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ABSTRACT configuration similarity retrieval, e.gVisualSeel23], Query by
Sketch[6], PQBE [20], Safe[24], or extended SQL commands,
The retrieval of stored images matching an input configuration is e.g., Select vo,v1,v2,v3, From ImageDB, Where NEkfv1),
an important form of content-based retrieval. Exhaustive NW(vo,v2), N(vo,v3), ... (NE meansortheast NW northwestand
processing (i.e., retrieval of the best solutions) of configuration so on).
similarity queries is, in general, exponential and fast search for
sub-optimal solutions is the only way to deal with the vast (and
ever increasing) amounts of multimedia information in several
real-time applications. In this paper we discuss tlization of

hill climbing heuristics that can provide very good results within ] ]
limited processing time. We propose several heuristics, which u1|:| u, “1|:| U,
differ on the way that they search through the solution space, and .

(a) query (b) a perfect match  (c) an approximate match

identify the best ones depending on the query and image
characteristics. Finally we develop new algorithms that take
advantage of the specific structure of the problem to improve Formally, a configuration similarity query can be described by: (i)

Figure 1 Query example and solutions

performance. A set of n variables,vo,vi, ...,vn-1 that appear in the query, (i) For
each variables, a finite domainD; ={uo,..., unii} Of Ni values,
Keywords (iiiy For each pair of variables:{;), a constrainC; which can be
MMIR (general), content-based indexing/retrieval (general), image & simple spatio-temporal relation or a disjunction of relations. The
indexing/retrieval, efficient search over non-textual information example query contains four variables, (., vs), one for every

drawn object. The domain of each variable consists of the objects

in the image(s) to be searched for the particular configuration. The
1. INTRODUCTION input constraints restrict the possible assignments of variables to
subsets of the domains. In addition to binary spatio-temporal
relations, some query languages allow the user to specify unary
constraints in the form of object properties at the featurés(a

The large availability of visual content in emerging multimedia
applications and the WWW iggered significant advances in

content-based retrieval mechanisms. Such mechanisms, . ) D - )
red square) or the semantic leve} i6 a building). In this case,

sometimes in conjunction with traditional information retrieval ate retrieval aloorith ¢ | tchi b
techniques for text, allow the user to access a variety of appropriate retrieval aigorthms (6.g., for color maiching) must be

information sources. A special form of content-based retrieval is integrated with the ones for configuration similarity.
configuration similarity, otherwise calledspatial structural or As in most forms of information retrieval, a scoring mechanism
arrangementsimilarity. The corresponding queries describe some should be employed for inexact matches. Depending on the types
prototype configuration and the goal is to retrieve all images of constraints allowed in the expression of queries, several types
containing arrangements of objects matching the input exactly orof similarity measures have been proposed. Nabil et al. [16] use
approximately. As an example consider that the user is looking forAllen's [1] relations in multidimensional space and conceptual
all images (video frames, html pages, VLSI circuits) containing neighborhoods. The idea is extended in [19] with the incorporation
arrangements similar to that of Figure 1a. Such a query could beof binary string encoding to automate similarity calculations.
expressed by one of the existing pictorial languages that permitConceptual neighborhoods, but this time for topological relations
(e.g., inside, overlap), are also applied in [6]. Gudivada and
Raghavan [9] use angular directions (e.g., northeast is defined as
an angle of 45 degrees) and fuzzy similarity measures. A related
Proceedings of the ACM Conference on Information Retrieval approach, which also includes distances between object centroids,
(SIGIR), Athens, July 24-28, 2000 is followed in [18].

Independently of the relations employed and the similarity
measures used, the goal of query processing is to find
instantiations of variables to image objects so that the input
constraints are satisfied to a maximum degree. ihbensistency



degreed; of a binary instantiationf — Uk, v — u} is defined as ~ corresponding query constraint, and) (calculate the total
the dissimilarity between the relati®{ux,u) (between objectsi similarity of the configuration using the pairwise similarities.
andu; in the image to be searchet)d the constrair€; (between ~ Gudivada and Raghavan [9] follow this approach to answer
v andy; in the query). Given the inconsistency degrees of binary configuration similarity —queries —involving angular —directions
constraints, the inconsistency degmi8) of a completesolution including rotation invariants. Nabil et al., [16] deal with projection
S{Voe U ViU Vi U, .., Va1 — U} can be defined as dlrecthns find topology.. Algquthms that comblne pairwise
0= Hpr o Vi B M H ey et = matching with contextual similarity (i.e., based on object features)
d(S) = z d; (Cj R(uy,uy )) where i — Uy, vj < u} can be found in [25]. Assuming that image objects are stored using
Oi, j,iz j&ndsi,j<n absolute coordinates, pairwise matching can be applied with

. . . variable relation schemes. Its disadvantage is its very limited
Figures 1b and ldlustrate two solutions for the example query applicability due to the fixed nature of query variables.

wherev; — u,, 0<i<4. The first solution corresponds to a perfect . ) . . .
. o . ; . Petrakis and Faloutsos [21] solve configuration queries for medical
match, while the second is inexact since some binary constraints .
(e.g., betweeny andvi) are not totally satisfied. I is the image images (X-rays) that contain a - constant number of
9., DE 0 L Y ; 9 labeled/expected objects (e.g., stomach, heart) and a small number
cardinality, the total number of possible solutions that have to be

. - . ; X of unlabeled ones (e.g., tumors). Every image is mapped onto a
considered in each image is equal to the numberpsrmutations S -~ . - .
of the N objectS'Nl/(l\?-n)' Igue to the high cost of query point in multi-dimensional space, where each dimension
oo N : . corresponds to a relation between a specific pair of objects; i.e., if
processing, it is not always possible to search all database image

within reasonable time. Actually in some cases, even the retrievalﬁ 's the number of image objects anthe number of relations in
i ; aly i ' the relation scheme, the number of dimensior@(iNZ). Queries,
of the best solutions in a single large image may take hours to

which are also X-ray images containing mostly labeled (i.e., fixed)
complete. . - : X

variables, are processed by multidimensional nearest neighbor
An alternative is to compromise quality in order to achieve speed; search using R-trees. In order to keep the number of dimensions
in other words we could assign a certain amount of processing tostable, images with unlabelled objects are decomposed into
each image (possibly proportional to its size or importance) so thatcombinations of images with fixed size. An enhanced version that
the whole database can be searched within the available time. Ireduces the number of dimensions is proposed in [22].
this paper we follow this approach and exploill blimbing Performance could be further improved by employing more
techniques that can quickly provide good, but not necessarily efficient high dimensional indexing methods, such as M trees [5],
optimal, solutions. The rest of the paper is organized as follows:the pyramid technique [2] etc. Nevertheless the method (like all
Section 2 outlines previous processing approaches and classifiesechniques based on high dimensional indexing and search) is
them according to their appliciiy. Section 3 describes several applicable only for fixed relation schemes and databases with small
hill climbing algorthms by exploiting various search strategies and images of mainly labeled objects; otherwise, it is not possible to
unifying the different approaches under one framework. A detailed pre-determine dimensions and build indexes.
study of the solution space provides significant insight for the
performance of query processing. The results of this study are
used in Section 4 for the development of improved algorithms that
take advantage of spatial order to accelerate search. Section
concludes the paper with a discussion.

A number of methods are based on several variations of 2D
strings, which encode the arrangement of objects on each
gimension into sequential structur@PB strings [13] capture the
object projections, effectively approximating each object by its
MBR. 2DC and 2DG strings decompose objects in entities with
disjoint convex hulls, allowing the representation of more detailed
2. QUERY PROCESSING TECHNIQUES spatial information at the expense of storage [3][12]. Every
database image is indexed by a 2D string; queries are also
Several query processing techniques have been proposed fofransformed to 2D strings and configuration similarity retrieval is
configuration similarity retrieval in multimedia databases. The performed by applying appropriate string matching algorithms [4].
various approaches can be classified according to the size ofif the query contains only fixed variables, the cost of processing
database images for which they can be applied, the form ofeach image is linear, while in the general case it is exponential
relations permitted, and the type of query variables. The form of since matching has to be performed for multiple instantiations of
relations, otherwise calledelation scheme can bestatic or the variables to different image objects. Users are not allowed to
dynamig static methods assume a predefined set of relations to bedefine and use their own relations but only the scheme according
used by all users in all queries. Dynamic methods can betg which 2D strings are buik.
employed with any type of relations (assuming of course that the
query language allows variable sets of relations for different
queries). Query variables can fi#ed or unrestricted a fixed
variable can be instantiated to at most one object in each image
while an unrestricted one can range within the whole domain.

Another approach is motivated by spatial databases and
geographic information systems. In this case, very large images (in
the order of 1610°) contain objects with well-defined semantics
(e.g., maps created through topographic surveys). Each map is not
stored as a single entity, but information about objects is kept in
The first class of methods, which can be grouped under a generalelational tables with a spatial index for each type of objects
category called pairwise matching assumes that all query covering the same area (e.g., an R-tree for the roads of California,
variables are fixed (e.g., find all images where George is left of another for residential areas etc). Thisiifates the processing of
Mary). Thus, an image has at most one configuration matching thetraditional spatial selections (e.g., find all roads inside a query
query which can be found in polynomial time as follows: (i) locate window) and spatial joins (e.g., find all pairs of intersecting roads
the query objects in the image (possibly using an index on objectand railroad lines in California). The same organization can be
id), (i) for each object pair compute its similarity to the used to answer configuration queries using cascaded spatial joins.



This technique is applied in [14] for queries where each variable isvisits to nodes of lower similarity). A solution is calledlaal
restricted to an object type (e.¢3 must be a road) and the maximumif no uphill moves can be performed starting from the
constraint can only beverlap The generalization to arbitrary  corresponding node. Ifilhclimbing reaches a local maximum, it
queries requires the extension of spatial join algorithms to variousrestarts the process with a different seed in search of better
predicates and approximate retrieval. For most algorithms (e.g.,solutions in other areas of the space. Several variations of hil
spatial hash joins [11] for intermediate non-indexed results), this is climbing can be developed depending on the mechanisms for
a difficult problem. visiting neighboring solutions.

Papadias et al., [18] deal with configuration similarity without any The straightforward approach for generating neighbors is to select
restriction on the type of variables or relations. Approximate a random variable and change its instantiation. Trhisdom
retrieval is modeled and solved as a constraint satisfaction problemvariable selections followed bythe algorithm for configuration

by applying branch and bound algorithms that stop searching oncesimilarity retrieval in the implementation of [19]. An alternative

a partial solution cannot lead to a desired target. The method isapproach, motivated by conflict minimization algorithms [15] is to
applicable for medium size images ?(1010” objects) and can be  select the "worst" variable. The inconsistency degree of a variable
employed with variable relation schemes. In [17], the v (currently instantiated to value) in a solutionSis defined as:
incorporation of spatial indexing (R-trees) enables retrieval from

much larger images (10 10 objects). Although this approach d(vi.S)= _Zdij_(cii sR(u, up)) where {4 — u}

works well in most cases, systematic search algorithms do not Fliz) andosi<n
have a predictable behavior depending on the problem size.Worst variable selectionre-instantiates the variable with the
Different query/image combinations, even with the same number highest inconsistency degree, so that the similarity of the specific
of variables and image objects, may yield vast variances in costsolution may be increased significantly. If the worst variable
depending orconstrainednesf8]. For instance, the running time  cannot be improved, the algorithm considers the second worst; if it
for the same query in two images of the same size may be ordecannot be improved either, the third worst, and so on. If one
of magnitudes different. As a consequence, a large part of queryariable can be improved, the next stefl wonsider again the
processing may be devoted to a few images, while other imagesnew worst one; otherwise, if all variables are exhausted with no
may not be searched at all within the available time. improvement, the current solution is considered a local maximum.

Consider now a database with numerous, medium or large image©nce a variable is chosen for re-instantiation, the value selection
where users can ask any type of queries (i.e., with non-fixed mechanism determines its new assignment. The first variatin,
variables) using variable relation schemes. The only approach thabest value selection(sometimes called steepest ascent
could be employed is systematic search [17][18], which due to thesystematically tries all possible values in the domain of the variable
worst case exponential cost is not guaranteed to terminate withinto be re-instantiated and assigns the one that results in the solution
reasonable time. In order to deal with configuration similarity with the highest similarity. The second variatiofirst-better
under limited time, Papadias et al. [19] apply several local searchselection,assigns values to the specific variable randomly, until a
techniques for the retrieval of sub-optimal solutions. Their better instantiation is found. When the similarity of a solution is
experimental evaluation reveals that one of these techniques, hilvery low, first-better selectionperforms just a few attempts
climbing, clearly outperforms the rest (genetic algorithms and before it finds a better solution. As the quality increases, it
simulated annealing) for configuration similarity retrieval. becomes more difficult for the solution to be improved. If after

The good performance ofiitimbing motivates the current work, ~ Unsuccessful assignments no better neighbor has been found, the
since fast search for sub-optimal solutions is the only way to dealSolution is considered a local maximum. Not_lce, however, that _due
with the vast amounts of multimedia information in several 1© the random nature of search, better neighbors may be missed

applications. In the sequel we describe several alternatives of piisince some instantiations are tried multiple times, while others not

climbing and identify the problem properties that determine &t al-

performance by a thorough investigation of the search space. Foin order to comprehend the behavior off klimbing under

the following discussion, we assume medium or large non-indexeddifferent combinations of search strategies, we first study the

images and unrestricted variables. In the experimental evaluationssearch space for configuration similarity. We produce five queries

we employ the relation scheme of [19], but the algorithms could with 9 variables, and five with 12, and for each query we generate

be used with any type of spatial constraints. 500 random solutions in a dataset of 1,000 uniformly distributed
rectangles with density 0.5 (density is defined as the sum of all
rectangle areas divided by the workspace). Figure 2 shows the

3. HILL CLIMBING AND THE  PROBLEM SPACE averagesimilarity of a solution and thaverage maximunand

The problem space of configuration similarity retrieval can be minimumsimilarities of the neighbors that can be reached with a

visualized as a graph, where each solu@orresponds to a node single move. The similarity values are scaled, i.e., they are divided
(ie., the graph ha\Y(N-n)! nodes whereN is the image by the average maximum similarity found in each case. The x-axis

cardinality, andn the number of query variables). Two solutions fepresents the five different _queries, with no specific significgnce
are connected through an edge, if one can be derived from thd" the placement. According to the diagrams, there is a
other by changing the instantiation of a single variable, i.e., the Considerable difference between the similarity of a random
neighborhood of consists oM nodes. H climbing algorthms soluion and the maximum and minimum similarity of its
operate on such a graph; starting with a random solution (Ca"ednel_ghbors. Fo_r qu_erles_of size 9,_ this difference is around 15%,
seed, they improve it by performingphill moves i.e., by visiting whlle for queries involving §L2_(_)bjects about 10%. Thu_s even a
neighbors with higher  similarity. Each uphmove (otherwise ~ Sindle move can have a significant effect on the quality of the
called astep) may involve a number of unsuccessful attempts (i.e., SPlution especially in small queries.
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The second experiment studies the numbesteps i.e. uphill o 6 12 18 24 B 3
moves, that must be performed in order to reach a local number of steps
maximum. We use two approaches for identifying local maxima: (a) Similarity and attempts as a function of steps
(i) we replace a solution by the best of all its neighbors, which is
equivalent to applying all-best value selection to all variables, or
(i) we accept the first better neighbor found by changing the )
instantiations of random variables, which is equivalent to applying W /(./A*““'_*—H_H_H
first better value selection to all variables. We refer to the local ”‘8
maxima obtained using these approachesAliksnaximum and
First-max respectively. When searching fédl-max each step
tries all possible values for each variable, i.e., a totad@fM)
attempts. ForFirst-max this number differs in each step; in the
best case an ujihmove can be found with the first attempt, while
in the worst, even @(N) attempts may fail to find a better o0&
neighbor. /

06

Figure 3a shows how these maxima are reached (attempts, 4000 80000 120000 160000 200000
similarity) as a function of the number of steps, for queries of size number of attempts

9 over the 0.5 density datasetsq, N=10°). The horizontal axis (b) Similarity as a function of the number of attempts
corresponds to the number of steps, the left y axis to the total i
number of attempts (including unsuccessful instantiations) and the Allmax | First-max
right y axis to similarity All-max (similarity 0.824)is reached after total ?alm?mpts -
24 steps; 9,000 instantiations are tested in each step, resulting in similarty k =+
216,000 attemptSFirst-maX(Similal’ity 0831) iS .reached aﬁer 77 Figure 3 Comparison OA"_maxandFirst_maX

steps and 273,408 attempts. SearchAlimax is deterministic, . . '
meaning that starting with one solution, we always reach the samesearched. Near the local maximum, first-better behaves likes all-
local maximum. On the other hand, the valu€iott-maxand the best value selection, but unlke exhaustive search it may miss
steps required to reach it change depending on the order thaome good neighbors. Consequently, in some cases where there is

neighbors are visited. In most cases the two maxima are close t¢nough time for processing (small queries and/or datasets), all-best
each other. may eventually yield better solutions than first-better selection.

Although search foFirst-maxfinds the highest similarity using a I order to test this observation we ran experiments with the four
longer path (77 steps as opposed to 24), it reaches high quality/ariations of il climbing (2 variable selectioril2 value selection
solutions faster. Consider, for instance, a solution with similarity Mechanisms) using query sets of 6 and 15 variables over datasets

66 72

0.7

« - —m® — =3 -0
°
S
Ed

around 0.8. If search is performed according to Allemax of 1000 uniformly distributed rectangles with densities of 0.1 and
approach, the solution ilvbe found after 9 steps and 81,000 1.Ingeneral, the quality of solutions increases with density. Small
attempts (see Figure 3a). On the other hand, if Rlvet-max rectangles are most often disjoint, but as they get larger the

approach is employed, the solutioril be found in about 40 diversity of relations between them also grows. Disjoint object
steps. However, the total number of attempts is less than 15,000°airs can be effortlessly found in datasets with any density. So
because uph moves are easily performed from solutions of low similarity is determined by tight constraints likeerlap or inside
similarity. Each attempt involves a similarity computation; thus the Which are more easily satisfied in dense datasets. Figure 4 shows
number of attempts (rather than steps) determines the cost ofhe average similarity (of 25 queries in each set) retrieved over the
search. Figure 3Hiustrates the similarity achieved as a function of two datasets every 50 seconds (using a SUN Ultrasparc 2, 200
the number of attempts for the above query set (9 variables) andVHz, with 256MB of RAM).

dataset (density 0.5) combination. The advantage dFittst-max  As expected, first-better value selection quickly (within the first 50
search approach is clear, since it converges much faster to higiseconds) finds good solutions even for the large queries. Among
similarity solutions. the two variable selection mechanisms, random selection (R-F) is

According to these results, first-better value is expected to faster than worst variable (W-F) since random variables are more
outperform al-best selection. However, as the quality of the €asily improved than the worst one. All-best value selection is
solution increases, improvement by random re-instantiations ineffective for large queries because the number of neighbors, as
becomes more difficult and large parts of the domains are well as the cost of similarity computations increases with the
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Figure 4 Similarity retrieved as a function of the execution time

number of variables. Thus, W-A and R-A take a long time to variables are instantiated to objecks ui, and u;, as shown in
converge to high similarity regions. Notice that for 15 variables W- Figure 5a. Assume that these three instantiations perfectly match
A converges after 200 secs, while R-A does not converge at allthe query constraints. The fourth variable) (is chosen for re-
within the 300 secs limit. R-A is worse than W-A, because some instantiation and the goal is to find the best value for it. Variable
variables, especially if the solution is good, contribute little, or not is related with the other ones by the following projection-based
at all, to the total degree of inconsistency. Therefore, spending aconstraints: southg,vo), northeastfz,vi) and northwestg,vz).

long time to improve these variables does not pay-off. Each of the constraints, in combination with the current value of
For 6-variable queries, however, W-A (worst variable selection, all (€ corresponding variable, defines a window in space containing

best value) outperforms R-F after 100 secs and achieves th@" consistent values fors (e_.g., al .Obj?‘:ts south oﬁ_are inside
highest similarity. This is due to a combination of reasons: for Wo). The b_es_t valut_as Ols ("e" satlsfylng all constraints) are th_e
small queries, finding the best possible instantiation for a variable ones 'ghat lie |n.the intersection of all wmdpws. In other W.mds’ i a
may increase the similarity of the solution significantly, especially Value is found in the dark gray area of Figure 5a, there is no need
if the variable chosen is the worst one. Furthermore, due to thetO search the whole domain wf

small problem size, there is enough time to search extensivelyAlthough, in the example of Figure 5a, we assume that the first
within the neighborhood of a solution, identifying good local three variables are instantiated to objects that result in a perfect
maxima. match, in most cases the partial solution after the removal of a

Motivated by these observations, in the next section we proposeSlngle variable, is only approximate. As an example consider the

an algorithm that can outperform the previous ones in all casesPartial solution of Figure 5b, whete has been shifted to the left.
The idea is to start with R-F which quickly reaches an area of high The instantiation Yo — Uo,v1 — U1,V2 — Uz} has some inconsistency
similarity. In subsequent steps (when R-F starts behaving like degree on the axis (the positions of the objects on thaxis are
exhaustive search), a deterministic value selection techniquethe same). As a result, the intersectiowgfwi, andw, is empty
locates the good neighbors, using the spatial structure of theand therefore cannot contain any objects. Intuitively, the good
problem to avoid the expensive search for all possible instantiations fows, are sll found somewhere in the area between

instantiations of a variable. Uo, U1, andup. In order to continue improving the solution, we
should extend the windows so that a new valueviocan be
chosen.

4. IMPROVED ALGORITHMS

Consider the example query of Figure 1a where the first three
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Figure 5 Value selection using windows

Window value selectiofWVS) applies this idea. Once the low similarity of random solutions (seeds), the windows and their
variable v; for re-instantiation has been chosen, the appropriate intersection usually cover the whole workspace. In this case WVS
windows w; (0<j<n, i#j) are computed. Then each window is behaves like all-best value selection (with the additional overhead

extended according to the maximum inconsistency debcfethe of computing the windows). As the inconsistency degree of the
partial solution (where all variables except far have been solution drops, the windows in some projections decrease
instantiated) on each dimension; the higher the valud, dhe restricting the search space.

larger the extension on the corresponding axis. In the example Oy compare WVS against best-value selection (i.e., exhaustive
Figure 5c,wo, wi andw; are only extended on theaxis because  yomain search) for worst and random variable selection. Figure 6
there is no inconsistency on thexis. Although the objects in the jystrates the results for query-sets (average of 25 queries per set)
intersection (dark gray area) do not result in perfect matches (e-g-with 6 and 15 variables over the dataset with density 0.5. WVS

the constraint betweew and v: is still violated), they provide  4yyays outperforms exhaustive search; as in the case of all-best
good solutions which can be further improved in subsequent steps, 5jue selection (see experiments in Figure 4), WVS performs best

The window extension method depends on the relation scheme inyith worst variable selection (W-WVS) since each re-instantiation
use. In the current implementation, which is based on conceptualmay improve the solution significantly.

neighbors, in addition to theiginal constraint, itsd neighbors are o . .
taken into account when generating the window. If angular Despite its good performance, WVS (even with worst variable
directions were used, mortheastconstraint, for instance, could selection) does not converge fast to high similarity regions, due to

generate an angular window®480° in case of a low value @f, or the large windows in the initial phase_s of the glgorithm. So, we
a window 36-60° for higher inconsistency. propose awo phase searc(@PS) algorithm that first uses R-F to
L . . quickly find a good solution, which is then improved by W-WVS.
ln‘tﬁrr?ea:rfo'rng%blznteo ss:r?égh;cfct)rv(;/!tnlgntc?ug;ovgpdqr?:g, g‘f" t?%eCts R-F is executed for a time analogous to the size of the problem
withi i i i . : s
) . i . . (for this implementatiomM™ miliseconds),and W-WVS for the
!ower Ieft_ point (this pre-processing takes place ‘_Nh?n the Image ISEemaining ti?ne. For instance, for a queri/ with 15 variables over a
inserted in t_he database). The objects that fall |p$|de the wmdowly000 objects dataset, the running time of R-F is 15 seconds.
.(anﬁ. potentlgllyl( somﬁ falsr? h'tsr? are fo””g,by a sm;ple rﬁnge quegDuring this time R-F has performed enough steps to improve the
in this sorted list. The other three co-ordinates of each retrievedggeq gignificantly. Thus, in most cases the initial windows of W-

ol_)ject aré chepked_ and, if they also fal With_i_n the specified WVS restrict search in a relatively small portion of the space.
window, the object is kept as a good value. Initially, due to the
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Figure 6 WVS versus exhaustive search - Similarity as a function of time



n=6 n=9
0.885 0.88 /‘_/‘/‘—_—‘
0.878 — = 0.872 —
0.871 a— 0.864 —a
0.864 —!/ 0.856 '/
0.857 0.848
0.85 . . . . 0.84 , , , ,
50 100 150 200 250 300 50 100 150 200 250 300
n=12 n=15
0.87 0.87
0.856 0.846 ://:/" S Shieaie
0.842 0.822 R L
0.828 : 0.798 s
. ,l"
0.814 : 0.774 -
0.8 : : : : 0.75
—+ RF ---B--WWVS  —a—2PS

Figure 7 2PS versus WVS and RF - Similarity as a function of time

2PS is tested against W-WVS and R-F using query sets with 6, 9,solution with no time limit [18].

12 and 15 variables (25 querigs per s.et) over thg 0.5 densityrahie 1 shows the best similarity retrieved over time for queries
dataset. Figure 7 shows the highest similarity retrieved by the i g and 15 variables for the 0.5 density dataset. In general,
algquttlwms as a function of time. ITor_ smatﬂ queries (6 a_nd : both algorithms provide very low similarity when compared with

}/_arlab es), W\SS prodLr|10es better_ SO _utlons than R-F elven ";t the corresponding values in Figure 7. RND produces better results
irst 50 seconds. As the query size increases, WVS slows downy,,n ¢ within the 300 seconds but quality does not increase

significantly and for 15 variables, it catche_s up WiFh R’_F only _at much over time, implying that only a small percentage of solutions
300 seconds. 2PS outperforms both algorithms since it comblne%ave similarity close to a local maximum. Athough FC, as

their best characteristics. In general, 2PS has consistently the be
performance of all ith climbing variations for all combinations of
queries/datasets tested (including real data). In addition to its
robustness, another advantage of 2P S, dirdlirhbing in general,

with respect to other local search algorithms, is that it does not
require the complicated tuning of parameters (e.g., population siz

Séxpected, improves gradually with time it does not find good
solutions even for 6 variables within the available time. The
situation is worse for 15 variables due to the significant increase in
the search space; FC remains in the neighborhood of the initial
assignments, which in most cases have low quality.

and generations in genetic algorithms, or temperature and method Time (seconds)

equilibrium conditions in simulated annealing) which significantly 50 100 150 200 250 300
affect efficiency. RND | 0.742521] 0.749104 0.752542 0.755187 0.756688 0.758604
In order to evaluate the effectiveness of our methods with respedt 8 FC | 06475 | 0.65416F 0691563 0.698429 0703313 0.70B438
to other query processing techniques, we replicate the above

experiments using random sampling (RND) and forward checking| ;s RND | 0.665443 0.672321L 0.6787%6 0.682307 0.683283 0.683923
(FC). RND just picks solutions at random and returns the best FC | 0.566101] 0.56692 0.56869 0.572113 0.575488 0.575732

one. It has been shown that, depending on the structure of the

Table 1Similarity as a function of time for RND and FC

search space, in some applications it may outperform techniques . i . ] .
based on local search [7] FC []_O] is one of the most efficient These resultS, which were also validated with various geographlc
systematic search algorithms, traditionally used for constraint datasets, clearly motivate the need for fast retrieval of sub-optimal
satisfaction problems. We implement a branch and bound versionsolutions. Notice that, due to the unavailgbof representative

of FC, which backtracks when a partial solution cannot reach theactual application queries, we do not use real datasets in the
similarity of the best soluton found so far. A simiar €xperimental evaluation, since datasets by themselves do not
implementation outperforms several other systematic searchdetermine performance. Nevertheless, the large variance among
algorithms  (e.g., backjumping, dynamic backtracking) for data densities, query sizes and constrainedness allows for general
configuration similarity queries when the goal is to find the best conclusions about performance.



5. CONCLUSION [6] Egenhofer M. Query Processing in Spatial-Query-by-Sketch.

) S ] Journal of Visual Languages and Compufirgy 403-424,
This paper applies ilh climbing algorthms for the effective 1997.

retrieval of configuration similarity. A thorough investigation of the ) i
search space of the problem leads to the development ofl’] Galindo-Legaria C., Pellenkoft A., Kersten M. Fast,

algorithms that can find good solutions even if very limited time is Randomized  Join-Order ~ Selection - Why Use
available for query processing. The most efficient algorithm is Transformations 2/LDB, 1994.

2PS, which first applies random variable, first-better value [8] Gent I., Macintyre E., Prosser P., Walsh T. The
selection to reach an area of high similarity. Then, window value Constrainedness of Seard®AAl, 1996.

selection employs spatial order to identify good values, without [9]
searching the whole domain of the variable to be re-instantiated. algorithms for image retrieval by spatial similarihCM
2PS has a very robust performance, quickly locating very good Transactions on Information Systerd8(1), 115-144, 1995
solutions for all types of queries and datasets tested. Since the ’ ' ’
algorithm does not require the tuning of special parameters we[10] Haralick R.M., Elliot G.L. Increasing Tree Search
expect similar behavior for several types of applications. Efficiency for Constraint Satisfaction ProblemArtificial

| . Intelligence 14, 263-313, 1980.

n the future we plan to extend our work for spatio-temporal ] ) ) ) )

objects and queries. Consider, for instance, a database witH11] Koudas N., Sevcik K. Size Separation Spatial J&GM
satdite images of weather patterns. Since temporally adjacent SIGMOD, 1997.

images are usually similar, solutions of previous images can be[12] Lee S, Hsu F. Spatial Reasoning and Similarity Retrieval of
used to guide search for subsequent ones. Queries can also be Images using 2D C-Strings Knowledge Representation.
extended to capture motion, e.g., find the set of images containing Pattern Recognition25(3), 305-318, 1992.

a movement similar to that of a given weather pattern. In this case[ls] Lee S, Yang M, Chen J. Signature File as a Spatial Filter
solutions are not found independently in each image, but they are ! ’
interrelated as specified by the motion constraints.

Gudivada V., Raghavan V. Design and evaluation of

for Iconic Image Databaselournal of Visual Languages
and Computing3, 373-397, 1992.
The increasing amount of visual content and the emergence of[14] Mamoulis N., Papadias D. Integration of Spatial Join

real-time multimedia applications (e.g., WWW visual search Algorithms for Processing Multiple Input&CM SIGMOD
engines) provide a significant motive for the development of fast 1999
retrieval techniques. Since other existing methods are either '

inapplicable for general queries, or not guaranteed to terminate[15] Minton S., Johnston M., Philips A., Laird P. Minimizing

within reasonable time (poss|b|y missing a |arge part of the Conflicts: A _HeuristiC Methodfor Cor.lstraint-SatisfaCtion
database), ih climbing algorthms constitute one of the most and Scheduling Problemértificial Intelligence, 58, 161-
important alternatives for configuration similarity processing. 205, 1992.
[16] Nabil M., Ngu A., Shepherd J. Picture Similarity Retrieval
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