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ABSTRACT

The retrieval of stored images matching an input configuration is
an important form of content-based retrieval. Exhaustive
processing (i.e., retrieval of the best solutions) of configuration
similarity queries is, in general, exponential and fast search for
sub-optimal solutions is the only way to deal with the vast (and
ever increasing) amounts of multimedia information in several
real-time applications. In this paper we discuss the utilization of
hill climbing heuristics that can provide very good results within
limited processing time. We propose several heuristics, which
differ on the way that they search through the solution space, and
identify the best ones depending on the query and image
characteristics. Finally we develop new algorithms that take
advantage of the specific structure of the problem to improve
performance.

Keywords
MMIR (general), content-based indexing/retrieval (general), image
indexing/retrieval, efficient search over non-textual information

1. INTRODUCTION

The large availability of visual content in emerging multimedia
applications and the WWW triggered significant advances in
content-based retrieval mechanisms. Such mechanisms,
sometimes in conjunction with traditional information retrieval
techniques for text, allow the user to access a variety of
information sources. A special form of content-based retrieval is
configuration similarity, otherwise called spatial, structural, or
arrangement similarity. The corresponding queries describe some
prototype configuration and the goal is to retrieve all images
containing arrangements of objects matching the input exactly or
approximately. As an example consider that the user is looking for
all images (video frames, html pages, VLSI circuits) containing
arrangements similar to that of Figure 1a. Such a query could be
expressed by one of the existing pictorial languages that permit

configuration similarity retrieval, e.g., VisualSeek [23], Query by
Sketch [6], PQBE [20], Safe [24], or extended SQL commands,
e.g., Select v0,v1,v2,v3, From ImageDB, Where NE(v0,v1),
NW(v0,v2), N(v0,v3), … (NE means northeast, NW northwest and
so on).
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Figure 1 Query example and solutions

Formally, a configuration similarity query can be described by: (i)
A set of n variables, v0,v1,…,vn-1 that appear in the query, (ii) For
each variable vi, a finite domain Di ={u0,…, uNi-1} of Ni values,
(iii) For each pair of variables (vi,vj), a constraint Cij which can be
a simple spatio-temporal relation or a disjunction of relations. The
example query contains four variables (v0,…, v3), one for every
drawn object. The domain of each variable consists of the objects
in the image(s) to be searched for the particular configuration. The
input constraints restrict the possible assignments of variables to
subsets of the domains. In addition to binary spatio-temporal
relations, some query languages allow the user to specify unary
constraints in the form of object properties at the feature (v0 is a
red square) or the semantic level (v0 is a building). In this case,
appropriate retrieval algorithms (e.g., for color matching) must be
integrated with the ones for configuration similarity.

As in most forms of information retrieval, a scoring mechanism
should be employed for inexact matches. Depending on the types
of constraints allowed in the expression of queries, several types
of similarity measures have been proposed. Nabil et al. [16] use
Allen's [1] relations in multidimensional space and conceptual
neighborhoods. The idea is extended in [19] with the incorporation
of binary string encoding to automate similarity calculations.
Conceptual neighborhoods, but this time for topological relations
(e.g., inside, overlap), are also applied in [6]. Gudivada and
Raghavan [9] use angular directions (e.g., northeast is defined as
an angle of 45 degrees) and fuzzy similarity measures. A related
approach, which also includes distances between object centroids,
is followed in [18].

Independently of the relations employed and the similarity
measures used, the goal of query processing is to find
instantiations of variables to image objects so that the input
constraints are satisfied to a maximum degree. The inconsistency
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degree dij of a binary instantiation {vi←uk, vj←ul} is defined as
the dissimilarity between the relation R(uk,ul) (between objects uk

and ul in the image to be searched) and the constraint Cij (between
vi and vj in the query). Given the inconsistency degrees of binary
constraints, the inconsistency degree d(S) of a complete solution

S={ v0← up, .., vi←uk, .., vj←ul, .., vn-1←ur} can be defined as:
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=  where {vi←uk, vj←ul}

Figures 1b and 1c illustrate two solutions for the example query

where vi←ui, 0≤i<4. The first solution corresponds to a perfect
match, while the second is inexact since some binary constraints
(e.g., between v0 and v1) are not totally satisfied. If N is the image
cardinality, the total number of possible solutions that have to be
considered in each image is equal to the number of n-permutations
of the N objects: N!/(N-n)!. Due to the high cost of query
processing, it is not always possible to search all database images
within reasonable time. Actually in some cases, even the retrieval
of the best solutions in a single large image may take hours to
complete.

An alternative is to compromise quality in order to achieve speed;
in other words we could assign a certain amount of processing to
each image (possibly proportional to its size or importance) so that
the whole database can be searched within the available time. In
this paper we follow this approach and exploit hill climbing
techniques that can quickly provide good, but not necessarily
optimal, solutions. The rest of the paper is organized as follows:
Section 2 outlines previous processing approaches and classifies
them according to their applicability. Section 3 describes several
hill climbing algorithms by exploiting various search strategies and
unifying the different approaches under one framework. A detailed
study of the solution space provides significant insight for the
performance of query processing. The results of this study are
used in Section 4 for the development of improved algorithms that
take advantage of spatial order to accelerate search. Section 5
concludes the paper with a discussion.

2. QUERY PROCESSING TECHNIQUES

Several query processing techniques have been proposed for
configuration similarity retrieval in multimedia databases. The
various approaches can be classified according to the size of
database images for which they can be applied, the form of
relations permitted, and the type of query variables. The form of
relations, otherwise called relation scheme, can be static, or
dynamic; static methods assume a predefined set of relations to be
used by all users in all queries. Dynamic methods can be
employed with any type of relations (assuming of course that the
query language allows variable sets of relations for different
queries). Query variables can be fixed or unrestricted: a fixed
variable can be instantiated to at most one object in each image,
while an unrestricted one can range within the whole domain.

The first class of methods, which can be grouped under a general
category called pairwise matching, assumes that all query
variables are fixed (e.g., find all images where George is left of
Mary). Thus, an image has at most one configuration matching the
query which can be found in polynomial time as follows: (i) locate
the query objects in the image (possibly using an index on object
id), (ii) for each object pair compute its similarity to the

corresponding query constraint, and (iii) calculate the total
similarity of the configuration using the pairwise similarities.
Gudivada and Raghavan [9] follow this approach to answer
configuration similarity queries involving angular directions
including rotation invariants. Nabil et al., [16] deal with projection
directions and topology. Algorithms that combine pairwise
matching with contextual similarity (i.e., based on object features)
can be found in [25]. Assuming that image objects are stored using
absolute coordinates, pairwise matching can be applied with
variable relation schemes. Its disadvantage is its very limited
applicability due to the fixed nature of query variables.

Petrakis and Faloutsos [21] solve configuration queries for medical
images (X-rays) that contain a constant number of
labeled/expected objects (e.g., stomach, heart) and a small number
of unlabeled ones (e.g., tumors). Every image is mapped onto a
point in multi-dimensional space, where each dimension
corresponds to a relation between a specific pair of objects; i.e., if
N is the number of image objects and r the number of relations in
the relation scheme, the number of dimensions is O(rN2). Queries,
which are also X-ray images containing mostly labeled (i.e., fixed)
variables, are processed by multidimensional nearest neighbor
search using R-trees. In order to keep the number of dimensions
stable, images with unlabelled objects are decomposed into
combinations of images with fixed size. An enhanced version that
reduces the number of dimensions is proposed in [22].
Performance could be further improved by employing more
efficient high dimensional indexing methods, such as M trees [5],
the pyramid technique [2] etc. Nevertheless the method (like all
techniques based on high dimensional indexing and search) is
applicable only for fixed relation schemes and databases with small
images of mainly labeled objects; otherwise, it is not possible to
pre-determine dimensions and build indexes.

A number of methods are based on several variations of 2D
strings, which encode the arrangement of objects on each
dimension into sequential structures. 2DB strings [13] capture the
object projections, effectively approximating each object by its
MBR. 2DC and 2DG strings decompose objects in entities with
disjoint convex hulls, allowing the representation of more detailed
spatial information at the expense of storage [3][12]. Every
database image is indexed by a 2D string; queries are also
transformed to 2D strings and configuration similarity retrieval is
performed by applying appropriate string matching algorithms [4].
If the query contains only fixed variables, the cost of processing
each image is linear, while in the general case it is exponential
since matching has to be performed for multiple instantiations of
the variables to different image objects. Users are not allowed to
define and use their own relations but only the scheme according
to which 2D strings are built.

Another approach is motivated by spatial databases and
geographic information systems. In this case, very large images (in
the order of 105-106) contain objects with well-defined semantics
(e.g., maps created through topographic surveys). Each map is not
stored as a single entity, but information about objects is kept in
relational tables with a spatial index for each type of objects
covering the same area (e.g., an R-tree for the roads of California,
another for residential areas etc). This facilitates the processing of
traditional spatial selections (e.g., find all roads inside a query
window) and spatial joins (e.g., find all pairs of intersecting roads
and railroad lines in California). The same organization can be
used to answer configuration queries using cascaded spatial joins.



This technique is applied in [14] for queries where each variable is
restricted to an object type (e.g., v1 must be a road) and the
constraint can only be overlap. The generalization to arbitrary
queries requires the extension of spatial join algorithms to various
predicates and approximate retrieval. For most algorithms (e.g.,
spatial hash joins [11] for intermediate non-indexed results), this is
a difficult problem.

Papadias et al., [18] deal with configuration similarity without any
restriction on the type of variables or relations. Approximate
retrieval is modeled and solved as a constraint satisfaction problem
by applying branch and bound algorithms that stop searching once
a partial solution cannot lead to a desired target. The method is
applicable for medium size images (102 - 103 objects) and can be
employed with variable relation schemes. In [17], the
incorporation of spatial indexing (R-trees) enables retrieval from
much larger images (104 - 105 objects). Although this approach
works well in most cases, systematic search algorithms do not
have a predictable behavior depending on the problem size.
Different query/image combinations, even with the same number
of variables and image objects, may yield vast variances in cost
depending on constrainedness [8]. For instance, the running time
for the same query in two images of the same size may be order
of magnitudes different. As a consequence, a large part of query
processing may be devoted to a few images, while other images
may not be searched at all within the available time.

Consider now a database with numerous, medium or large images
where users can ask any type of queries (i.e., with non-fixed
variables) using variable relation schemes. The only approach that
could be employed is systematic search [17][18], which due to the
worst case exponential cost is not guaranteed to terminate within
reasonable time. In order to deal with configuration similarity
under limited time, Papadias et al. [19] apply several local search
techniques for the retrieval of sub-optimal solutions. Their
experimental evaluation reveals that one of these techniques, hill
climbing, clearly outperforms the rest (genetic algorithms and
simulated annealing) for configuration similarity retrieval.

The good performance of hill climbing motivates the current work,
since fast search for sub-optimal solutions is the only way to deal
with the vast amounts of multimedia information in several
applications. In the sequel we describe several alternatives of hill
climbing and identify the problem properties that determine
performance by a thorough investigation of the search space. For
the following discussion, we assume medium or large non-indexed
images and unrestricted variables. In the experimental evaluations
we employ the relation scheme of [19], but the algorithms could
be used with any type of spatial constraints.

3. HILL CLIMBING AND THE PROBLEM SPACE

The problem space of configuration similarity retrieval can be
visualized as a graph, where each solution S corresponds to a node
(i.e., the graph has N!/(N-n)! nodes where N is the image
cardinality, and n the number of query variables). Two solutions
are connected through an edge, if one can be derived from the
other by changing the instantiation of a single variable, i.e., the
neighborhood of S consists of n⋅N nodes. Hill climbing algorithms
operate on such a graph; starting with a random solution (called
seed), they improve it by performing uphill moves, i.e., by visiting
neighbors with higher similarity. Each uphill move (otherwise
called a step) may involve a number of unsuccessful attempts (i.e.,

visits to nodes of lower similarity). A solution is called a local
maximum if no uphill moves can be performed starting from the
corresponding node. If hill climbing reaches a local maximum, it
restarts the process with a different seed in search of better
solutions in other areas of the space. Several variations of hill
climbing can be developed depending on the mechanisms for
visiting neighboring solutions.

The straightforward approach for generating neighbors is to select
a random variable and change its instantiation. This random
variable selection is followed by the algorithm for configuration
similarity retrieval in the implementation of [19]. An alternative
approach, motivated by conflict minimization algorithms [15] is to
select the "worst" variable. The inconsistency degree of a variable
vi (currently instantiated to value uk) in a solution S is defined as:
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Worst variable selection re-instantiates the variable with the
highest inconsistency degree, so that the similarity of the specific
solution may be increased significantly. If the worst variable
cannot be improved, the algorithm considers the second worst; if it
cannot be improved either, the third worst, and so on. If one
variable can be improved, the next step will consider again the
new worst one; otherwise, if all variables are exhausted with no
improvement, the current solution is considered a local maximum.

Once a variable is chosen for re-instantiation, the value selection
mechanism determines its new assignment. The first variation, all-
best value selection (sometimes called steepest ascent),
systematically tries all possible values in the domain of the variable
to be re-instantiated and assigns the one that results in the solution
with the highest similarity. The second variation, first-better
selection, assigns values to the specific variable randomly, until a
better instantiation is found. When the similarity of a solution is
very low, first-better selection performs just a few attempts
before it finds a better solution. As the quality increases, it
becomes more difficult for the solution to be improved. If after N
unsuccessful assignments no better neighbor has been found, the
solution is considered a local maximum. Notice, however, that due
to the random nature of search, better neighbors may be missed
since some instantiations are tried multiple times, while others not
at all.

In order to comprehend the behavior of hill climbing under
different combinations of search strategies, we first study the
search space for configuration similarity. We produce five queries
with 9 variables, and five with 12, and for each query we generate
500 random solutions in a dataset of 1,000 uniformly distributed
rectangles with density 0.5 (density is defined as the sum of all
rectangle areas divided by the workspace).  Figure 2 shows the
average similarity of a solution and the average maximum and
minimum similarities of the neighbors that can be reached with a
single move. The similarity values are scaled, i.e., they are divided
by the average maximum similarity found in each case. The x-axis
represents the five different queries, with no specific significance
in the placement. According to the diagrams, there is a
considerable difference between the similarity of a random
solution and the maximum and minimum similarity of its
neighbors. For queries of size 9, this difference is around 15%,
while for queries involving 12 objects about 10%. Thus even a
single move can have a significant effect on the quality of the
solution especially in small queries.
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Figure 2 Similarity ranges around random solutions

The second experiment studies the number of steps, i.e. uphill
moves, that must be performed in order to reach a local
maximum. We use two approaches for identifying local maxima:
(i) we replace a solution by the best of all its neighbors, which is
equivalent to applying all-best value selection to all variables, or
(ii) we accept the first better neighbor found by changing the
instantiations of random variables, which is equivalent to applying
first better value selection to all variables. We refer to the local
maxima obtained using these approaches as All-maximum and
First-max respectively. When searching for All-max, each step
tries all possible values for each variable, i.e., a total of Θ(n⋅N)
attempts. For First-max this number differs in each step; in the
best case an uphill move can be found with the first attempt, while
in the worst, even O(n⋅N) attempts may fail to find a better
neighbor.

Figure 3a shows how these maxima are reached (attempts,
similarity) as a function of the number of steps, for queries of size
9 over the 0.5 density datasets (n=9, N=103). The horizontal axis
corresponds to the number of steps, the left y axis to the total
number of attempts (including unsuccessful instantiations) and the
right y axis to similarity. All-max (similarity 0.824) is reached after
24 steps; 9,000 instantiations are tested in each step, resulting in
216,000 attempts. First-max (similarity 0.831) is reached after 77
steps and 273,408 attempts. Search for All-max is deterministic,
meaning that starting with one solution, we always reach the same
local maximum. On the other hand, the value of First-max and the
steps required to reach it change depending on the order that
neighbors are visited. In most cases the two maxima are close to
each other.

Although search for First-max finds the highest similarity using a
longer path (77 steps as opposed to 24), it reaches high quality
solutions faster. Consider, for instance, a solution with similarity
around 0.8. If search is performed according to the All-max
approach, the solution will be found after 9 steps and 81,000
attempts (see Figure 3a). On the other hand, if the First-max
approach is employed, the solution will be found in about 40
steps. However, the total number of attempts is less than 15,000
because uphill moves are easily performed from solutions of low
similarity. Each attempt involves a similarity computation; thus the
number of attempts (rather than steps) determines the cost of
search. Figure 3b illustrates the similarity achieved as a function of
the number of attempts for the above query set (9 variables) and
dataset (density 0.5) combination. The advantage of the First-max
search approach is clear, since it converges much faster to high
similarity solutions.

According to these results, first-better value is expected to
outperform all-best selection. However, as the quality of the
solution increases, improvement by random re-instantiations
becomes more difficult and large parts of the domains are

searched. Near the local maximum, first-better behaves likes all-
best value selection, but unlike exhaustive search it may miss
some good neighbors. Consequently, in some cases where there is
enough time for processing (small queries and/or datasets), all-best
may eventually yield better solutions than first-better selection.

In order to test this observation we ran experiments with the four
variations of hill climbing (2 variable selection ⋅ 2 value selection
mechanisms) using query sets of 6 and 15 variables over datasets
of 1000 uniformly distributed rectangles with densities of 0.1 and
1. In general, the quality of solutions increases with density. Small
rectangles are most often disjoint, but as they get larger the
diversity of relations between them also grows. Disjoint object
pairs can be effortlessly found in datasets with any density. So
similarity is determined by tight constraints like overlap or inside
which are more easily satisfied in dense datasets. Figure 4 shows
the average similarity (of 25 queries in each set) retrieved over the
two datasets every 50 seconds (using a SUN Ultrasparc 2, 200
MHz, with 256MB of RAM).

As expected, first-better value selection quickly (within the first 50
seconds) finds good solutions even for the large queries. Among
the two variable selection mechanisms, random selection (R-F) is
faster than worst variable (W-F) since random variables are more
easily improved than the worst one. All-best value selection is
ineffective for large queries because the number of neighbors, as
well as the cost of similarity computations increases with the
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number of variables. Thus, W-A and R-A take a long time to
converge to high similarity regions. Notice that for 15 variables W-
A converges after 200 secs, while R-A does not converge at all
within the 300 secs limit. R-A is worse than W-A, because some
variables, especially if the solution is good, contribute little, or not
at all, to the total degree of inconsistency. Therefore, spending a
long time to improve these variables does not pay-off.

For 6-variable queries, however, W-A (worst variable selection, all
best value) outperforms R-F after 100 secs and achieves the
highest similarity. This is due to a combination of reasons: for
small queries, finding the best possible instantiation for a variable
may increase the similarity of the solution significantly, especially
if the variable chosen is the worst one. Furthermore, due to the
small problem size, there is enough time to search extensively
within the neighborhood of a solution, identifying good local
maxima.

Motivated by these observations, in the next section we propose
an algorithm that can outperform the previous ones in all cases.
The idea is to start with R-F which quickly reaches an area of high
similarity. In subsequent steps (when R-F starts behaving like
exhaustive search), a deterministic value selection technique
locates the good neighbors, using the spatial structure of the
problem to avoid the expensive search for all possible
instantiations of a variable.

4. IMPROVED ALGORITHMS

Consider the example query of Figure 1a where the first three

variables are instantiated to objects u0, u1, and u2, as shown in
Figure 5a. Assume that these three instantiations perfectly match
the query constraints. The fourth variable (v3) is chosen for re-
instantiation and the goal is to find the best value for it. Variable v3

is related with the other ones by the following projection-based
constraints: south(v3,v0), northeast(v3,v1) and northwest(v3,v2).
Each of the constraints, in combination with the current value of
the corresponding variable, defines a window in space containing
all consistent values for v3 (e.g., all objects south of v0 are inside
w0). The best values of v3 (i.e., satisfying all constraints) are the
ones that lie in the intersection of all windows. In other words, if a
value is found in the dark gray area of Figure 5a, there is no need
to search the whole domain of v3.

Although, in the example of Figure 5a, we assume that the first
three variables are instantiated to objects that result in a perfect
match, in most cases the partial solution after the removal of a
single variable, is only approximate. As an example consider the
partial solution of Figure 5b, where u0 has been shifted to the left.

The instantiation {v0←u0,v1←u1,v2←u2} has some inconsistency
degree on the x axis (the positions of the objects on the y axis are
the same). As a result, the intersection of w0, w1 and w2 is empty
and therefore cannot contain any objects. Intuitively, the good
instantiations for v3, are still found somewhere in the area between
u0, u1, and u2. In order to continue improving the solution, we
should extend the windows so that a new value for v3 can be
chosen.
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Window value selection (WVS) applies this idea. Once the
variable vi for re-instantiation has been chosen, the appropriate
windows wj (0≤j<n, i≠j) are computed. Then each window is
extended according to the maximum inconsistency degree d of the
partial solution (where all variables except for vi have been
instantiated) on each dimension; the higher the value of d, the
larger the extension on the corresponding axis. In the example of
Figure 5c, w0, w1 and w2 are only extended on the x axis because
there is no inconsistency on the y axis. Although the objects in the
intersection (dark gray area) do not result in perfect matches (e.g.,
the constraint between v0 and v1 is still violated), they provide
good solutions which can be further improved in subsequent steps.
The window extension method depends on the relation scheme in
use. In the current implementation, which is based on conceptual
neighbors, in addition to the original constraint, its d neighbors are
taken into account when generating the window. If angular
directions were used, a northeast constraint, for instance, could
generate an angular window 40o-50o in case of a low value of d, or
a window 30o-60 o for higher inconsistency.

In order to be able to search fast within such windows, all objects
within an image are sorted according to the x-coordinate of the
lower left point (this pre-processing takes place when the image is
inserted in the database). The objects that fall inside the window
(and potentially some false hits) are found by a simple range query
in this sorted list. The other three co-ordinates of each retrieved
object are checked and, if they also fall within the specified
window, the object is kept as a good value. Initially, due to the

low similarity of random solutions (seeds), the windows and their
intersection usually cover the whole workspace. In this case WVS
behaves like all-best value selection (with the additional overhead
of computing the windows). As the inconsistency degree of the
solution drops, the windows in some projections decrease
restricting the search space.

We compare WVS against best-value selection (i.e., exhaustive
domain search) for worst and random variable selection. Figure 6
illustrates the results for query-sets (average of 25 queries per set)
with 6 and 15 variables over the dataset with density 0.5. WVS
always outperforms exhaustive search; as in the case of all-best
value selection (see experiments in Figure 4), WVS performs best
with worst variable selection (W-WVS) since each re-instantiation
may improve the solution significantly.

Despite its good performance, WVS (even with worst variable
selection) does not converge fast to high similarity regions, due to
the large windows in the initial phases of the algorithm. So, we
propose a two phase search (2PS) algorithm that first uses R-F to
quickly find a good solution, which is then improved by W-WVS.
R-F is executed for a time analogous to the size of the problem
(for this implementation n⋅N milliseconds), and W-WVS for the
remaining time. For instance, for a query with 15 variables over a
1,000 objects dataset, the running time of R-F is 15 seconds.
During this time R-F has performed enough steps to improve the
seed significantly. Thus, in most cases the initial windows of W-
WVS restrict search in a relatively small portion of the space.
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2PS is tested against W-WVS and R-F using query sets with 6, 9,
12 and 15 variables (25 queries per set) over the 0.5 density
dataset. Figure 7 shows the highest similarity retrieved by the
algorithms as a function of time. For small queries (6 and 9
variables), WVS produces better solutions than R-F even in the
first 50 seconds. As the query size increases, WVS slows down
significantly and for 15 variables, it catches up with R-F only at
300 seconds. 2PS outperforms both algorithms since it combines
their best characteristics. In general, 2PS has consistently the best
performance of all hill climbing variations for all combinations of
queries/datasets tested (including real data). In addition to its
robustness, another advantage of 2PS, and hill climbing in general,
with respect to other local search algorithms, is that it does not
require the complicated tuning of parameters (e.g., population size
and generations in genetic algorithms, or temperature and
equilibrium conditions in simulated annealing) which significantly
affect efficiency.

In order to evaluate the effectiveness of our methods with respect
to other query processing techniques, we replicate the above
experiments using random sampling (RND) and forward checking
(FC). RND just picks solutions at random and returns the best
one. It has been shown that, depending on the structure of the
search space, in some applications it may outperform techniques
based on local search [7]. FC [10] is one of the most efficient
systematic search algorithms, traditionally used for constraint
satisfaction problems. We implement a branch and bound version
of FC, which backtracks when a partial solution cannot reach the
similarity of the best solution found so far. A similar
implementation outperforms several other systematic search
algorithms (e.g., backjumping, dynamic backtracking) for
configuration similarity queries when the goal is to find the best

solution with no time limit [18].

Table 1 shows the best similarity retrieved over time for queries
with 6 and 15 variables for the 0.5 density dataset. In general,
both algorithms provide very low similarity when compared with
the corresponding values in Figure 7. RND produces better results
than FC within the 300 seconds but quality does not increase
much over time, implying that only a small percentage of solutions
have similarity close to a local maximum. Although FC, as
expected, improves gradually with time it does not find good
solutions even for 6 variables within the available time. The
situation is worse for 15 variables due to the significant increase in
the search space; FC remains in the neighborhood of the initial
assignments, which in most cases have low quality.

Time (seconds)
n method

50 100 150 200 250 300

RND 0.742521 0.749104 0.752542 0.755187 0.756688 0.758604
6

FC 0.6475 0.654167 0.691563 0.698229 0.703313 0.708438

RND 0.665443 0.672321 0.678756 0.682307 0.683283 0.683923
15

FC 0.566101 0.56692 0.56869 0.572113 0.575488 0.576732

Table 1 Similarity as a function of time for RND and FC

These results, which were also validated with various geographic
datasets, clearly motivate the need for fast retrieval of sub-optimal
solutions. Notice that, due to the unavailability of representative
actual application queries, we do not use real datasets in the
experimental evaluation, since datasets by themselves do not
determine performance. Nevertheless, the large variance among
data densities, query sizes and constrainedness allows for general
conclusions about performance.
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5. CONCLUSION

This paper applies hill climbing algorithms for the effective
retrieval of configuration similarity. A thorough investigation of the
search space of the problem leads to the development of
algorithms that can find good solutions even if very limited time is
available for query processing. The most efficient algorithm is
2PS, which first applies random variable, first-better value
selection to reach an area of high similarity. Then, window value
selection employs spatial order to identify good values, without
searching the whole domain of the variable to be re-instantiated.
2PS has a very robust performance, quickly locating very good
solutions for all types of queries and datasets tested. Since the
algorithm does not require the tuning of special parameters we
expect similar behavior for several types of applications.

In the future we plan to extend our work for spatio-temporal
objects and queries. Consider, for instance, a database with
satellite images of weather patterns. Since temporally adjacent
images are usually similar, solutions of previous images can be
used to guide search for subsequent ones. Queries can also be
extended to capture motion, e.g., find the set of images containing
a movement similar to that of a given weather pattern. In this case
solutions are not found independently in each image, but they are
interrelated as specified by the motion constraints.

The increasing amount of visual content and the emergence of
real-time multimedia applications (e.g., WWW visual search
engines) provide a significant motive for the development of fast
retrieval techniques. Since other existing methods are either
inapplicable for general queries, or not guaranteed to terminate
within reasonable time (possibly missing a large part of the
database), hill climbing algorithms constitute one of the most
important alternatives for configuration similarity processing.
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