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ABSTRACT
One of the most important types of query processing in spatial
databases and geographic information systems is the spatial join,
an operation that selects, from two relations, all object pairs
satisfying some spatial predicate. A multiway join combines data
originated from more than two relations. Although several
techniques have been proposed for pairwise spatial joins, only
limited work has focused on multiway spatial join processing.
This paper solves multiway spatial joins by applying systematic
search algorithms that exploit R-trees to efficiently guide search,
without building temporary indexes or materializing intermediate
results. In addition to general methodologies, we propose cost
models and an optimization algorithm, and evaluate them
through extensive experimentation.
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1. INTRODUCTION
A multiway spatial join can be defined as follows: Given a set of
spatial relations {R1,..,Ri,..,Rj,..,Rn}, where Ri = {ui,1,…,ui,N},
and a set of binary spatial predicates {Cij / 1 ≤ i,j ≤ n}, find all
n-tuples {(u1,w,..,ui,x,..,uj,y,..,un,z) / ∀ i,j, 1 ≤ i,j ≤ n, Cij(ui,x,uj,y)}.
In most cases the spatial predicate is overlap (intersect, crosses),
but alternatively any predicate, such as near, northeast, meet
could be used. When n=2, the above definition corresponds to
pairwise spatial joins, for which several processing techniques
have been developed. Some of these techniques assume the
existence of spatial indices (R-trees) on both relations to be
joined (e.g., [BKS93]), while others deal with non-indexed
inputs (e.g., [LR94; KS97]).

Following the relational database methodology, multiway spatial
joins (n>2) could be processed by integration of pairwise join
algorithms [MP99a]. Consider the query: “find all cities crossed

by a river which also crosses an industrial area” in an R-tree
supported system. The solutions are obtained by computing the
result of one pairwise join (e.g., rivers crossing industrial areas)
using the corresponding R-trees and an appropriate (pairwise)
spatial join algorithm (e.g., [BKS93]); then joining the resulting
rivers with the relation cities employing a method (e.g., [LR94])
applicable when only one R-tree (for cities) is available. An
efficient execution plan can be determined using cost models for
pairwise spatial joins [TSS98] and optimization methods for
relational queries.

This paper follows a different direction, and discusses processing
of multiway spatial joins using only R-trees without
materializing intermediate results. Papadias et al. [PMD98],
motivated by an interesting correspondence between multiway
joins and constraint satisfaction problems (CSPs), combine
systematic search algorithms (used for CSPs) and R-trees for the
retrieval of object combinations matching (exactly or
approximately) some input configurations. Mamoulis and
Papadias [MP98] employ these methods for a special case of
multiway spatial joins where there exists a join condition
between all pairs of inputs. Here we apply and extend our work
to arbitrary join conditions. In addition, we provide analytical
formulae for the expected cost and test accuracy with extensive
experimentation. Finally we propose optimization techniques that
yield significant improvement over the original algorithms.

The rest of the paper is organized as follows: Section 2 describes
R-trees and the most common types of queries for which they
have been utilized. Section 3 proposes multiway join processing
methodologies using R-trees and section 4 describes cost models
and a query optimization algorithm based on data and query
properties. Section 5 contains an experimental evaluation using
various datasets and join graph topologies, and, finally, section 6
concludes the paper.

2. QUERY PROCESSING USING R-TREES
The R-tree data structure is a height-balanced tree where each
node corresponds to a disk page in secondary memory. The root
is at level h-1, where h is the height of the tree, and the leaf
nodes are at level 0. The Minimum Bounding Rectangles
(MBRs) of the data objects are stored in the leaf nodes and
intermediate nodes are built by grouping MBRs of the lower
level. We make the distinction between an R-tree node N[i]  and
its entries sk that correspond to MBRs included in N[i] ; sk.ref
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points to the corresponding node N[k]  at the next (lower) level.
Each R-tree node (except from the root) should contain at least a
number of entries, called minimum R-tree node utilization m.
Figure 1 illustrates three relations (covering the same workspace)
and the corresponding R-trees, assuming that m=2 and maximum
node capacity C is 3 rectangles (in real 2D applications C is
normally 50-400 depending on the page size).

Selection and join queries are the fundamental operations in any
DBMS, including spatial databases. In this section we briefly
present the techniques employed by query processors to support
spatial selections and joins using R-trees, and describe related
analytical models.

2.1 Selection Queries
A spatial selection retrieves from a dataset, the entries that
satisfy some spatial predicate with respect to a reference object
q. The most common type of spatial selections are window
queries, where the predicate is overlap and q defines a window
in the workspace. The processing of a window query using R-
trees involves the following procedure (Figure 2): Starting from
the top node, exclude the entries that are disjoint with the query
window, and recursively search the remaining ones. If, for
instance, we are looking for all rivers that intersect city a1, we
retrieve the root entries of the second tree that overlap a1 (in this
case B1). Then we search inside B1 for potential solutions (no
objects in B2 can overlap a1).

1. WindowQuery(Rtree_Node N[i], window q)
2. FOR all sk ∈ N[i] with sk ∩ q ≠ ∅ DO
3. IF N[i] is a leaf node THEN
4. output (sk)
5. ELSE/* intermediate nodes */
6. ReadPage(sk.ref)
7. WindowQuery(N[k], q)

Figure 2 WindowQuery

When the MBRs of two objects are disjoint, the objects that they
approximate are also disjoint. If the MBRs, however, share
common points, no conclusion can be drawn about the spatial
relation between the objects. For this reason, spatial queries
involve two steps [O86]: (i) a filter step uses the tree to rapidly
eliminate objects that could not possibly satisfy the query, and
(ii) the results are passed through a refinement step where false
hits are detected.

This paper, like most related spatial database literature, focuses
on minimizing the cost of filtering. R-tree performance is usually
measured in terms of the number of nodes that should be
accessed during the search process. Let d be the dimensionality
of the data space and WS = [0,1)d the d-dimensional unit
workspace. Given an R-tree Ri (with height hRi) and a window q
(with |q| average extent on each dimension), the selectivity
S(Ri,q,l) of q on the entries of Ri at level l is defined as the ratio
of the expected number of entries overlapping q over their total
number (i.e., the probability that a random entry intersects q).
Theodoridis and Sellis [TS96] provide the following formula for
selectivity, assuming unit workspace and square node rectangles
("uniformity assumption" [KF93]):

S(Ri,q,l) = (|sRi,l|+|q|)d (1)

where |sRi,l| is the average extent (on each dimension) of an entry
sRi,l of the R-tree Ri at level l. The number NA(Ri,q,l) of node
accesses at level l equals the number of entries intersected by q
in the upper level l+1, i.e., the total number of entries at level
l+1 (denoted by NRi,l+1) times the probability that an entry
intersects q (selectivity):

NA(Ri,q,l)=NRi,l+1
.S(Ri,q,l+1)=NRi,l+1

. (|sRi,l+1|+|q|)d (2)

The total cost of a window query CostWQ is the sum of node
accesses at each level, i.e., the number of entries that intersect q
at all intermediate levels plus the access of the root:
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This formula is based on the performance analysis of [PST+93].
[TS96] defines the R-tree properties hRi,l, NRi,l, and |sRi,l| involved
in Eq. 3 as functions of NRi and DRi, denoting the cardinality and
density1 of the dataset, thus computing NA(Ri,q,l) and
CostWQ(Ri,q) by using only data properties, without extracting
information from the underlying R-tree structure. Pagel and Six

                                                            
1 The density D of a set of rectangles in d-dimensional space is

defined as the average number of rectangles that contain a
given point in the workspace. Equivalently, D can be expressed
as the ratio of the sum of all rectangle areas over the area of the
available workspace.
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[PS96] argue that window queries are representative for range
queries in general. Papadias et al. [PTS97] show how the above
formulae can be applied for any spatial predicate including
topological (e.g., inside, meets), direction (e.g., north) and
distance relations.

2.2 Spatial Joins
A spatial join operation selects from two object sets, the pairs
that satisfy some spatial predicate, usually intersect (e.g., “find
all cities that are crossed by a river”). The most influential
algorithm for joining inputs indexed by R-trees is the R-tree-
based Spatial Join (RJ) [BKS93], which presupposes the
existence of R-trees for both relations. RJ is based on the
enclosure property: if two intermediate R-tree nodes do not
intersect, there can be no MBRs below them that intersect.
Consider that we want to find all pairs of overlapping cities and
rivers in Figure 1. The algorithm starts from the roots of the two
trees to be joined and finds all pairs of overlapping entries inside
them (e.g., (A1,B1), (A2,B2)). These are the only pairs that may
lead to solutions; for instance, there cannot exist any (ai,bj) ai ∈
A1 and bj ∈ B2 such that (ai,bj) is a solution, because A1 does not
overlap B2. For each overlapping pair of intermediate entries, the
algorithm is recursively called until the leaf levels where
overlapping pairs constitute solutions. Figure 3 illustrates the
pseudo-code for RJ assuming that the trees are of equal height;
the extension to different heights is straightforward. Huang et al.
[HJR97] describe a breadth-first search I/O optimized version of
the algorithm.

1. RJ(Rtree_Node N[i], N[j])
2. FOR all sl ∈ N[j] DO
3.   FOR all sk ∈ N[i] with sk ∩ sl ≠ ∅ DO
4.            IF N[i] is a leaf node  /* N[j] is also a leaf node */
5.                  THEN  output (sk, sl)
6.                  ELSE   /* intermediate nodes */
7.                        ReadPage(sk.ref); ReadPage(sl.ref);
8.                        RJ(N[k], N[l])

Figure 3  R-tree-based Spatial Join

Initially, RJ takes as parameters the roots of the trees to be
joined. Then it performs a synchronized traversal of both R-trees,
with the entries of the two structures playing the roles of data
rectangles and query windows, respectively, in a series of
window queries. Since Eq. 2 calculates the number of node
accesses at level l of Ri when a query window q is considered, it
can be modified to calculate the cost of a join query by using the
corresponding node entries sRj,l of Rj as query windows. Thus,
according to line 7 of the algorithm, the cost for both R-trees at
level l is the sum of costs of NRj,l different window queries on Ri

[TSS98]:

NA(Ri,Rj,l)=NA(Rj,Ri,l) =NRj,l+1
.NRi,l+1

.(|sRi,l+1|+| sRj,l+1|)d (4)

For R-trees with equal height hR, the total cost CostRJ(Ri,Rj) of a
spatial join between Ri and Rj using RJ is the sum of node
accesses for each level:
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Theodoridis et al. [TSS98] provide a detailed description of cost
formulae for RJ, including the case of R-trees with different
heights. In correspondence to window query analysis, all the
involved parameters can be expressed as functions of dataset
properties, namely cardinality and density. Experimental results
suggest that the above cost models are accurate for uniform data
(where the density remains almost invariant through the
workspace). In order to deal with non-uniform (e.g., skewed)
data distributions, they propose a maintenance of a grid with
statistical information about cardinality and density per cell. This
approach, applied with reasonably sized grid (50x50), provides
good estimations for real datasets with highly skewed data
distributions [MP99a].

Table 1 summarizes the symbols and definitions introduced in
this  section. In the sequel we show how they can be applied for
multiway spatial joins.

Symbol Definition
d number of dimensions
hRi height of the R-tree Ri

DRi density of data MBRs indexed by Ri

NRi number of data MBRs indexed by Ri

Nri,l number of entries of Ri at level l (Nri,l ≡NRi)

|sRi| average extent of data rectangles indexed by Ri

|sRi,l| average extent of entries of Ri at level l (|sRi,0|≡|sRi|)

|q| average extent of a query window q
S(Ri,q,l) selectivity of a query window q on the entries of Ri

at level l
CostWQ(Ri,q) number of node accesses for a window query q on Ri

CostRJ(Ri,Rj) number of node accesses for a spatial join between
two R-trees Ri and Rj

Table  1 Table of symbols

3. MULTIWAY SPATIAL JOINS
A multiway spatial join can be represented by a graph Q where
Q[i][j] denotes the join condition between Ri and Rj.
Equivalently, the graph can be viewed as a constraint network
corresponding to a binary constraint satisfaction problem. A
binary CSP [P93] is defined by:

• A set of n variables, v1,..,vi, ..,vn

• For each variable vi a finite domain Di ={ui,1, …, ui,Ni} of
potential values (where Ni is the cardinality of Di)

• For each pair of variables vi,vj a binary constraint Cij which
is simply a subset of Di × Dj.

If (ui,x, uj,y) ∈ Cij, then the assignment {vi  ← ui,x, vj ← uj,y} is
consistent. A solution is an assignment {v1← u1,w, …, vi← ui,x,
…, vj← uj,y, …, vn← un,z}, such that for all i,j: {vi  ← ui,x, vj ←
uj,y} is consistent.

The example query: “find all cities crossed by a river which also
crosses an industrial area” can be mapped to a CSP as follows:
(i) There exists a variable vi for each input, i.e., v1, v2 and v3, for
cities, rivers and industrial areas respectively. (ii) The domain of



each variable vi consists of the objects in the corresponding
relation (e.g., D1 is the set of cities). (iii) Each join predicate
(e.g. "crossed by") corresponds to a binary constraint. An
assignment {v1← u1,x, v2← u2,y, v3← u3,z} constitutes a solution,
if city u1,x is crossed by river u2,y which also crosses industrial
area u3,z. Therefore, in the sequel we use the terms
variable/dataset and constraint/join condition interchangeably.

Following the standard approach in the spatial join literature, we
consider overlap as the default join condition. Furthermore, we
focus on two particular types of multiway joins: acyclic (trees)
and complete graphs (cliques). Figure 4 illustrates two query
graphs joining three datasets and two solution tuples (sR1, sR2,
sR3) such that sRi is an object in Ri. Figure 4a corresponds to a
chain query (e.g., “find all cities crossed by a river which crosses
an industrial area”), while 4b to a clique (“the industrial area
should also intersect the city”).

R3

R2R1

sR1

sR2

sR3

(a) Tree query

R3

R2R1

sR1

sR2

sR3

(b) Clique query
Figure 4 Examples of multiway spatial joins

Since multiway spatial joins can be modelled as CSPs, CSP
algorithms could be employed for their processing. Such
algorithms perform systematic search by applying the basic idea
of backtracking and trying to improve the backward (e.g.,
backjumping and dynamic backtracking) or the forward step
(e.g., forward checking; see [P93] for a survey). A naïve
backtracking algorithm for processing the example query of
Figure 4a (using the datasets of Figure 1) would first instantiate
the variable corresponding to cities to some value (e.g., v1 ←a1)
and then proceed to the next variable (v2) for rivers. Assume that
v2 is first instantiated to b1 which overlaps a1. The algorithm will
then proceed another step forward and will assign v3 (industrial
area) with value c1. Because c1 overlaps b1, the first solution
(a1,b1,c1) has been found. Then the algorithm would try all other
industrial areas before it determines that there is no other value
that overlaps b1, and will backtrack assigning a new value to v2.

Obviously the above algorithm performs a large number of
redundant consistency checks because it does not exploit the
underlying index structures. Several alternatives that take
advantage of R-trees to speed-up search are presented in
[PMD98]. These algorithms can be classified in two general
methodologies  which can be utilized for multiway spatial join
processing as follows:

(i) The first methodology, called window reduction (WR),
performs systematic search by applying window queries to find
the consistent values of uninstantiated variables. For instance,
after assigning v1 ← a1, a1 becomes the query window for rivers
that will constitute the domain of v2, avoiding unnecessary
consistency checks. In other words, the forward phase of WR
works in an indexed nested loop fashion, while the backtracking

phase can be based on various CSP algorithms. The order of
variables is pre-determined according to some optimization
method (see section 4), and is such that every variable after the
first one should be directly connected to an instantiated variable
(e.g., the order v1,v3,v2 is not valid for the query of Figure 4a,
since there is no edge between v3 and v1). For acyclic queries, the
current variable vi is directly connected to a single instantiated
variable whose value becomes the query window for search in Ri,
e.g., for the order v1,v2,v3, sR1 is the query window for v2, sR2 for
v3 and so on. For clique queries, vi is connected to all instantiated
variables that mutually intersect. In this case the query window
for Ri is the common area of instantiated variables [MP98], since
any set of MBRs that mutually overlap has a non-empty
intersection. In Figure 4b, for instance, v3 should overlap the
common intersection (gray area) of sR1 and sR2. For arbitrary
queries, i.e., when vi is connected to a random number of
instantiated variables, the value of one is chosen as the query
window and filtering with respect to the other variables takes
place in main memory.

(ii) The second methodology, synchronous traversal (ST), can be
thought of as the generalization of RJ for an arbitrary number of
inputs. In particular, ST starts from the roots of the trees and
attempts to find solutions, i.e., combinations of entries that
satisfy the input constraints. When a legal combination is found
at the intermediate levels, the algorithm is recursively called,
taking the references to the underlying nodes as parameters, until
the leaf level is reached. For the query of Figure 4a, ST would
find all triplets (Ai,Bj,Ck) of entries at the roots such that (Ai,Bj)
and (Bj,Ck) intersect. Out of the 8 possible combinations (i.e.,
(A1,B1,C1), (A1,B1,C2), (A1,B2,C1), …, (A2,B2,C2)), only three,
(A1,B1,C1), (A1,B1,C2) and (A2,B2,C2), could potentially lead to
solutions. The calculation of combinations of the qualifying
nodes for each level is expensive, as their number can be as high
as Cn (where C is the node capacity). Finding the subset of node
combinations that is consistent with the input query can be
treated as a local CSP at each level in order to avoid exhaustive
search.

The combination of WR and ST can yield significant performance
improvement over the individual methods. WR essentially
searches the whole space in order to instantiate the first variable,
but after doing so it performs only window queries which are
cheap operations in R-trees. The disadvantage of blindly
instantiating the first variable in the whole universe could be
avoided by an algorithm that applies ST to instantiate multiple
initial variables which will then be input to WR through
pipelining. In the example query, ST could retrieve pairs of
overlapping cities and rivers, and for each such pair WR will be
called to find qualifying industrial areas. Obviously this
technique can be applied with any number of variables. For
instance, a query involving ten relations may be processed using
ST for the first four variables, and WR to instantiate the rest. The
pseudo-code in Figure 5 illustrates hybrid, a hybrid ST/WR
routine which consists of two modules: the outer module is WR
and the inner one is ST. Hybrid takes 3 input parameters:

• a n×n boolean array Q that stores the query graph to be
executed. If for some i,j Q[i][j] is TRUE, the corresponding
variables intersect. We assume that Q is connected; non-



connected graphs can be solved as independent sub-
problems.

• an array of n R-trees that index the relations to be joined (Ri

indexes variable/relation vi). For simplicity, all R-trees are
assumed to be of equal height, although the method can be
easily extended for trees of different heights (similarly to
RJ).

• a parameter k (1 ≤ k ≤ n) that denotes the number of
variables to be joined by ST. If k = 1 (k = n), then hybrid is
actually WR (ST).

Initially the index i to the current variable is set to k and the
pointer of all R-tree nodes is set to the roots. Then ST retrieves a
consistent tuple of values for the first k variables (lines 6-9).
These values are stored in τ[1]… τ[k] (τ holds the current
instantiations). When all such k-tuples are exhausted, hybrid
terminates. Lines 10-17 correspond to instantiations of variables
vk+1,…,vn. A value for the current variable is retrieved using a
query window in the corresponding R-tree (line 11). If such a
value cannot be found, the algorithm will backtrack (here we
assume chronological backtracking).

Line 18 of the code will be reached only in the case of a
successful instantiation. If the last variable has been instantiated,
τ contains a complete solution which is output to the user.

Otherwise, i is increased and the algorithm proceeds to the next
variable. The query window for vi (line 22), becomes the current
value of the single instantiated variable connected to vi (for
acyclic queries), or the intersection of all current values (for
cliques). For arbitrary graphs (i.e., vi is connected to any number
of instantiated variables) the value with the smallest query
window is chosen and the results are filtered (lines 15-17) with
respect to other instantiated variables joined with the current
one.

ST is invoked each time there is a need for a new consistent k-
tuple. The first time ST is called, it takes as parameters the roots
of the first k R-trees. It then calls find-solutions to retrieve the
consistent tuples for the current set of tree nodes. Find-solutions
can be any CSP algorithm (forward checking was used in
[PMD98]) enhanced with several heuristics to reduce the number
of consistency checks. The solutions at each level (S denotes the
total number of solutions) are stored in an array T[S][k]; a row in
T corresponds to one solution τ. If ST runs for intermediate tree
nodes it is recursively called for the lower nodes pointed by each
solution. If it runs for the leaf nodes, it outputs one tuple and
waits for the next call by WR to continue. This pipelining
mechanism between ST and WR is implemented by buffering the
paths of the current return of ST (the recursion stack), as well as
the sets of k-tuples that have been found at the current level.

1. hybrid (Query Q[][], Rtree R[], int k)
2. i := k; /*values for the first k variables come as k-tuples*/
3. N[] := root nodes of R[];
4. WHILE (TRUE) {
5.    IF i = k  /*values of first k variables*/
6.        THEN
7.            τ := ST(Q, N, k); /*get next valid  k-tuple output by ST - τ[i] stores the current value of variable vi*/
8.            IF τ = NULL /*no more k-tuples are output by ST*/
9.                THEN RETURN;/*termination-backtrack from first k variables*/
10.        ELSE  /*values of (k+1) th and subsequent variables*/
11.            τ[i] := Query(R[i], WindowQuery[i]); /*next value from R[i] intersecting queryWindow[i]*/
12.            IF τ[i] = NULL /*empty domain for (k+1) th or later variable*/
13.                THEN i := i-1; GOTO 4; /*backtrack*/
14.                ELSE  /* not empty domain */
15.                    FOR j=1 to i-1 /*check consistency of the value w.r.t other instantiated variables*/
16.                        IF (Q[j][i]=TRUE) AND ( τ[j] ∩τ[i]= ∅) /*τ[i] is inconsistent because it does not intersect τ[j]*/
17.                            THEN GOTO 11; /*select new value of vi */
18.    IF i = n /*last variable has been instantiated*/
19.        THEN output_solution(τ);
20.        ELSE  /*intermediate variable*/
21.             i = i+1; /*go forward */
22.             Set queryWindow[i];
23. } /* end WHILE */

/*ST will return only one k-tuple τ every time it is called, or NULL if no more consistent tuples exist*/
24. ST (Query Q[][], RTreeNode N[], int k)
25. T:=find-solutions(Q,N,k); /*calls an algorithm to find all solutions (k-tuples) at current level (S is the # solutions)*/
26. FOR s=1 to S DO /* for each solution at the current level */
27.      FOR j=1 to k DO τ[j]=T[s][j] /* τ[1]… τ[k]  holds the current solution */
28.      IF intermediate level
29.          THEN ST(Q, τ.references, k); /*recursively call ST for lower level*/
30.          ELSE PIPELINE(τ); /*leaf level -> return tuples to hybrid when needed until end of tuple_array */

Figure 5 The hybrid algorithm



The application of hybrid in case where some or all of the
variables have the same domain (i.e., image similarity retrieval
applications) is straightforward. Furthermore, it can be
effectively employed when only a subset of the solutions needs to
be retrieved. For instance, it can be easily modified to terminate
after the retrieval of the first solution resulting in significantly
smaller execution cost. Multiway join processing based on
integration of pairwise spatial join algorithms [MP99a], does not
have this feature; spatial hash join algorithms  applied for joining
intermediate outputs must read and write the whole build input,
even if pipelining is used for passing the results to the next
operator.

4. COST M ODELS AND QUERY OPTIMIZATION
It is well-known in both the database [G93] and CSP [BvR95]
communities that the order in which pairwise joins are
performed, or otherwise the order in which variables get
instantiated, has a very significant effect on performance. In the
sequel we provide analytical formulae for the expected cost of
multiway spatial joins and an optimization algorithm that
determines the subset of variables to be instantiated by ST and
the optimal order of the remaining ones to be instantiated by WR.

4.1 Selectivity of Multiway Spatial Joins
A solution of a query graph Q at level l is a n-tuple
(sR1,l,..,sRi,l,..,sRj,l,..,sRn,l) such that: sRi,l is an entry at level l of R-
tree Ri, and ∀i,j, 1 ≤ i,j ≤ n, Q[i][j]=TRUE ⇒ sRi,l overlaps sRj,l.
As in the case of spatial selections and pairwise joins, the
expected number of solutions determines the cost and is crucial
for the optimization of multiway spatial joins. The total number
of solutions is given by the following formula:

#solutions =#all n-tuples.Prob(a n-tuple is a solution) (6)

The first part of the product in Eq. 6 equals the cardinality of the
Cartesian product of n domains, while the second part
corresponds to the query selectivity which equals the probability
that all binary assignments {vi← sRi,l , vj← sRj,l} ∀ i,j | Q[i][j] =
TRUE are consistent. In case of acyclic graphs, and ignoring
boundary effects (i.e. rectangles are small with respect to the
workspace), these probabilities are independent. Let sRi be a data
object in Ri with extent |sRi| (equal to the average entry extent at
level 0). The event that "sR1 overlaps sR2" is independent of the
event "sR2 overlaps sR3". Thus the probability of a triplet
satisfying the join conditions in Figure 4a is the product of
pairwise selectivities:

Prob((sR1, sR2, sR3) is a solution)=(|sR1|+| sR2|)
d.(|sR2|+|sR3|)

d (7)

In general, the selectivity of an acyclic join graph containing n
variables is:

Prob(a n-tuple is a solution)= ( )∏
=∀

+
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and the total number of solutions at tree level l is:
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When the query graph contains cycles, the assignments are not
independent anymore and Eq. 8 is an over-estimation of
selectivity. For cliques, it is possible to provide a formula for
selectivity based on the fact that if a set of rectangles mutually
overlap, then they must share a common area. As we show in the
Appendix, the average intersection area of two rectangles sR1 and
sR2 is:
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Consider the instantiations {v1← sR1, v2← sR2} in the query of
Figure 4b. The probability that a tuple (sR1,sR2,sR3) is a solution,
is Prob(sR1 overlaps sR2)⋅ Prob(sR3 overlaps sR1 and sR3 overlaps
sR2 /sR1 overlaps sR2). The conditional probability in the second
part of the product is equal to the probability that sR3 intersects
the common area of sR1 and sR2. By applying Eq. 10 for the
intersection area of sR1 and sR2, we derive:
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In the general case, it can be shown that the average intersection
area of n mutually overlapping rectangles sR1, .., sRn is:
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and the probability of a random n-tuple (sR1, .., sRn) to be a
solution of a complete query graph Q with n nodes is:

Prob(a n-tuple is a solution) =

Prob(sR2 overlaps sR1)
.Prob(sR3 overlaps sR1∧ sR3 overlaps sR2/ sR1 sR2 mutually overlap)

….

.Prob(sRn overlaps sR1∧..∧sRn overlaps sRn-1/sR1..sRn-1 mut. overlap)
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Detailed proofs of Eq. 12 and 13 can be found in the Appendix.
Using Eq. 13 for selectivity, we obtain the number of solutions at
level l:
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The experiments demonstrate that the above formulae are
accurate and, therefore, can be applied for optimization of
multiway spatial joins independently of the algorithms. In the
sequel we show how they can estimate the cost of hybrid2.

4.2 Cost Models for Hybrid
A subgraph Qx,y of Q containing x nodes (variables) is called
legal3 if it is connected; Vx,y is the set of nodes in Qx,y. The total
number of legal subgraphs is less or equal (in the case of
complete graphs) to the number of x combinations of n objects
C(x,n). (Qx-1,y',vx') denotes a decomposition of Qx,y into a legal
subgraph Qx-1,y' (with x-1 nodes), and a single variable vx', such
that vx' = Vx,y-Vx-1,y'. For instance, the graph in Figure 4a can be
decomposed into a subgraph Q2,1 with V2,1={v1,v2}, and variable
v3. On the other hand, a decomposition into {v1,v3} and v2 is not
allowed since v1 and v3 are not directly connected. A legal
subgraph Qx,y can be processed in two ways: either by applying
ST, or by executing a sub-query of size x-1 and then using WR to
instantiate the xth variable.

Let CostWR(Qx-1,y',vx') be the cost (in terms of node accesses) of
executing WR to find all consistent instantiations of vx', when
Qx-1,y' has been solved. For each solution we have to perform a
window query in index Rx' in order to retrieve the consistent
instantiations of vx'.  As discussed previously, in case of acyclic
graphs vx' is connected with a single instantiated variable in Vx-1,y'

whose value becomes the query window qx'. For cliques, qx' is the
common intersection area of the values of all variables in  Vx-1,y'.
The total number of window queries corresponds to the number
of solutions of Qx-1,y' at level 0. Thus:

CostWR(Qx-1,y',vx') =#solutions(Qx-1,y',0)⋅CostWQ(Ry' ,qx') (15)

where CostWQ is computed according to Eq. 3, and the number of
solutions according to Eq. 9 or 14, for acyclic and clique queries,
respectively.

Let CostST(Qx,y) be the cost of processing Qx,y using ST. The x
roots of the R-trees must be accessed in order to find a root level
solution. Each solution will lead to x accesses at the next (lower)
level. In general, at level l, there will be x⋅ #solutions(Qx,y,l+1)
node accesses. Thus the total cost of ST is:

CostST(Qx,y) = ( )∑
−

=

+⋅+
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0
,    1,#

h

l
yx lQsolutionsxx (16)

Let P = ((v1,..,vk),vk+1,..,vn) be a plan where the first k variables
are instantiated through ST and the rest by WR in this order, and
Qx,p be a sub-graph containing the first x variables of P. The total
cost of processing P is:

Cost(P) = CostST(Qk,p)+ ∑
+=

n

kx

xp1,-xWR vQCost
1

) ,( (17)

                                                            
2 Hybrid is applicable for queries containing arbitrary cycles.

Optimization of such queries using Eq. 9 and 14 as bounds for
the number of solutions, however, is not accurate. Notice that
most related literature in relational multiway join processing
deals with acyclic graphs.

3 We use index y to distinguish different legal subgraphs of x
nodes.

The combination of ST and WR for multiway spatial join
processing results in plans of a certain "left-deep" form, which is
different from left-deep trees in relational join processing [IK91]
in the sense that the leftmost (deepest) leaf nodes are
synchronously traversed (plans are not necessarily binary trees).
Figure 6 illustrates the alternative plans for the query of Figure
4a, where joins to be processed by ST are shown in rectangles.
The last four plans correspond to WR where the leftmost variable
is instantiated first.

R1 R2

R3R1 R2 R3

R2 R3

R1

R1 R2

R3

R2 R1

R3

R2 R3

R1

R3 R2

R1

Pure ST

Pure WR

Hybrid

Figure 6 Possible plans for the query of Figure 4a

Let p(x) be a function that returns the number of plans for a legal
subgraph of x nodes, and d(x) a function that returns the number
of legal decompositions. We assume that all Qx,y can result in the
same number of decompositions and each decomposition has the
same number of plans. Then the total number of plans is
described by the following recurrence:

p(x)=d(x)⋅p(x-1)+1 and p(1)=1 (18)

where the additional plan is for processing Qx,y using ST. For
chain queries (minimal number of plans), d(x)=2 since Qx-1,y' can
be generated from Qx,y only by removing the first or the last
variable. By substituting this value in recurrence 18, we derive
that the number of alternative plans for chain queries is: 2n-1. Eq.
18 cannot be applied for arbitrary trees, because d(x) may be
different for two sub-graphs with x nodes. Among all acyclic
queries, the one that results in the largest number of plans is the
star graph. In this case Qx-1,y' can be generated from Qx,y by
removing any variable except for the one at the center, thus
d(x)=x-1. Similarly, for cliques (maximum number of plans) any
variable can be removed during a decomposition, resulting in
d(x)=x, and a total number of plans equal to:

∑
=

⋅<⋅
n

x

en
x

n
1

!
!

1! (19)

This is significantly smaller than the corresponding number in
relational queries, i.e., (2(n-1))! / (n-1)! [SKS97], because there
do not exist right-deep or bushy plans. In the next section we
describe a dynamic programming algorithm that determines the
optimal execution plan by searching through the whole plan
space.

4.3 Optimization with Dynamic Programming
Dynamic programming has been successfully applied for
optimization of relational queries involving a small number of
inputs [I96]. Hybrid-plan computes the best execution strategy
incrementally, based on the optimal plans of its subgraphs. The
recursive equation implemented by the algorithm is:



Cost(Qx,y)=min{CostST(Qx,y),

'
min

yiondecomposit∀
(Cost(Qx-1,y')+CostWR(Qx-1,y' ,vx'))} (20)

In general, at each level hybrid-plan decomposes every Qx,y into
all legal combinations (Qx-1,y',vx'), and finds the best
decomposition using the cost for Qx-1,y' which was computed at
the previous execution level x-1. Either this decomposition, or
ST(Qx,y) will be marked as Qx,y’s optimal plan, to be used when
computing the optimal cost for query sub-graphs of size x+1.

1. Hybrid-plan(Query Q, int n)
2. FOR x=2 to n DO
3.     FOR each connected subgraph y of size x DO
4.          Cost[Qx,y] = CostST(Qx,y);
5.          bestPlan[Qx,y] = ST;
6.          FOR each legal decomposition y' of Qx,y DO
7. minCost = Cost[Qx-1,y'] + CostWR(Qx-1,y',vx');
8. IF minCost < Cost[Qx,y] THEN
9. bestPlan[Qx,y] = WR(Qx-1,y',vx');
10. Cost[Qx,y] = minCost;

Figure 7 Hybrid-plan

Cost[Q1,y] is initially the number of leaf nodes in each R-tree Ry

(i.e., the number NRy,1 of entries at level 1). Then the algorithm
will calculate the plans and corresponding costs for all pairwise
joins, i.e., all Q2,y such that Q2,y is connected. First the cost of
each pairwise join is computed using ST. Then for both
decompositions of Q2,y to two subgraphs (containing one variable
each), it will calculate the cost of WR for instantiating one
variable first and then the second one (indexed nested loop). For
all pairwise joins, the best of the three options (ST and two WR
plans) and their costs are stored in two tables (bestPlan and
Cost, respectively) and used for calculating the costs of
processing subgraphs of three nodes. At the end of hybrid-plan,
bestPlan[Q] will contain the optimal plan for executing Q, and
Cost[Q] its expected cost.

If the query is clique (worst case), at each iteration of the outer
loop the algorithm will test C(x,n)=n!/x!(n-x)! subgraphs Qx,y, and
for each Qx,y it will perform x decompositions. Thus. the total
running time (assuming constant table writing and look-up) is:

( )∑
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x
xnx

n

2 !!)1(

! (21)

Only the optimal cost and the number of solutions4 of each sub-
graph with size x-1 has to be maintained for the calculation of the
optimal costs of sub-graphs with size x; thus, the space
requirements of hybrid-plan at iteration x of the outer loop are
C(x-1,n) + C(x,n). The time and space requirements of the
algorithm renders exhaustive optimization inapplicable for
queries involving numerous relations. In [PMT99] we present
two local search techniques (based on iterative improvement and
simulated annealing) that efficiently generate nearly optimal
plans for large number of inputs.

                                                            
4 Lines 4 and 7 use Eqs. 16 and 15 which require the expected

number of solutions. This number is also stored, but, for
simplicity, is omitted in the pseudo-code.

5. EXPERIMENTAL EVALUATION
The previous algorithms and optimization methods are
independent of the underlying predicates, so they could be used
with a variety of spatial constraints. In these cases, the equation
parameters (e.g., number of solutions, cost of window query)
need to be modified using appropriate cost models [PTS97].
Following the standard experimental methodology in the spatial
join literature, in this section we evaluate them by assuming that
the spatial predicate is always overlap.

All experiments were executed on an Ultrasparc2 workstation
(200 MHz) with 256 Mbytes of memory. The implementation of
WR is based on chronological backtracking (as in Figure 5). The
overhead of algorithms (e.g., backjumping [D90]) that direct the
backward step according to information about inconsistencies
does not pay-off for the current problem. This is because, due to
the large domain sizes and the limited tightness of overlap, the
instantiated variable that causes an inconsistency with a value of
the current one is almost certainly the last. Find-solutions (the
core of ST) is based on forward checking [HE80; BG95], but uses
the basic idea of plane sweep [PS85] to reduce the number of
consistency checks. Both implementations of WR and ST are
basic in the sense that we did not include heuristics (such as
space restriction [BKS93; PMD98]) to speed-up search.

The first set of experiments shows the accuracy of the cost
models, and studies how data and query density affect the
optimal value for k (i.e., the number of variables to be
instantiated by ST). We ran tree and clique queries involving 7
variables using datasets of various densities. The cardinality of
all datasets is fixed to 10,000 uniformly distributed rectangles5,
while the density D has four potential values: 0.05, 0.20, 0.35,
and 0.50. There is a total of 4x2 (data density times graph
topology) experimental settings. For each setting the value of k
ranges from 1 (pure WR) to 7 (pure ST); every run corresponds to
the best plan given the value of k. The cost of optimization was
less than 1% of the cost of processing the optimal plan.

Table 2 illustrates actual (NA), estimated6 (ENA) node accesses,
and CPU time for each setting. Node accesses are shown on the
left y-axis and CPU time on the right one (sometimes in
logarithmic scale). We also include the optimal k and the number
of actual solutions retrieved; obviously, the number of solutions
increases with the data density and decreases with the query
density. Several observations can be made based on the results7:

1. Estimated node accesses are close to the actual number. In
the worst case, the relative error is below 25%, whereas the
average difference between ENA and NA is 8%.

                                                            
5 Page size is set to 1KB resulting in R*-trees [BKS+90] with

node capacity 50 and height 3.
6 For the estimation of node extents |sRi| we use statistical

information from the tree (rather than the analytical formulae
of [TS96]) because they provide higher accuracy.

7 Notice that the results are very similar for all acyclic topologies
so we do not include special cases (i.e., chains or stars); the
behavior of such queries can be derived from the general
diagrams for trees.



2. The diagrams for CPU-time are very similar to the ones for
node accesses, and the cheapest plan in terms of CPU time
is always the one with the fewest accesses. This confirms
the fact that ENA, based on the models of section 4, is a
good measure for the cost of multiway spatial joins.

3. There are vast performance differences (orders of
magnitude) for the different choices of k (although for each
k the best plan was used). In particular, the optimal k
increases with the data and query density. In all cases,
intermediate values of k achieved the best performance (no
pure WR or ST plans).

In the following experiments we use the suggested optimal plan
and measure the effect of the data size and the number of inputs
on the performance of hybrid. Firstly, we keep the number of
variables and density fixed, and investigate the cost of multiway
spatial joins as a function of the input cardinality. Table 3 (first
row) illustrates the actual node accesses (in thousands) and CPU
time (in seconds) for datasets with 10K, 20K, .., 50K rectangles.
For each dataset we also include the number of solutions (on top

of the NA columns). The cost, as well as the number of solutions,
increases linearly with the size of the datasets. Notice that we
chose different densities (D=0.2) for acyclic, and for clique
(D=0.5) queries, because these values give a reasonable number
of solutions. D=0.5 for acyclic queries (with n=7, N=10K)
generates more than 106 solutions, while for cliques D=0.2
results in only 36 solutions.

For the last set of experiments data sizes and densities are fixed,
and the number of variables ranges from 3 to 21. For queries
involving more than 12 inputs, the optimal plan was computed
using the local search techniques of [PMT99] because exhaustive
optimization was prohibitively expensive. Nevertheless, for most
practical applications, the number of relations is less than 10,
and dynamic programming suffices.

Table 3, second row, illustrates the NA and CPU-time as a
function of n. As shown in the diagram for trees, when there is
no significant change in the number of solutions, the cost
increases linearly with the number of variables. On the other
hand, cliques queries with 18 or more variables do not have
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Table  2 Actual and estimated node accesses and CPU-time for various combinations of data / query densities



solutions. As a result, the cost almost stabilizes since search is
abandoned when no solution can be found for a subset of
variables.

6. CONCLUSION
In this paper, we propose a complete method for multiway spatial
join processing and optimization which is motivated by a close
correspondence between multiway joins and CSPs. The
advantages of our approach are: i) it is efficient, ii) it does not
materialize intermediate results, iii) its cost is predictable by
accurate analytical formulae, iv) it is relatively simple to
implement on top of an R-tree supported system, v) it can be
easily extended to capture any spatial predicate, and vi) it can be
modified for other spatial access methods that are based on
hierarchical decomposition of space.

Some preliminary comparisons with methods based on
integration of (pairwise) spatial join algorithms [MP99a] indicate
that constraint-based methods perform better for dense queries
and datasets, because they take advantage of multiple joins to
restrict the search space. An interesting direction for future work
is the combination of our techniques with pairwise join
algorithms; for instance, we could split a query graph in two (or
more) subgraphs to be processed by ST (or another method) and
then combine the intermediate results using spatial join
algorithms for non-indexed inputs (e.g., [KS97]). Such a
methodology would efficiently support parallel processing of
multiway spatial joins.

Another direction is the development of more efficient
algorithms and pre-processing heuristics. Assume, for instance,
that ST or WR outputs the solutions (a1,b1), (a2,b1) and (a3,b1) for
the first two inputs of the chain query in Figure 4a. Instead of
immediately performing a window query on the third input for
each solution, we could partially materialize the intermediate
results and process the three solutions together. In this way only
one query window is needed for the instantiation v2← b1.

Finally, the proposed techniques can be applied in other
application domains. Mamoulis and Papadias [MP99b] integrate
the basic idea of WR with backtracking and forward checking to
solve temporal CSPs where the variable domains consist of
numerous intervals. Their experimental comparison suggests that
indexing can speed up search several times compared to
traditional CSP algorithms. The same ideas could also be applied
with other types of CSP problems involving large domains.
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APPENDIX
In this Appendix we prove Eqs 12 and 13, used for the
calculation of the number of solutions in case of clique queries.

Lemma A1: Given a set of n (n ≥ 2) mutually overlapping
rectangles si, i = 1, …, n, with average extent |si| on each
direction and assuming uniformity and independence, the
common intersection area is a rectangle qn of average extent |qn|
defined as follows:
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Proof (by induction on n):

Step 1: For n = 2, it is sufficient to prove that
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Without loss of generality, we assume |s1|≤|s2|. Since the two
rectangles overlap, their projections (line segments) on each
direction also overlap; let δ be their intersection and si.start (si.end)
be their projections’ start (end) points, i = 1, 2. Figure A.1
sketches the three possible configurations between two
overlapping line segments, representing the following sets of
conditions:

· Case (i): s1.start < s2.start < s1.end < s2.end

· Case (ii): s2.start ≤ s1.start < s1.end ≤ s2.end

· Case (iii): s2.start < s1.start < s2.end < s1.end

Recall that it is always: s1.end ≥ s2.start and s2.end ≥ s1.start since the
two projections overlap.

s1

s2

s1

s2

s1

s2

case I case IIIcase II
δ δ δ

Figure A.1 Possible configurations of overlapping intervals

Assuming that the address space is discrete, with very fine
granularity (the case of continuous space will be the limit for
infinitely fine granularity) [KF92] the probability for each
specific configuration corresponds to the different relative
positions of s1 with respect to s2. Formally:
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The first two probabilities correspond to cases (i) and (iii) and
the latter one corresponds to case (ii). For each of the three cases,
the average δ size equals the average portion of s1 intersecting s2,
i.e., δ = |s1|/2 for (i) and (iii) and δ = |s1| for (ii). In turn, the
average extent |q2| equals the weighted average δ size, i.e.,
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where the first part of the summation represents the (equal)
weighted average δ for cases (i) and (iii) while the second part
corresponds to (ii).

Since Eq. A.3 implies Eq. A.2, step 1 of the proof has been
completed.

Step 2: We assume that Eq. A.1 holds for n = k, i.e.,

∑∏

∏

=
≠
=

==
k

i

k

ij
j

j

k

i
i

k

s

s

q

1 1

1 (A.4)

Step 3 (induction step): We will prove that Eq. A.1 holds for n =
k+1, i.e.,
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Proof of the induction step: Since rectangle sk+1 overlaps all s1,
…, sk rectangles that are mutually overlapping, it overlaps their
common intersection area, denoted by qk. Furthermore, the
common intersection area of all s1, …, sk, sk+1 rectangles, denoted
by qk+1, is identical to the common intersection area between qk

and sk+1. According to Eqs A.2 and A.4:
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Corollary: Given a random n- tuple of rectangles (s1, .., sn), the
probability that all rectangles mutually overlap is:
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Proof: Since all rectangles mutually overlap, without loss of
generality we assume that the instantiation order is s1, …, sn.
Thus, the left part of Eq A.6 is equal to a product of independent
probabilities:

( )
( )

( )

( )overlap mut. ,...,/ overlaps ... overlaps 

...

overlapmutually  ,/ overlaps  overlaps 
 overlaps 

overlapmutually  ... rectangles

1111

212313

12

1

−−∧∧⋅
⋅

∧⋅
=

=

nnnn

n

ssssssProb

ssssssProb
ssProb

ssProb

(A.7)

In general, in order for a rectangle sk+1 to overlap s1,…,sk

mutually overlapping rectangles, it should overlap their common
intersection, which is denoted by qk and its area is calculated
according to Lemma A1. Hence Eq. A.7 is equivalent to
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As discussed in subsection 2.1, the probability that a member of
a set of rectangles overlaps a given rectangle q is, by definition,
equal to the selectivity of q on the set of rectangles, which is
computed according to Eq. 1. Thus Eq. A.8 is equivalent to
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Substituting Eq A.1 in Eq A.9 we obtain:
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