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Abstract

Location-based applications require a well-formed rep-
resentation of spatial knowledge. Current location models
can be classified into symbolic or geometric models. The
former attempts to represent logical entities and their se-
mantics, but requires a large amount of manual effort for
describing them. On the other hand, the latter represents
the geometric coordinates but not the semantics.

In this paper, we present a semantic location model
which preserves topology and distance semantics to sup-
port location navigation but at the same time facilitates pro-
grammatic model construction and maintenance. The model
is based on a sound location theory. It is mainly composed
of two hierarchies: a location hierarchy and an exit hier-
archy, which can be derived from spatial maps, such as
floor plans, without manual intervention. Through a series
of model construction algorithms and a real example, we
show that our model is simple but powerful enough to cap-
ture spatial connectivity and hierarchical relationship to
support location-based applications. Furthermore, the lo-
cation and exit hierarchies are easy to understand by hu-
man users.

1. Introduction

Mobile and ubiquitous computing deals with locations,
sensors as well as objects of interest. Location-based ser-
vices (LBSs), need a well-formed representation of loca-
tion knowledge to cater for the need of location sensing,
browsing, navigation and querying. Furthermore, it should
be understandable and convenient to convey between loca-
tion sensors, database servers (in which spatial queries are
processed) and end users.

This paper presents a location model to meet these ob-
jectives. Moreover, it is the first semantic location model
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that supports programmatic model construction and main-
tenance. More specifically, all data in the model can be de-
rived from a digital map without manual intervention. We
believe this is the basic requirement for any location model
to be applicable in a large scale. The model is built on top
of the notion location and exit. The result of the model-
ing process is a location hierarchy and an exit hierarchy,
which completely preserve the topology and distance se-
mantics between locations.

In the paper, we build a sound theoretical foundation to
define the model and propose a series of algorithms to con-
struct the model from scratch. We illustrate the whole mod-
eling process through a real example and show how carto-
graphic information on locations and exits, typically found
in floor plans and maps, can be modeled into two hierar-
chies, namely location and exit hierarchies, from which spa-
tial semantics, such as the topology relationships and dis-
tance between locations, can be derived and stored. Fur-
thermore, this model supports end-user queries and oper-
ations, such as shortest path queries and nearest neighbor
search. Its sound theoretical background and fruitful seman-
tics make itself a feasible and flexible model for location-
based mobile and ubiquitous applications.

The rest of the paper is organized as follows: Section 2
reviews recent research progress on modeling locations. In
Section 3, we formalize our model by a series of definitions,
theorems and algorithms. A detailed modeling example is
shown in Section 4. Finally in Section 5, we conclude this
paper with the introduction of some promising applications
and future work.

2. Related Work

Location modeling, as well as spatial knowledge repre-
sentation, has attracted much attention in ubiquitous com-
puting community and yielded much paper and project
work in the literature.

Earlier location models attempt to differentiate the con-
cept of “geometric” and “symbolic” models [8]. Symbolic
locations and objects have their unique names (called “sym-
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bols”) to identify them among all entities. A partial ordering
of these symbols forms a location hierarchy, such as a tree or
a lattice. However, such models suffer from the huge cost of
manual construction and maintenance. In geometric mod-
els, on the other hand, locations and objects are represented
as points, areas or volumes within a reference coordinate
system. Different sensors and applications can thus inte-
grate their location information. In order to take the advan-
tage of both models, a semi-symbolic model that decouples
application representation (symbolic-based) from the sen-
sor representation (geometric-based) of locations was de-
veloped in [8] by Leonhardt.

Narayanan formalized and extended Leonhardt’s model
in [9]. The geometric part, which is composed of “raw lo-
cations”, resides at the lowest level. “Spatial realms” are
the types of locations and “states” are instances of these
“realms”. Realms and states represent the symbolic view
and are located on top of the “raw locations”. The latest
work in this category is conducted by Jiang and Steenkiste.
In [7], they proposed a hybrid location model in which
a location hierarchy represents the symbolic aspect of the
space. In each location, a coordinate system is defined to
capture the geometric attributes of locations that are con-
tained in this location. In this way, a computable loca-
tion identifier, called ALI , can be defined to designate
an unambiguous location area. Binary operators, such as
distance(ali, ali), contains(ali, ali) are defined as primi-
tives for upper level location services. However, in essence,
this model has a particular emphasis on geometry: after
ALI coordinate translation into a universal reference sys-
tem, these operators are just common geometric operators;
only the hierarchy is symbolic, however, it requires to be in-
put from outside the model.

Attempts from industry include “SLoP” (Spatial Loca-
tion Protocol) by the Internet Engineer Task Force (IETF)
[1]. It’s a purely descriptive model, which aims at unam-
biguously expressing location information in an interopera-
ble form in the Internet. It restricts the representation for-
mat of the location information, such as the coordinates,
identifier, timestamp and precision, in a well-formed XML
document or plain text. Brumitt and Shafer from Microsoft
adopted a symbolic model to represent a semantic space and
developed the “EasyLiving” project using SQLServer 2000.
They made use of 3 tables to represent “spaces” (i.e., loca-
tions), “containment” and “presence” (i.e., a location to ge-
ometric space mapping), respectively.

More recently, the research is diverted to specific model-
ing techniques for various augmented applications. Gessler
et al. visioned other semantics, besides geographic ones,
such as network, time, and user context, to be provided by
the location model for sophisticated 3G applications [4]. In
[2], Bauer et al. augmented the physical world to incor-
porate virtual objects and locations (e.g., a local-area net-

work). [10, 12, 11] show another trend of location model-
ing. They modeled the movement of mobile objects (e.g.,
users), i.e., the change of object location.

3. The Semantic Location Model

3.1. Application Scope of The Model

Not a single model can cater for the needs of all location-
aware ubiquitous applications, unless it’s as generic as the
ER-model. Our motivation is to develop a practical model
for a mobile user to browse, navigate and search physi-
cal locations in indoor or other constrained environments.
Such applications include: location-aware navigation guide
in museums and large-scale office buildings; discovering
the shortest path to the nearest facilities, etc. In this regard,
we limit ourselves to represent the physical world in a vis-
itor’s context. More specifically, we investigate how physi-
cal locations are connected to each other through paths and
what relationships they form.

3.2. Entities: Modeling the Physical Space

We adopt the ER-model as the underlying modeling in-
frastructure. In our model, entities are heterogeneously de-
fined as they are in the real world, such as buildings, rooms
and corridors. They can have arbitrary number and different
sets of attributes, e.g., temperature for rooms, zipcode and
population for street blocks. Nevertheless, among these at-
tributes, two mandatory attributes are id and location. The
id is required to uniquely identify the entity throughout the
physical space. The “location” attribute, which designates
the geographic information 1 of the entity, is defined as fol-
lows:

Definition 1 The location of an entity is a bounded geo-
graphic area with one or more “exits”, where an exit is a
boundary point from and into which the entity can be de-
parted and entered.

Essentially, an exit denotes a critical place where the lo-
cation state is changing from one entity to another. For ex-
ample, a room exit is the place where the state is changing
from “room” to “corridor”.

In this first step of the modeling process, entities are
identified from a digital map (a floor plan for an indoor
or a district plot for an outdoor environment): their geo-
graphic and non-geographic attributes are stored through
some graphical user interface (GUI). The identifying pro-
cess is either manually or programmatically executed by
some area-recognition algorithms in computer graphics.

1 As we concern the physical world, we require each entity to occupy a
certain geographic area.
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3.3. Semantics of Locations

In general, a location model should store not only the
geometric information of the locations, but also, more im-
portantly, the underlying semantics, i.e., meanings. These
meanings are application-specific. In the context of loca-
tion navigation, browse and search, we consider two funda-
mental semantics: the topological relation and distance be-
tween locations of entities.

Topological Semantics From a geometric point of view,
the topological relations between two locations are: disjoint,
contains, within and overlap, which are based on the 9-
intersection model [13]. However, in the context of location
navigation, the topological relations should reflect reacha-
bility semantics instead of intersection. Therefore, we base
our new definitions of the topological relations on path:

Definition 2 Exit x is directly reachable from exit y, de-
noted as y → x, iff there exists a physical access (e.g., a
passage for pedestrians or a road for automobiles) from y
to x which involves no other exits 2.

Definition 3 A path from location a to b is a sequence
of exits, x1, x2, ..., xs where x1 ∈ a, xs ∈ b and ∀i,
xi → xi+1. As each exit belongs to a location, the path
is also a sequence of locations 3.

Definition 4 A root exit is an exit of the entire modeling
space, i.e., it locates at the boundary of the space. A root
path of location p is a path from a root exit to an exit of p.

Based on the definition of root path, we define the new
topological relation under and directly under as follows:

Definition 5 Location a is under location b, denoted as
a\\b, iff any root path of a goes through b. a is directly un-
der b, denoted as a\b, iff a\\b and no other location c sat-
isfies a\\c and c\\b.

Intuitively, a\\b means that if we need to arrive a, b must
be first arrived at. Thus in some sense, b serves as a’s ascen-
dant.

Distance Semantics The semantics of distances differ in
various applications: a location-based commercial advertis-
ing application may adopt the Euclidean distance; a find-
ing nearest-restaurant LBS application may view distance
as the road-network distance; an automatic robot controller,

2 If there exists a physical access from y to x, then x is reachable from
y, denoted as y →→ x. Since we assume that the physical space is a
connected space, y →→ x is always true for any x, y.

3 In this paper, we only consider simple path, where no location ap-
pears more than once in the sequence. This requirement suits for most
of the navigation or search applications where a path with a repeti-
tive location in the sequence is considered as an inefficient path.

much differently, may see the distance as the energy con-
sumption along the path. Therefore, we generalize the defi-
nition of distance semantics between locations as the accu-
mulated distance along their path in terms of a valid met-
ric, which satisfies:

bounded: ∀ location o1, o2, distance(o1, o2) < ∞;
zero-reflexibility: ∀ location o, distance(o, o) = 0;
transitive inequality: ∀ location a, b, c, distance(a, b)

+ distance(b, c) ≥ distance(a, c).
It’s noteworthy that “symmetric” is not such a require-

ment, as in reality, distance(a, b) may not be equal to
distance(b, a), e.g., two bus terminals connected through
a one-way road.

3.4. Location Hierarchy: Modeling Topologi-
cal Relations

The goal of semantic location modeling is to provide a
meaningful representation of locations to the end-user and
programs for browse, navigation and search purpose. As hu-
man can easily understand hierarchy in symbolic location
models [8, 3], we model all the semantics (topological rela-
tions and distances) into hierarchy.

Any hierarchy requires a binary relation between ele-
ments, in the sequel, we show that the topological relation
“directly under” is appropriate as being such a relation.

First, we have the following lemma on the properties of
the “under” and “directly under” relation. Note that in order
to form a hierarchy, a virtual root location designating the
entire modeling space is always included.

Lemma 1 a\\b, is a partial order relation, i.e., it has the
following properties: reflexivity, antisymmetry and tran-
sitivity.

Proof: 1) ∀ location a, the root path of a must pass through
itself, i.e., a\\a;
2) if a\\b and b\\a, any a’s root path goes through b and
any b’s root path goes through a, the only way to avoid such
a paradox is that a = b;
3) if a\\b and b\\c, b is in a’s root path, on the other hand, c
is in b’s root path, therefore, c is in a’s root path, i.e., a\\c.
�

Lemma 2 The relation a\b has the properties of irreflex-
ivity and uniqueness, i.e., there is one and only one b sat-
isfies a\b for any a.

Proof:
1) Irreflexivity: obviously location a is not directly under it-
self because location sequence of any path doesn’t allow
repetition.
2) Uniqueness: we first prove at most one b exists. By con-
tradiction, if a\b1 and a\b2. There are at least two root
paths, namely, root →→ b1 →→ b2 →→ a and root →→
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b2 →→ b1 →→ a, otherwise, either a\b1 or a\b2 doesn’t
hold. However, from the first path, b2 can go directly to a
without going through b1. Thus in the second path, after
reaching b2, we can apply this knowledge to directly reach a
and get round b1. This shows that some a’s root path doesn’t
go through b1, which contradicts a\\b1. Secondly, if a has
no b satisfying a\b, root is set as the unique b. �

Based on these properties, we finally show in the follow-
ing proposition that the directly under relation forms a tree
hierarchy for all the locations.

Proposition 1 A graph of locations G = (V, E), where V
denotes all locations li and < li, lj >∈ E iff li\lj , is a
rooted tree.

Proof:
1) We first prove that any other vertex v connects with the
root. According to the uniqueness property in Lemma 2, we
iteratively find p1 that v\p1, p2 that p1\p2, etc. The pi se-
quence finally reaches the root node, otherwise, it contra-
dicts the uniqueness property because a certain location a
doesn’t have any b that satisfies a\b.
2) Secondly, we prove there is no loop in G. If there were,
the loop must be such sequence: p1\p2, p2\p3, ..., pn−1\pn,
pn\p1. Otherwise, there is at least one location pi in the
loop which has 2 or more than 2 p satisfying pi\p, which
contradicts the uniqueness property. However, even such se-
quence is impossible, because p1\p2, ..., pn−1\pn implies
p1\\pn (by the transitivity property in Lemma 1), combin-
ing the last one pn\p1, we derive pn = p1 by the antisym-
metry property in Lemma 1. This contradicts the assump-
tion that pi are unique locations in the loop.
From the above two aspects, G is a free tree. Since root is
the only location that doesn’t have any p satisfying root\p,
it is the root node of G, i.e., G is a rooted tree. �

Proposition 1 defines the location hierarchy in terms of
the “directly under” relation. By its definition, the hierar-
chy preserves topological semantics of reachability. From a
root point of view, a location can be reached only if its as-
cendants are reached first. Nevertheless, in practise, it’s not
straightforward to implement the “under” and “directly un-
der” relations by their definitions. In the next subsection,
we introduce the exit hierarchy, which captures the dis-
tance semantics and also provides a practical and efficient
way of computing the location hierarchy.

3.5. Exit Hierarchy: Modeling the Semantic Dis-
tances

Semantic distances are required for many location-based
services, such as nearest service discovery and shortest path
finding. The distance space is based on a predefined met-
ric. As described in Section 3.3, any distance metric can be

applied as long as it has the bounded, zero-reflexibility and
transitive inequality properties.

The semantic distance is based on the path between two
exits:

Definition 6 The “shortest distance” between location a’s
exit x and b’s exit y, denoted as dist(x, y), is the shortest
path distance from x to y in the certain distance metric.

From the above definition, if x and y are directly reach-
able, their distance value is a “primitive”, i.e., it cannot be
derived by this definition. Such primitive distances are re-
quired to be specified from outside the model, according
to the chosen metric. The model’s responsibility is to store
these primitives and derive other combinational distances
according to Definition 6. Formally, we define primitive dis-
tances as follows:

Definition 7 The distance between exit x and y is a primi-
tive distance iff y → x. 4

Intuitively, to preserve semantic distance we can model
all the exits as vertices of a graph and primitive distances as
the edge weights, however, it’s not a good solution. First, the
computation of shortest distance in a huge graph 5 is rather
costly: existing single-pair-shortest-path algorithms are all
memory based with time complexity O(n2). Secondly, a flat
graph doesn’t capture the essence of the exits. Imagine two
exits: a building’s exit and a room’s exit. They have defi-
nitely different significance in the involvement of distance
semantics: a building exit is probably a mandatory exit for
any path from outside the building to its inside while a room
exit only appears in a path to the room. A flat graph cannot
convey such information. On the contrary, an “exit hierar-
chy” in which a building exit locates at a higher level of the
hierarchy than a room exit, more clearly delivers such dif-
ference. Thirdly, as mentioned in Section 3.4, we need a
computable definition of “under” relation which is equiva-
lent to Definition 5 so that the location hierarchy can be pro-
grammatically constructed. As we will see later in this sub-
section, the location hierarchy can be derived from the exit
hierarchy.

Informally, the exit hierarchy is defined based on the “di-
rectly reachable” relation: all root exits are on top of the hi-
erarchy (level 0), any exit that is directly reachable from
level 0 is in level 1, and so on. Figure 1(a) illustrates such
an exit hierarchy. Level 0 vertices may denote building ex-
its, while level 1 and 2 vertices may denote floor and room
exits, respectively. It’s formal definition is as follows:

4 To clarify subsequent definitions and theorems, in the sequel, we as-
sume path is always bidirectional, i.e., “directly reachable” is a sym-
metric relation.

5 In reality, it’s very common that a modeling space has tens of thou-
sands of such exits, e.g., a university campus or a urban district.
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Definition 8 An exit hierarchy G = (V, E) is a levelled
undirected graph, where V denotes all exits, edge 〈vi, vj〉 ∈
E iff vi → vj . The level of each vertex v is defined as:
1) 0, if v is a root exit; or
2) minu u.level + 1, u ∈ V and < v, u >∈ E.

To build the exit hierarchy from scratch, first of all, we
construct the plain graph G which contains all exits as ver-
tices and their directly reachable relations as edges. Then
breadth-first traverse G from each of the root exits. Each
traversal will associate every vertex v with a level value in
the layer of which it’s traversed in BFS. v.level in Defini-
tion 8 is just the minimum level value among all traversals
for v. The detailed pseudo-code is omitted here due to space
limitation.

The exit hierarchy has the nice property:

Lemma 3 If edge < u, v >∈ G, the exit hierarchy, then
|u.level − v.level| ≤ 1.

Corollary 1 An location a’s all exits differ at most 1 in
their “level” values.

The exit hierarchy is a full representation of distance se-
mantics, however almost as complicated as a graph to per-
form shortest path search. In the sequel, we propose the
“compact exit hierarchy” (CEH) which is derived from an
exit hierarchy but has a tree skeleton. The basic idea is to
cluster vertices of the same level in the hierarchy. Before
we define the CEH, it’s necessary to define the criterion of
clustering.

Definition 9 Two exits x and y such that x.level = y.level,
are downward reachable iff there is a path from x to y
whose exits’ level values are all higher than x.level.

Lemma 4 The downward reachable relation is a equiva-
lence relation, i.e., it satisfies reflexive, symmetric and tran-
sitive.

Essentially, “downward reachable” indicates that the two
exits can reach each other without passing through higher
level exits. Lemma 4 shows that this binary relation forms a
partition of all exits. Therefore it’s set as the clustering cri-
terion for CEH.

Definition 10 A compact exit hierarchy (CEH) is a graph
Gc which is derived from the exit hierarchy G s.t.:
1) v ∈ Gc.V iff v is an equivalence class of G.V in terms
of “downward reachable”;
2) 〈u, v〉 ∈ Gc.E iff ∃x ∈ u, y ∈ v, s.t., 〈x, y〉 ∈ G.E.

Figure 1(b) illustrates the corresponding CEH of the exit
hierarchy in Figure 1(a). A vertex in Gc is actually a “su-
pernode” which contains several vertices of the same level
in G. Such supernode still keeps the “level” attribute. Intu-
itively, a CEH seems to have a tree-like shape. The follow-
ing proposition confirms this observation.

Proposition 2 The CEH Gc is a forest.

Proof: Equivalently, we prove that any vertex v ∈ Gc (ex-
cept level 0 vertices) with level lev has one and only one
connected level lev − 1 vertex, which is denoted as v’s par-
ent. Firstly, v must have at least one such parent. Other-
wise, no root path exists for any exits∈ v, which contra-
dicts that any exits can be reached from root exits. Sec-
ondly, if v has more than one such parent, which are de-
noted as u1, u2, .... ∀x ∈ u1 and ∀y ∈ u2, by definition,
x.level = y.level, and ∃s, t ∈ v such that, x → s and
t → y. Since s and t are downward reachable, by defini-
tion, x and y should also be downward reachable, because
there is a path x → s →→ t → y all of whose exit lev-
els are greater than x.level. However, this contradicts the
fact that x ∈ u1 and y ∈ u2, i.e., they are in two differ-
ent partitions. From the above two factors, Gc is a forest.
�

Corollary 2 The CEH Gc is a tree iff all root exits are
downward reachable.

We propose Algorithm 1 to extract the CEH from an exit
hierarchy in a bottom-up fashion. Basically, it tries to iden-
tify the equivalence partitions for vertices in the same level
of G.

Algorithm 1 Extract CEH From Exit Hierarchy
Input: G: the exit hierarchy

maxLevel: maxv∈G.V v.level
Output: Gc: CEH
Procedure:
1: create an empty graph M ;
2: M.V = vertices of maxLevel in G;
3: M.E = edges between vertices of maxLevel in G;
4: find connected components u1, u2, ..., un of M ;
5: insert u1, u2, ..., un as vertices into Gc;
6: for level from maxLevel − 1 down to 0 do
7: create an empty graph M ;
8: M.V = vertices of level in G ∪ vertices of level + 1

in Gc;
9: M.E = edges between vertices of level in G ∪ edges

between u, a level vertex in G and p, a level+1 ver-
tex in Gc if ∃v ∈ p, 〈u, v〉 ∈ G.E;

10: find connected components u1, u2, ... of M ;
11: remove vertices of level in G from u1, u2, ...;
12: insert u1, u2, ... as vertices into Gc;

A CEH captures the same exit hierarchy in a simplified
way, so it’s suitable for visualization to end-users. Further-
more, as it’s essentially a tree structure, shortest paths can
be more efficiently found. To achieve this, the exit edge 6

6 There are two types of edges in Gc, as illustrated in Figure 1(b),
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level 0: root exits

level 1

level 2

directly reachable

(a) Exit Hierarchy

vertex in CEH

tree edge

exit edge

(b) Compact Exit Hierarchy

Figure 1. Sketches of Exit Hierarchy

weights in the CEH Gc requires to be defined, based on
their edge weights in G.

Definition 11 ∀x, y ∈ G.V , , weight(x,y) and path(x,y) can
be defined in Gc iff:
1) x, y ∈ v, v ∈ Gc.V ; or
2) x ∈ u, y ∈ v, and u is the parent of v in Gc or vice versa.
where weight(x,y) = shortest distance from x to y in G,
path(x,y) = shortest path from x to y in G.

In other words, exit edges are defined for those exits that
are in the same equivalence partition or in two partitions that
have parent-child relationship in Gc. The edge weights are
derived from G by finding the shortest path distances be-
tween these exits. Such a process is not costly, because all
these exits are located in the vicinity of each other.

Given a CEH Gc with all edge weights set as Defini-
tion 11, finding the shortest path from any exit x to exit y in
G is much simplified, due to the following proposition.

Proposition 3 For any two exits x, y ∈ G, assume x ∈
u, y ∈ v, where u, v ∈ Gc.V . u, S1, S2, ..., Sn, v is the tree
path from u to v in Gc. Then the shortest path from x to y
in G can be represented by path(x, s1) ∪ path(s1, s2) ∪
... ∪ path(sn, y), where si ∈ Si, ∀1 ≤ i ≤ n. And
the shortest distance is weight(x, s1) + weight(sn, y) +
∑n−1

i=1 weight(si, si+1).

Proof:
1) Firstly, the proof needs the following lemma:

Lemma 5 For any Si, there is at least one si ∈ Si for any
path between x and y in G.

Proof Sketch: Otherwise, there must be edges between ver-
tices in G whose levels differ more than 1, which is prohib-
ited by Lemma 3. �

This lemma says the tree path in Gc forms the skeleton
of the actual path in G.

namely, tree edges (bold lines) which link two vertices in Gc and exit
edges (dotted lines) which link two exits.

vertex in CEH

1

3 4

2

x

ys1

s2

t

u

v
S1

S2

Figure 2. Find the shortest path in G in the help
of Gc

2) Secondly, no vertex in G that doesn’t belong to
u, S1, S2, ..., Sn or v should be excluded in the short-
est path, otherwise removing it can decrease the path
distance.

3) Thirdly, only one si is needed in G for Si

in Gc. Otherwise, suppose si, s
′
i ∈ Si, the path is

... ∪ path(si−1, si) ∪ path(si, s
′
i) ∪ path(s′i, si+1) ∪ ....

However, since weight(si−1, si) + weight(si, s
′
i) ≤

weight(si−1, s
′
i) (triangular inequality), removing si in the

path can decrease the path distance.
The proposition is proved by the above 3 arguments. �.
Proposition 3 essentially tells us how to find the short-

est path between exit x and y efficiently, given the CEH
Gc. Figure 2 illustrates such a process. First, the two ver-
tices u, v in Gc that contain x, y respectively are identi-
fied. Secondly, the tree path u, S1, S2, ..., Sn, v is located
in Gc (the bold lines in Figure 2). In the third step, vari-
ous combinations of si ∈ Si for all i are considered and
the shortest path is retrieved. For this example, the short-
est path is path(x, s1) ∪ path(s1, s2) ∪ path(s2, y). Since
path(x, s1) = x → s1, path(s1, s2) = s1 → t → s2

and path(s2, y) = s2 → y, the actual shortest path is
x → s1 → t → s2 → y.

To further enhance the performance in the third step, a
dynamic programming approach can be applied. Let d(x, y)
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denote the shortest distance from x to y in G, w(a, b) denote
the exit edge weight from a to b in Gc, and si,j denote the
jth exit in Si of Gc. We have the following recursive for-
mula for the DP algorithm:

d(x, y) = min
j

d(x, sn,j) + w(sn,j , y) (1)

d(x, si,j) = min
k

[d(x, si−1,k) + w(si−1,k, si,j)] (2)

d(x, s1,j) = w(x, s1,j) (3)

The complete pseudo-code for the shortest path search is
illustrated in Algorithm 2.

Algorithm 2 Find the shortest path in G

Input: G, Gc: the exit hierarchy and its CEH
x, y: the source and destination exit

Procedure:
1: identify u, v as the two vertices in Gc containing x, y;
2: locate the tree path u, S1, S2, ..., Sn, v in Gc;
3: build dynamic programming algorithm according to

Equation 1,2,3 to find the shortest path sequence
s1, s2, ..., sn,;

4: the exact shortest path from x to y is path(x, s1) ∪
path(s1, s2) ∪ ... ∪ path(sn, y)

Implementing “Under” Relation Given the exit hierarchy
G and CEH Gc, the “under” relation between location a
and b can be efficiently implemented. Algorithm 3 shows
the pseudo-code. Based on Lemma 5, the idea behind is to
first locate the root tree path of a in Gc, and then check
whether deleting b’s exits and associated edges in G will
disconnect this tree path in Gc. If so, a is under b; other-
wise, it is not.

The algorithm requires to locate b’s exits in a tree path
in Gc. Corollary 1 guarantees that they appear in at most
two consecutive vertices in the tree path, i.e., j is at most
i + 1. Therefore, the intermediate graph M in this algo-
rithm is fairly small and connectivity is efficient to check. In
this way, we argue that the exit hierarchy and its CEH pro-
vides an efficient implementation of the “under” relation for
the location hierarchy.

3.6. The Geometric-Symbolic Model

Similar to the one proposed in [8], our location model is
a combination of geometric and symbolic one. The two hi-
erarchies, location hierarchy and exit hierarchy are the sym-
bolic views, while the geometric information is maintained
as the attributes of locations and exits. Nevertheless, the ma-
jor difference between ours and former models lies in that
in our model, the symbolic hierarchies are constructed in
terms of the geometric attributes. Location semantics is re-
tained automatically without manual inference, through the

Algorithm 3 Check the Under Relation between two loca-
tions
Input: G, Gc: the exit hierarchy and its CEH Gc

a, b: location a and b
Output: under: boolean value denoting if a is under b
Procedure:
1: under = true;
2: for each exit x in a do
3: identify u ∈ Gc.V s.t., x ∈ u;
4: locate the root tree path root, s1, s2, ..., sn, u in Gc;
5: locate b’s exits in this tree path;
6: if they don’t exist in this tree path then
7: under = false;
8: else if they exist in si, ..., sj of the tree path then
9: build empty graph M ;

10: M.V are exits in si, ..., sj of Gc;
11: M.E are edges between M.V in G;
12: insert two special vertices “i-1”,“j+1” represent-

ing si−1, sj+1 respectively;
13: insert edges between “i-1” and those vertices in si;
14: insert edges between “j+1” and those vertices in

sj ;
15: remove vertices that are b’s exits and associated

edges;
16: if “i-1” and “j+1” are still connected in M then
17: under = false;
18: return under;

well definition of the topological relations and semantic dis-
tance. Once the model is built, high-level location naviga-
tion, browsing and search are conducted without referring
to the geometric attributes underneath.

4. A Complete Example: Modeling an Indoor
Office Area

In this section, we illustrate the whole modeling process
for a specific physical area. It is a portion of the Computer
Science laboratory area on 4th floor of the academic build-
ing at Hong Kong University of Science and Technology.
Figure 3 depicts the floor plan of the modeling area.

4.1. Step 1: Identifying Locations and Exits

First of all, we need to identify all entities, i.e., locations,
together with their associated exits, that are of interest to the
application. This step can either be processed manually or
programmatically. A program that applies computer graph-
ics techniques can recognize rooms, exits and the corridors
in Figure 3. Further criteria for specific applications, e.g.,
corridors should be at least 30 meters long, can be accom-
panied by customizing the program.
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Figure 3. Floor Plan of CS Laboratory Area

In this example, the following geographic areas are iden-
tified as entities: Room 42xx (totally 9 rooms), lift, cable
room, toilet and corridor 1 and 2. And all the doors in Fig-
ure 3 are identified as exits.

4.2. Step 2: Construct Exit Hierarchy

In the spirit of Definition 8 and Algorithm 1, we build
the exit hierarchy as illustrated in Figure 4. Exit p is cho-
sen as the root exit, because it represents a lift exit, which is
the only way of leaving the modeling space. In Figure 4(a),
to enhance legibility, edges between c, b, r, q, h, between
f, e, a, g, d and between j, l, m, n, o, i are not depicted. For
the same reason, exit edges in the same vertex in Gc are also
omitted, i.e., only tree edges are depicted in Figure 4(b).
Exit edges are only required to represent distance seman-
tics, e.g., shortest paths, which is described in step 4.

4.3. Step 3: Construct Location Hierarchy

Given the exit hierarchy in step 2, we can programmati-
cally build the location hierarchy by its definition in Propo-
sition 1 and Algorithm 3.

The resultant location hierarchy is illustrated in Fig-
ure 5(a). As the lift contains the root exit, it’s the root of the
entire modeling space. From the figure, all laboratory rooms
except 4206 have been categorized into two groups: those
under Corridor 1 and 2. Room 4206, on the other hand, al-
though its geographic area is adjacent to the other labora-
tory rooms, it’s a location directly under root, because one
of its two exits b is a level 1 exit in Figure 4(a). In real-
ity, this laboratory belongs to the department of Chemistry,
which confirms that our model captures more accurate topo-
logical semantics than simple geometric models.

4.4. Step 4: Retrieving Primitive Distances

In this step, primitive semantic distances, i.e., the dis-
tance between two “directly reachable” exits need to be re-
trieved and stored in our model for further distance-related
queries, e.g., shortest path or spatial navigation. Figure 5(b)
depicts such primitive distances. In real implementations,
these distances are the edge weights in the exit hierarchy G.
The exit edge weights in Gc are directly derived from them
by Definition 11.

4.5. Incorporate Virtual Locations

In many LBS applications, virtual entities, which are
the abstraction of low-level physical entities, are of inter-
est. Their locations are often the aggregation of low-level
physical entities’ geographic areas. For example, in Fig-
ure 3, Zone 1 and Zone 2 are such locations. Zone 1 con-
tains Rm4206, 4208, 4211, 4212 and corridor 1, while Zone
2 contains Rm4201, 4202, 4203, 4204, 4205 and corridor 2.
We see in below, how these two virtual locations can be in-
corporated into our existing location hierarchy.

By definition, Zone 1 have b, c, d as its exits. But since
these exits belong to the virtual location, they are classi-
fied as virtual exits and denoted distinguishingly as b′, c′, d′.
We imagine these exits locating almost at the same place as
the corresponding physical exits b, c, d, but a bit more ex-
terior. Therefore, any root path to b must go through b′,
so are c (with c′) and d (with d′). In this sense, by Defi-
nition 5, Zone 1 becomes the parent of Rm4206 and cor-
ridor 1, which is further the parent of Rm4208, 4211 and
4212. This integration coincides with human’s cognition: in
the location hierarchy, a virtual location should be the as-
cendant of all physical locations it contains. In this way, we
argue that our semantic location model can seamless sup-
port virtual locations, which cater for the needs of location
abstraction and multi-resolution in many LBS applications.

5. Conclusion and Future Work

In this paper, we proposed a semantic location model for
location-based applications, especially those in the realm of
location navigation and browsing. Both topological and dis-
tance semantics are formally defined, derived and stored in
this model. The modeling result is mainly composed of two
hierarchies: the location hierarchy and exit hierarchy. We
founded a sound theoretical background and developed a se-
ries of algorithms to generate these hierarchies from scratch,
given a digital map representation of the modeling space.

We consider our model applicable to large scale location-
based applications. To name a few of them, it’s desirable to
introduce semantic nearest neighbor search and location-
aware navigation. The former is to find the nearest facil-
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ity or service from a mobile user according to the actual
physical path distance, instead of Euclidean distance. In our
previous work [6], we proposed an index-based efficient
searching algorithm to execute such semantic nearest neigh-
bor queries, based on the exit graph G and its CEH Gc.
The latter is to improve the experience of location visual-
ization for hand-held device users. Due to their limited dis-
play screens, it’s desirable to visualize only a necessary set
of locations (and exits) in user’s context. Our location and
exit hierarchy are helpful to determine such a set, for exam-
ple, a set which comprises the current location, its siblings,
children and parent in the location hierarchy. Such a con-
cise display of location information renders the user an un-
ambiguous and clear understanding of his current location
context.

To fully represent and reason spatial knowledge, a se-
mantic location model is just the beginning. As our future
work, we are to develop a complete set of querying, manip-
ulating and reasoning operations and expressions which ad-
dress both the geometric and semantic properties of a spa-
tial entity. Hopefully, this will finally lead to a general lan-
guage which defines, manipulates, queries and reasons lo-

cations.
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