only data properties, without extracting
When the MBRs of two objects adésjoint, the objects that they  information from the underlying R-tree structure. Pagel and Six
approximate are alsdisjoint If the MBRs, however, share
common points, no conclusion can be drawn about the spatial
relation between the objects. For this reason, spatial queries' The densityD of a set of rectangles itdimensional space is
involve two steps [O86]: (i) dilter stepuses the tree to rapidly defined as the average number of rectangles that contain a
eliminate objects that could not possibly satisfy the query, and gjven point in the workspace. Equivalenflycan be expressed

(i) the results are passed throughefinement stepvhere false as the ratio of the sum of all rectangle areas over the area of the
hits are detected. available workspace.

Figure 2 WindowQuery
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queries in general. Papadias et al. [PTS97] show how the above2 *
formulae can be applied for any spatial predicate including

topological (e.g., inside, meets), direction (e.g., north) and Theodoridis et al. [TSS98] provide a detailed description of cost
distance relations. formulae for RJ, including the case of R-trees with different
heights. In correspondence to window query analysis, all the
involved parameters can be expressed as functions of dataset
properties, namely cardinality and density. Experimental results
suggest that the above cost models are accurate for uniform data
(where the density remains almost invariant through the
workspace). In order to deal with non-uniform (e.g., skewed)
data distributions, they propose a maintenance of a grid with

- . i statistical information about cardinality and density per cell. This
enclosure propertyif two intermediate R-tree nodes do not approach, applied with reasonably sized grid (50x50), provides

inters_ect, there can be no MBRs_beIow them '_[hat _ir_'terseCt'good estimations for real datasets with highly skewed data
Consider that we want to find all pairs of overlapping cities and distributions [MP99a]

rivers in Figure 1. The algorithm starts from the roots of the two ] o ) )
trees to be joined and finds all pairs of overlapping entries inside able 1 summarizes the symbols and definitions introduced in
them (e.g., (ABy), (A2,B2)). These are the only pairs that may this section. In the sequel we show how they can be applied for

[PS96] argue that window queries are representative for range "1 O
%D\IRJ,I [Ng | EqSR,I|+|SRJ,I|)JH

2.2 Spatial Joins

A spatial join operation selects from two object sets, the pairs
that satisfy some spatial predicate, usuaitersect(e.g., “find

all cities that arecrossed bya river”). The most influential
algorithm for joining inputs indexed by R-trees is tReree-
based Spatial Join(RJ) [BKS93], which presupposes the
existence of R-trees for both relatiorRJ is based on the

lead to solutions; for instance, there cannot exist afly)(a [ multiway spatial joins.

Az and b [ Bz such that (gy) is a solution, because; Mloes not Symbol Definition

overlap B. For each overlapping pair of intermediate entries, the [y number of dimensions

algolrithm is r(_ecursivelt)_/t (t:alledI ;J_ntil tt;(_a Ieaf3 l??/elf ;Nhe:E he height of the R-tre®

overlapping pairs constitute solutions. Figure 3 illustrates the - -

pseudg?cogepfoRJ assuming that the treesg are of equal height; D density of data MBRs indexed By

the extension to different heights is straightforward. Huang et al.[N& number of data MBRs indexed By

[HIR97] describe a breadth-first search I/O optimized version of|Nr. | number of entries dR at levell (Ny,) =Ngr)

the algorithm. Is| average extent of data rectangles indexeg; by

1. RXRtree_Node N[, N[j]) S average extent of entries Bfat levell (|sx ol=lss )
2. FOR all sON[j] DO o] average extent of a query windgw

3 FOR all g0 N[i]with sk n 90 DO S(R,q,1) selectivity of a query windowg on the entries oR|
4. IF N[i] is a leaf nodé#* N[j] is also a leaf node */ at levell

5. THEN outputiss) CostvdR;,q)|[number of node accesses for a window qugmy R
6 ELSE/* intermediate nodes */ Cosky(R;,R)[number of node accesses for a spatial join between
7 ReadPagei(sf); ReadPage(sef); two R-treesk andR

8 RINIK], N[I) Table 1Table of symbols

Figure 3 R-tree-based Spatial Join
- 3. MULTIWAY SPATIAL JOINS
Initially, RJ takes as parameters the roots of the trees to bep multiway spatial join can be represented by a gr@pivhere
joined. Then it performs a synchronized traversal of both R-trees,Q[i][j] denotes the join condition betweerR and R.
with the entries of the two structures playing the roles of data Equivalently, the graph can be viewed as a constraint network

re_ctangles a_nd query windows, respectively, in a series Ofcorresponding to a binary constraint satisfaction problem. A
window queries. Since Eq. 2 calculates the number of nOdebinary CSP [P93] is defined by:

accesses at levebf R when a query window is considered, it .

can be modified to calculate the cost of a join query by using the® A Seétofn variablesyi,..vi, ..V

corresponding node entriesalj,| of R as query windows. Thus, « For each variable; a finite domainD; ={ui1, ..., Uini} Of
according to line 7 of the algorithm, the cost for both R-trees at potential values (whend; is the cardinality ob;)

levell is the sum of costs &l different window queries oR - For each pair of variables,v; a binary constrain€; which

[TSS98]: is simply a subset d¥; X D;.

NAR,R,)=NA(R;,R.I) =NRi+1"Ng j+1°(ISg 11| +] SRj,|+1|)d 4) If (Uix Uy) [ Cj, then the assignmenti{— Ui, Vj « Uy} is
) ) consistent A solutionis an assignmentv{ — Uiw, ..., Vi « Uiy,

For R-trees with equal heighg, the total cosCosk(R,R) of a vy Vi Uy, .., Voo Ung, such that for all iji § « Uiy, v —

spatial join betweerR and R using RJ is the sum of node | 1is consistent.

accesses for each level: ) - . .
The example query: “find all citierossed bya river which also

B hR‘Z{ }_ crossesan industrial area” can be mapped to a CSP as follows:
Cosky(R.R;) =2+ Z NARR,R;.1) + NAR;, R 1)y = (i) There exists a variable for each input, i.ev:, v» andvs, for
=0 cities, rivers andnidustrial areas respectively. (ii) The domain of



each variablevi consists of the objects in the corresponding phase can be based on various CSP algorithms. The order of
relation (e.g.,D: is the set of cities). (iii) Each join predicate variables is pre-determined according to some optimization
(e.g. "crossed by") corresponds to a binary constraint. An method (see section 4), and is such that every variable after the
assignmentyi « Uiy Vo« Uzy, V3« Uz constitutes a solution, first one should be directly connected to an instantiated variable
if city wix is crossed by rivetpy which also crosses industrial  (e.g., the ordewy,va,v2 is not valid for the query of Figure 4a,
area Uz, Therefore, in the sequel we use the terms since there is no edge betwegrandvi). For acyclic queries, the
variable/dataset and constraint/join condition interchangeably.  current variablev is directly connected to a single instantiated
variable whose value becomes the query window for seaieh in
e.g., for the ordevs,v2,v3, sz, is the query window fovs, sg, for

vz and so on. For clique queriesjs connected to all instantiated
variables that mutually intersect. In this case the query window
for R is the common area of instantiated variables [MP98], since
any set of MBRs that mutually overlap has a non-empty
intersection. In Figure 4b, for instance, should overlap the
common intersection (gray area) &f and sg,. For arbitrary
queries, i.e., whens is connected to a random number of
instantiated variables, the value of one is chosen as the query

Following the standard approach in the spatial join literature, we
consideroverlap as the default join condition. Furthermore, we
focus on two particular types of multiway joins: acyclic (trees)
and complete graphs (cliques). Figure 4 illustrates two query
graphs joining three datasets and two solution tumes ..

Sry) such thatsg is an object irR. Figure 4a corresponds to a
chain query (e.g., “find all citiesrossed by river whichcrosses

an industrial area”), while 4b to a clique (“the industrial area
should also intersect the city”).

" Re Sky window and filtering with respect to the other variables takes
. S.R1 5R3 place in main memory.
: (a) Tree quer (i) The second methodologgynchronous traversgBT), can be
query thought of as the generalizationRd for an arbitrary number of
Ry Ry SRy inputs. In particular ST starts from the roots of the trees and
ﬁ S, attempts to find solutions, i.e., combinations of entries that
Rs K, satisfy the input constraints. When a legal combination is found

at the intermediate levels, the algorithm is recursively called,
taking the references to the underlying nodes as parameters, until
the leaf level is reached. For the query of Figure Sfayould
Since multiway spatial joins can be modelled as CSPs, CSPfind all triplets (A,B;j,Cq) of entries at the roots such that,BY
algorithms could be employed for their processing. Such and (B,Cy) intersect. Out of the 8 possible combinations (i.e.,
algorithms perform systematic search by applying the basic idea(A; B;,C1), (A1B1,C2), (AuB2,Cy), ..., (A2,B2,Cy)), only three,

of backtracking and trying to improve the backward (e.g., (A1,B1,Ci), (AuB1LCz) and (A4,BCy), could potentially lead to
backjumpingand dynamic backtrackingor the forward step  solutions. The calculation of combinations of the qualifying
(e.g., forward checking see [P93] for a survey). A naive nodes for each level is expensive, as their number can be as high
backtracking algorithm for processing the example query of asC" (whereC is the node capacity). Finding the subset of node
Figure 4a (using the datasets of Figure 1) would first instantiate combinations that is consistent with the input query can be

the variable corresponding to cities to some value (e.g-a1) treated as a local CSP at each level in order to avoid exhaustive
and then proceed to the next variablg for rivers. Assume that  search.

Vv, is first instantiated tosjowhich overlaps & The algorithm will
then proceed another step forward and will assig(industrial

(b) Clique query
Figure 4 Examples of multiway spatial joins

The combination of?WRandST can yield significant performance
improvement over the individual method$WR essentially

area) with value ¢ Because icoverlaps  the first solution . . ; . .
(aubuc) has been found. Then the algorithm would try all other searches the whole space in order to instantiate the first variable,
n e L ) 9 y but after doing so it performs only window queries which are

industrial areas before it determines that there is no other value

. I cheap operations in R-trees. The disadvantage of blindly
that overlaps b and will backtrack assigning a new value1o instantiating the first variable in the whole universe could be

Obviously the above algorithm performs a large number of avoided by an algorithm that appli&€] to instantiate multiple
redundant consistency checks because it does not exploit thenitial variables which will then benput to WR through
underlying index structures. Several alternatives that take pipelining. In the example quen8T could retrieve pairs of
advantage of R-trees to speed-up search are presented iBverlapping cities and rivers, and for each such Y&will be
[PMD98]. These algorithms can be classified in two general called to find qualifying industrial areas. Obviously this
methodologies which can be utilized for multiwvay spatial join technique can be applied with any number of variables. For
processing as follows: instance, a query involving ten relations may be processed using
(i) The first methodology, calledvindow reduction (WR), STfor the first four variables, and/Rto instantiate the rest. The

performs systematic search by applying window queries to find Pseudo-code in Figure 5 illustratégbrid, a hybrid STWR
the consistent values of uninstantiated variables. For instancefoutine which consists of two modules: the outer moduld/is
after assigning: — a, a becomes the query window for rivers and the inner one BT. Hybrid takes 3 input parameters:

that will constitute the domain of,, avoiding unnecessary « a rxn boolean arrayQ that stores the query graph to be

consistency checks. In other words, the forward phas@é/Rf executed. If for some iQ[i][i] is TRUE, the corresponding
works in an indexed nested loop fashion, while the backtracking variables intersect. We assume tiGatis connected; non-



1. hybrid (QueryQ(][], Rtree R[], intk)

2. i:=k;/*values for the first k variables come as k-tuples*/

3. N[ :=root nodes of R[];

4, WHILE (TRUE) {

5. IF i =k /*values of first k variables*/

6. THEN

7. 1:=STQ, N, k); /*get next valid k-tuple output by ST[ stores the current value of variable*/
8. IFt = NULL /*no more k-tuples are output by ST*/

9. THEN RETURMNttermination-backtrack from first k variables*/

10. ELSE/*values of (k+1)" and subsequent variables*/

11. 1[i] := Query(R[i], WindowQuerfi]); /*next value from R[i] intersecting queryWindow[i]*/
12. IFt[i] = NULL /*empty domain for (k+1Y or later variable*/

13. THEN i :=i-1; GOTO #'backtrack*/

14. ELSHE* not empty domain */

15. FOR j=1 to i{ficheck consistency of the value w.r.t other instantiated variables*/
16. IFQ[][[I=TRUE) AND (Tt[j] nT[i]=0) /*1i] is inconsistent because it does not intersgjt/
17. THEN GOTO JYiselect new value of ¥/

18. IFi=n/*last variable has been instantiated*/

19. THEN output_solutioriy;

20. ELSE/*intermediate variable*/

21. i = i+1{*go forward */

22. Set queryWindow([i;

23. }/* end WHILE */

/*ST will return only one k-tuple every time it is called, or NULL if no more consistent tuples exist*/
24. ST(QueryQ[l[], RTreeNode N[], int k)
25. T:Hind-solutiongQ,N,k); /*calls an algorithm to find all solutions (k-tuples) at current level (S is the # solutions)*/
26. FOR s=1to S D@ for each solution at the current level */
27. FOR j=1to k DQ@[J]=TI[s][j] /* T[1]... T[K] holds the current solution */

28. IF intermediate level
29. THENST(Q, t.references, k)*recursively call ST for lower level*/
30. ELSE PIPELINE]; /*leaf level -> return tuples to hybrid when needed until end of tuple_array */

Figure 5 Thehybrid algorithm

connected graphs can be solved as independent subOtherwise, is increased and the algorithm proceeds to the next
problems. variable. The query window for (line 22), becomes the current
value of the single instantiated variable connectedy tgfor
acyclic queries), or the intersection of all current values (for

assumed to be of equal height, although the method can bé:liq_ues). Eor arbitra_ry graphs (i.ei,is conr_lected to any number
easily extended for trees of different heights (similarly to of instantiated variables) the value with the smallest query
RJ) window is chosen and the results are filtered (lines 15-17) with

respect to other instantiated variables joined with the current
* a parametek (1 < k < n) that denotes the number of gpa.

variables to be joined bST. If k = 1 k = n), thenhybrid is o ) ) .
actuallyWR(ST). STis invoked each time there is a need for a new consiktent

tuple. The first timeSTis called, it takes as parameters the roots
Initially the indexi to the current variable is set koand the  of the firstk R-trees. It then callfind-solutionsto retrieve the
pointer of all R-tree nodes is set to the roots. Th&retrieves a  ¢ongistent tuples for the current set of tree noBiesl-solutions
consistent tuple of values for the firktvariables (lines 6-9). can be any CSP algorithnfotward checkingwas used in
These values are stored #fil]... T[k] (t holds the current  pppo8]) enhanced with several heuristics to reduce the number
instantiations). When all suck-tuples are exhaustediybrid of consistency checks. The solutions at each level (S denotes the
terminates. Lines 10-17 correspond to instantiations of variablesigia) number of solutions) are stored in an array R[S} row in
Vies,-- Vo A value for the current variable is retrieved using a T corresponds to one solutian If STruns for intermediate tree
query window in the corresponding R-tree (line 11). If such @ nodes it is recursively called for the lower nodes pointed by each
value cannot be found, the algorithmillvbacktrack (here we  sojution. If it runs for the leaf nodes, it outputs one tuple and
assume chronological backtracking). waits for the next call bywR to continue. This pipelining
Line 18 of the code will be reached only in the case of a mechanism betweeBTandWRis implemented by buffering the
successful instantiation. If the last variable has been instantiatedpaths of the current return 8fT (the recursion stack), as well as
T contains a complete solution which is output to the user. the sets ok-tuples that have been found at the current level.

e an array oh R-trees that index the relations to be joinRd (
indexes variable/relatiow). For simplicity, all R-trees are



The application ofhybrid in case where some or all of the When the query graph contains cycles, the assignments are not
variables have the same domain (i.e., image similarity retrieval independent anymore and Eqg. 8 is an over-estimation of
applications) is straightforward. Furthermore, it can be selectivity. For cliques, it is possible to provide a formula for
effectively employed when only a subset of the solutions needs toselectivity based on the fact that if a set of rectangles mutually
be retrieved. For instance, it can be easily modified to terminateoverlap, then they must share a common area. As we show in the
after the retrieval of the first solution resulting in significantly Appendix, the average intersection area of two rectasglesd
smaller execution cost. Multiway join processing based on sg, is:

integration of pairwise spatial join algorithms [MP99a], does not

have this feature; spatial hash join algorithms applied for joining HsRl EIISR2 g (10)
intermediate outputs must read and write the whole build input, WE

even if pipelining is used for passing the results to the next U™ Re
operator.

Consider the instantiations/{— sr,, V2« Sz,} in the query of
Figure 4b. The probability that a tuplsr(Ss,.Sz,) is @ solution,
It is well-known in both the database [G93] and CSP [BvVR95] IS Prob(se, overlapsst)DProb(st,d,_ overlapssy an d e overlaps
. . . o - Sk, ISk, overlapssr,). The conditional probability in the second
communities that the order in which pairwise joins are 2 ™1 20 - .
part of the product is equal to the probability tegtintersects

performed, or otherwise the order in which variables get .
instantiated, has a very significant effect on performance. In theFhe common area Gy, and sy, By applying Eq. 10 for the

sequel we provide analytical formulae for the expected cost Oflntersectlon area ok, andss,, we derive:

multiway spatial joins and an optimization algorithm that

determines the subset of variables to be instantiate&Tand Prob((sr;,Sr,:Sr,) IS @ solution):qs |+|s |)d.B|s&|EIBR2| Bd
) 9 . ; R | Sk, *[sg|

the optimal order of the remaining ones to be instantiataRy Es&|+|st| E

EIBF%' * |SR1| EIBRS )d (11)

In the general case, it can be shown that the average intersection
area ofn mutually overlapping rectangles,, .., sz, is:

4. CoSTMODELS AND QUERY OPTIMIZATION

4.1 Selectivity of Multiway Spatial Joins

A solution of a query graphQ at level | is a n-tuple :GSRJEIBRZ
(sRlJ,..,sRiJ,..,sR‘.J,..,sRnJ) such thatsg s is an entry at levdl of R-
treeR, andlij, 1 <i,j < n, Q[]FTRUE 0O s overlapssa‘.J.

As in the case of spatial selections and pairwise joins, the
expected number of solutions determines the cost and is crucial

for the optimization of multiway spatial joins. The total number E n

+

st

of solutions is given by the following formula: 0 EHSR| B (12)
i~
0
n n
. — sl : . . 0 0
#solutions =#alh-tuplesProb(a n-tuple is a solution) (6) Dz |‘| |5RJ | 5

The first part of the product in Eq. 6 equals the cardinality of the ' = H

Cartesian product ofn domains, while the second part .

corresponds to the query selectivity which equals the probability2d the probability of a randomuple @, -, sr) to be a
that all binary assignmentsif— s, Vj < SR‘,J} 0i,j | Q[ilfi] = solution of a complete query graghwith n nodes is:

TRUE are consistent. In case of acyclic graphs, and ignoring prop(a n-tuple is a solution) =

boundary effects (i.e. rectangles are small with respect to the

workspace), these probabilities are independentsd &e a data Prob(ss, overlapssz,)

object inR with extent §z| (equal to the average entry extent at ‘Prob(sg;0verlapsss,[J sz;0verlapsss/ s, Sz, mutually overlap)
level 0). The event thatsg, overlapssz,” is independent of the

event &, overlaps sg;,". Thus the probability of a triplet

satisfying the join conditions in Figure 4a is the product of Prob(ss,overlapsss,[l..[sz overlapsss, /Sr;--Sr,, mut. overlap)

pairwise selectivities: Bj
N d d e (19
Prob((sz;, Sry» Sy) is @ solution)gss|+| Sr,|)™ (ISR, +ISr,l)" (7) = |_| SRJ|§
=T =L
In general, the selectivity of an acyclic join graph contaiming ”
variables is: Detailed proofs of Eq. 12 and 13 can be found in the Appendix.
Using Eq. 13 for selectivity, we obtain the number of solutions at
Prob(a n-tuple is a solution)= |_| (SR| +|SRJ |)d ®) levell:
0i,j:Q(1,j)=TRUE
and the total number of solutions at tree ldvsi n Ho o
#solutionQ.1) = [ Neut (3 [ s 2 (14)
i=1 i=1 j=1

ST

#solutiongQ, 1) = . NR,i O qu,, | +|st,I |)d 9)

i= 0i,j:Q(I, j)=TRUE



The experiments demonstrate that the above formulae areThe combination ofST and WR for multiway spatial join
accurate and, therefore, can be applied for optimization of processing results in plans of a certain "left-deep" form, which is
multiway spatial joins independently of the algorithms. In the different from left-deep trees in relational join processing [IK91]

sequel we show how they can estimate the cdsytmfic®. in the sense that the leftmost (deepest) leaf nodes are
. synchronously traversed (plans are not necessarily binary trees).

4.2 Cost Models forHybrid Figure 6 illustrates the alternative plans for the query of Figure

A subgraphQyy of Q containingx nodes (variables) is called 4a, where joins to be processed®yare shown in rectangles.

legal® if it is connectedyxyis the set of nodes i@, The total The last four plans correspondWRwhere the leftmost variable

number of legal subgraphs is less or equal (in the case ofis instantiated first.

complete graphs) to the numberxtombinationsof n objects Pure ST Hybrid

C(x,n) (Qx1yW) denotes adecompositionof Qyy into a legal X X X

subgraphQx.1,y (with x-1 nodes), and a single variablg such R/R‘ \R N/ \R N/ \R

that v = Viy-Vi1y. For instance, the graph in Figure 4a can be L 25 SN TN

decomposed into a subgra@h with V2 1={vi,v2}, and variable R R R R4

vs. On the other hand, a decomposition intg\is} and v» is not bure WR

allowed sincev; and vz are not directly connected. A legal
subgraphQyy can be processed in two ways: either by applying /M\ /M\ /M\ /M\
ST, or by executing a sub-query of sizgd and then usingvVRto X Ry M Ry M Ry M

instantiate the" variable. Rl/ \Rz Rz/ \Rl Rz/ \R3 R3/ \Rz

Ry

Let Costvi(Qx-1y, W) be the cost (in terms of node accesses) of Figure 6 Possible plans for the query of Figure 4a

executingWR to find all consistent instantiations of, when .
Qc1y has been solved. For each solution we have to perform alet p(x) be a function that returns the number of plans for a legal

window query in indexR¢ in order to retrieve the consistent subgraph ok node'_sz and(x) a function that retums the T‘“mbef
instantiations of. As discussed previously, in case of acyclic of legal decompositions. W‘? assume thatgjjcan resuI'F n the
graphsv is connected with a single instantiated variablghig, same number of decompositions and each decomposition has _the
whose value becomes the query windpwFor cliquesgy is the same number of plar_15. Then the total number of plans is
common intersection area of the values of all variable¥,iny. described by the following recurrence:

The total number of window queries corresponds to the numberp(x)=d(X)[p(x1)+1 andp(1)=1 (18)

of solutions 0RQx1yat level 0. Thus: where the additional plan is for processiQgy using ST. For

Costw{ Q1,5 V) =#solutiongQy.1,,0)TostvgRy ,G) (15) chain queries (minimal number of plandfx)=2 sinceQx.1,y can

) ) be generated fron@yy only by removing the first or the last
whereCosiyg is computed according to Eq. 3, and the number of yariaple. By substituting this value in recurrence 18, we derive
solutlon_s according to Eq. 9 or 14, for acyclic and clique queries, that the number of alternative plans for chain querie®'i: Eq.
respectively. 18 cannot be applied for arbitrary trees, becad(s¢ may be
Let Cost(Qx,) be the cost of processir@, using ST The x different for two sub-graphs witkk nodes. Among all acyclic
roots of the R-trees must be accessed in order to find a root levefiueries, the one that results in the largest number of plans is the
solution. Each solution will lead toaccesses at the next (lower) Star graph. In this cas@.iy can be generated froiQy, by

level. In general, at levd| there will bex(#solutiongQy,,l+1) removing any variable except for the one at the center, thus
node accesses. Thus the total coSDis: d(xXx-1. Similarly, for cliques (maximum number of plans) any

he2 variable can be removed during a decomposition, resulting in
Cosk(Qyy) = X+ z x@solution@xyy,l +1) (16) d(x}=x, and a total number of plans equal to:

1=0

n

Let P = ((v1,.. Vi), Vk+1,..¥n) be a plan where the fir&tvariables ngii <ni@ (19)
are instantiated throudBT and the rest bWRin this order, and = X

Qx,p be a sub-graph containing the firstariables of. The total

cost of processing is: This is significantly smaller than the corresponding number in
N relational queries, i.e., (2(n-1))! / (n-1)! [SKS97], because there

Cos(P) = Cost(Qup)*t » COSkr(Qypr W) (17) do nqt exist right-_deep or bus_hy plans: In the next segtion we
L describe a dynamic programming algorithm that determines the

optimal execution plan by searching through the whole plan

2 Hybrid is applicable for queries containing arbitrary cycles. SPace.

Optimization of such queries using Eq. 9 and 14 as bounds for
the number of solutions, however, is not accurate. Notice that
most related literature in relational multiway join processing
deals with acyclic graphs.

4.3 Optimization with Dynamic Programming

Dynamic programming has been successfully applied for

optimization of relational queries involving a small number of

5 ) o ] inputs [196]. Hybrid-plan computes the best execution strategy
We use indey to distinguish different legal subgraphsf  incrementally, based on the optimal plans of its subgraphs. The
nodes. recursive equation implemented by the algorithm is:



Cos(Qxy)=min{Cost1(Qxy), 5. EXPERIMENTAL EVALUATION

min (Cos(Qu1,)+COSWH Qe Vx))} (20) The previous algorithms and optimization methods are
Odecomposiiny' independent of the underlying predicates, so they could be used
In general, at each levalbrid-plandecomposes eveQy, into with a variety of spatial constraints. In these cases, the equation

all legal combinations QiyV), and finds the best parameters (e.g., number of solutions, cost of window query)
decomposition using the cost f@k.1, which was computed at need to be modified using appropriate cost models [PTS97].
the previous execution levetl. Either this decomposition, or ~ Following the standard experimental methodology in the spatial
ST(Qx,) will be marked ag)y's optimal plan, to be used when join literature, in this section we evaluate them by assuming that

computing the optimal cost for query sub-graphs of side the spatial predicate is alwagserlap

1.  Hybrid-plan(QueryQ, int n) All experiments were executed on an Ultrasparc2 workstation
2 FORx=2 to n DO (200 MHz) with 256 Mbytes of memory. The implementation of
3 FOR each connected subgrgti sizex DO WRis based on chronological backtracking (as in Figure 5). The
4, CostD, ] = Costr(Qy); overhead of algorithms (e.dackjumping[D90]) that direct the

5. bestPla}y,] = ST, backward step according to information about inconsistencies
6 FOR each legal decompositjonf Q, , DO does not pay-off for the current problem. This is because, due to
7 minCost = Cos@y.1 y] + Costvr(Qx-1,y1\); the large domain sizes and the limited tightneseveflap the

8 IF minCost < Cosy,] THEN instantiated variable that causes an inconsistency with a value of
9. bestPlary,] = WRQx.1,y:V); the current one is almost certainly the ldghd-solutions(the

10. Costf),,] = minCost; core ofST) is based on forward checking [HE80; BG95], but uses

the basic idea of plane sweep [PS85] to reduce the number of
S _ consistency checks. Both implementationsV@R and ST are
CostQu,] is initially the number of leaf nodes in each R-tRe  basic in the sense that we did not include heuristics (such as

(i.e., the numbeNRgy,, of entries at level 1). Then the algorithm space restriction [BKS93; PMD98]) to speed-up search.
will calculate the plans and corresponding costs for all pairwise

joins, i.e., allQy such thatQ.yis connected. First the cost of
each pairwise join is computed usirgT. Then for both

Figure 7 Hybrid-plan

The first set of experiments shows the accuracy of the cost

models, and studies how data and query density affect the

decompositions o, ,to two subgraphs (containing one variable _optlma! value fork (i.e., the numb_er of var_labl_es tq be
v instantiated byST). We ran tree and clique queries involving 7

each), it will calculate the cost GNR for instantiating one variables using datasets of various densities. The cardinality of
variable first and then the second one (indexed nested loop). For g | y

all pairwise joins, the best of the three optio83 &nd tWOWR all _datasets is _flxed to 10,000 umf_ormly dlst.nbuted rectangles
. ) while the densityD has four potential values: 0.05, 0.20, 0.35,
plans) and their costs are stored in two tablesstPlanand . o
A . and 0.50. There is a total of 4x2 (data density times graph
Cost respectively) and used for calculating the costs of

processing subgraphs of three nodes. At the erylid-plan topology) experimental settings. For each setting the valde of

bestPlafQ] will contain the optimal plan for executing, and ranges from 1 (purWR to 7 (puresT); every run co rresponds to
: the best plan given the value lof The cost of optimization was
Cos{Q] its expected cost.

less than 1% of the cost of processing the optimal plan.
If the query is clique (worst case), at each iteration of the outer

loop the algorithm will tes€(x,n)yn!/x!(n-x)! subgraph),, and
for eachQyy it will perform x decompositions. Thus. the total

Table 2 illustrates actual (NA), estimatd@NA) node accesses,
and CPU time for each setting. Node accesses are shown on the
running time (assuming constant table writing and look-up) is: left y-axis and CPU tlme_ on the ”ght. one (sometimes in
" logarithmic scale). We also include the optirkand the number

i n! of actual solutions retrieved; obviously, the number of solutions
Zm increases with the data density and decreases with the query
= density. Several observations can be made based on the'results
Only the optimal cost and the number of solutfanfseach sub- 1
graph with sizex-1 has to be maintained for the calculation of the
optimal costs of sub-graphs with size thus, the space
requirements ohybrid-plan at iterationx of the outer loop are
C(x1,n) + C(x,n) The time and space requirements of the
algorithm renders exhaustive optimization inapplicable for g
queries involving numerous relations. In [PMT99] we present
two local search techniques (basedtemative improvemenand
simulated annealing that efficiently generate nearly optimal ° For the estimation of node extenfs| we use statistical
plans for large number of inputs. information from the tree (rather than the analytical formulae
of [TS96]) because they provide higher accuracy.

(21)

Estimated node accesses are close to the actual number. In
the worst case, the relative error is below 25%, whereas the
average difference between ENA and NA is 8%.

Page size is set to 1KB resulting in R*-trees [B8E with
node capacity 50 and height 3.

” Notice that the results are very similar for all acyclic topologies

4 Lines 4 and 7 use Egs. 16 and 15 which require the expected so we do not include special cases (i.e., chains or stars); the
number of solutions. This number is also stored, but, for behavior of such queries can be derived from the general
simplicity, is omitted in the pseudo-code. diagrams for trees.
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Table 2Actual and estimated node accesses and CPU-time for various combinations of data / query densities

2. The diagrams for CPU-time are very similar to the ones for of the NA columns). The cost, as well as the number of solutions,
node accesses, and the cheapest plan in terms of CPU timécreases linearly with the size of the datasets. Notice that we
is always the one with the fewest accesses. This confirmschose different densitiesD€0.2) for acyclic, and for clique
the fact that ENA, based on the models of section 4, is a(D=0.5) queries, because these values give a reasonable number
good measure for the cost of multiway spatial joins. of solutions. D=0.5 for acyclic queries (withn=7, N=10K)

3. There are vast performance differences (orders of generat_es more than_aleolutions, while for cliquesD=0.2
magnitude) for the different choices lo{although for each results in only 36 solutions.

k the best plan was used). In particular, the optitnal For the last set of experiments data sizes and densities are fixed,
increases with the data and query density. In all cases,and the number of variables ranges from 3 to 21. For queries
intermediate values df achieved the best performance (no involving more than 12 inputs, the optimal plan was computed

pureWRor STplans). using the local search techniques of [PMT99] because exhaustive

In the following experiments we use the suggested optimal planoptimization was _prohibitively expensive. N(_avertheless, for most

and measure the effect of the data size and the number of inputgracucal appllcatlons, t_he number of relations is less than 10,

on the performance diybrid. Firstly, we keep the number of and dynamic programming suffices.

variables and density fixed, and investigate the cost of multiway Table 3, second row, illustrates the NA and CPU-time as a

spatial joins as a function of the input carditya Table 3 (first function ofn. As shown in the diagram for trees, when there is

row) illustrates the actual node accesses (in thousands) and CPWo significant change in the number of solutions, the cost
time (in seconds) for datasets with 10K, 20K, .., 50K rectangles. increases linearly with the number of variables. On the other

For each dataset we also include the number of solutions (on toghand, cliques queries with 18 or more variables do not have



Acyclic (D=0.2) Clique (D=0.5)

==INA —A—CPU E==INA

Actual node 500 T 21229 100 1000 7

accessesand | 18932
CPU-time as a

function of data 7

sizeN 200

T 80 800 +
T 60 600 +
T 40 400 +

n=7 100 + T+ 20 200 +

10 20 30 40 50
——CPU
Actual node
accesses and
CPU-time as a
function of

query sizen

N=10K

3 6 9 12 15 18 21

3 6 9 12 15 18 21

Table 3NA (in thousands) and CPU time (in seconds) as a functioranfiN

solutions. As a result, the cost almost stabilizes since search igminally, the proposed techniques can be applied in other
abandoned when no solution can be found for a subset ofapplication domains. Mamoulis and Papadias [MP99b] integrate

variables. the basic idea dfVR with backtracking and forward checking to
solve temporal CSPs where the variable domains consist of
6. CONCLUSION numerous intervals. Their experimental comparison suggests that

In this paper, we propose a complete method for multiway spatialindexing can speed up search several times compared to
join processing and optimization which is motivated by a close traditional CSP algorithms. The same ideas could also be applied
correspondence between multiway joins and CSPs. Thewith other types of CSP problems involving large domains.
advantages of our approach are: i) it is efficient, ii) it does not

materialize intermediate results, iii) its cost is predictable by ACKNOWLEDGEMENTS
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APPENDIX
In this Appendix we prove Egs 12 and 13, used for the
calculation of the number of solutions in case of clique queries.

Lemma Al: Given a set of (n = 2) mutually overlapping
rectangless, i = 1, ..., n, with average extents| on each
direction and assuming uniformity and independence,

common intersection area is a rectangjef average extenty|

defined as follows:

[l

the

|Qn| —_ =l (A1)
n n
> [lsil
=1 j=1
j#

Proof (py induction om):
Step 1 Forn = 2, it is sufficient to prove that
o] = [si/0s| (A.2)

|si| + s

Without loss of generality, we assung|ds|. Since the two
rectangles overlap, their projections (line segments) on each
direction also overlap; l&l be their intersection anglstart (S.end

be their projections’ start (end) points,= 1, 2. Figure A.l
sketches the three possible configurations between two
overlapping line segments, representing the following sets of
conditions:

Case (i)Ststart < Sastart < Stend < S2.end
Case (ii):S2start < Sistart < SLend< Szend
Case (jii):Szstart < Ststart < Sz.end < Stend

Recall that it is always:ignd = Sstart and Send = Sistart SiNCe the
two projections overlap.

St St St

) [ [
case | case Il case lll

Figure A.1 Possible configurations of overlapping intervals

Assuming that the address space is discrete, with very fine
granularity (the case of continuous space will be the limit for
infinitely fine granularity) [KF92] the probability for each
specific configuration corresponds to the different relative
positions ofs; with respect ta&,. Formally:

PrOb(S; gtart < S2.start < Stend < Sz.end/ Szstart < Stend USLstart < S2end)
__ sl
S+
Probl(S; art < Ststart < S2end < Stend! Szstart < Stend DStstart < Szend)
and
PrOb(S, rart < Sy tart < Stend < Spena/ Sastart < Stend DSt start < S2na)
_ls2l=lsi
[sil+[s:]




The first two probabilities correspond to cases (i) and (iii) and

the latter one corresponds to case (ii). For each of the three cases,

the average size equals the average portiorspintersectings,
i.e., 0 = |s1/2 for (i) and (iii) andd = |s1| for (ii). In turn, the
average extengyj| equals the weighted averadsize, i.e.,

o ksl %EJ% 51 g,
0| =2
=2

(A.3)
M+hl

where the first part of the summation represents the (equal)

weighted averag® for cases (i) and (iii) while the second part
corresponds to (ii).

Since Eqg. A.3 implies Eg. A.2, step 1 of the proof has been
completed.

Step 2 We assume that Eq. A.1 holds foe K, i.e.,

]

kK k k

2.1k
¢

Step 3(induction step): We i prove that Eq. A.1 holds fan =

k+1, i.e.,

k+1

[]ls!

k+1 k+1

Zn|si|

i=T j=1
j#i

|qk| (A.4)

| G +1| (A.5)

Proof of the induction step: Since rectangle overlaps alls,

..., & rectangles that are mutually overlapping, it overlaps their
common intersection area, denoted &y Furthermore, the
common intersection area of all ..., S, S+1 rectangles, denoted
by gk+1, is identical to the common intersection area betwgen
andsq1. According to Eqs A.2 and A.4:

th
I%IQZFHﬂ rhﬂ

1=1 j=1
J#

|l 0 _

|Saa] * |qk|

|Ohs| =

k+1

[1lsi

1=1
k+1 k+1

gskﬂlﬂnw 5Tl 2

g.e.d.

Corollary: Given a random n- tuple of rectangles (., &), the
probability that all rectangles mutually overlap is:

Probl(rectangless,...s, mutually overlap) = I_||s ||I| (A.6)
i=1 j=1 H
j#i

Proof: Since all rectangles mutually overlap, without loss of

generality we assume that the instantiation ordes,is.., s

Thus, the left part of Eq A.6 is equal to a product of independent

probabilities:

Prob(rectangles_L S, mutuallyoverlap):

= Prob(s2 overlapﬁ)
EProb(Q,, overlaps, Os; overlaps,/s;,s, mutuallyoverla;)
0.
El‘Prob(sn overlaps, O...0s, overlaps,_; /S;,....5,4 mut.overlap)

(A7)
In general, in order for a rectangk:1 to overlap si,...,.
mutually overlapping rectangles, it should overlap their common
intersection, which is denoted loy and its area is calculated
according to Lemma Al. Hence Eq. A.7 is equivalent to

Prob(rectangle::,l..sn mutuallyoverla;):
= Prob(s2 overlap$_L)EH?’rob(s3 overlap:qz)
D..EProb(sn overlap$4n_1)

As discussed in subsection 2.1, the probability that a member of
a set of rectangles overlaps a given rectagdke by definition,

equal to the selectivity off on the set of rectangles, which is
computed according to Eq. 1. Thus Eq. A.8 is equivalent to

(A.8)

Prob(rectanglessl .S, mutually overlap) =

(A.9)
= (so| +[si) ol el .|+ e
Substituting Eq A.1 in Eq A.9 we obtain:
Prob(rectangleﬁ... s, mutuallyoverlap) =
: ﬁ|| j
0 5 0
si s @ 4 O
+ . + 1=
= (sl Bl S 2 0 B
o [silg
H =& f
H H n n H§
0 Dzl Il__!|si| %
+ + o= iz
0 (s/+[s) O% 0
0 02 D|Si|[l]
: TR

LU



