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Abstract—The growing commercial interest in indoor location-
based services (ILBS) has spurred recent development of many
indoor positioning techniques. Due to the absence of global posi-
tioning system (GPS) signal, many other signals have been pro-
posed for indoor usage. Among them, Wi-Fi (802.11) emerges as a
promising one due to the pervasive deployment of wireless LANs
(WLANS). In particular, Wi-Fi fingerprinting has been attracting
much attention recently because it does not require line-of-sight
measurement of access points (APs) and achieves high applicabil-
ity in complex indoor environment. This survey overviews recent
advances on two major areas of Wi-Fi fingerprint localization:
advanced localization techniques and efficient system deployment.
Regarding advanced techniques to localize users, we present how
to make use of temporal or spatial signal patterns, user collabora-
tion, and motion sensors. Regarding efficient system deployment,
we discuss recent advances on reducing offline labor-intensive
survey, adapting to fingerprint changes, calibrating heterogeneous
devices for signal collection, and achieving energy efficiency for
smartphones. We study and compare the approaches through our
deployment experiences, and discuss some future directions.

Index Terms—Indoor localization, Wi-Fi fingerprinting, local-
ization techniques, system deployment, recent progresses and
comparisons.

I. INTRODUCTION

NDOOR location-based service (ILBS) has attracted much

attention in recent years due to its social and commercial
values, with market value predicted to worth US$10 billion by
2020 [1]. Indoor environment is often complex, characterized
by non-line-of-sight (NLoS) of reference objects, presence of
obstacles, signal fluctuation or noise, environmental changes,
etc. Despite such complex environment, high localization ac-
curacy (within meter range) is still expected in order to offer
satisfactory ILBS.

As GPS signal cannot penetrate well in indoor environment,
various other signals have been investigated for localization
purpose. Such signals include Wi-Fi [2], Bluetooth [3], [4], FM
radio [5], [6], radio-frequency identification (RFID) [7]-[10],
ultrasound or sound [11], [12], light [13], [14], magnetic field
[15], [16], etc. Among all these, the use of Wi-Fi signal has
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attracted continuous attention in both academia [17], [18] and
industries [19], [20] because of pervasive penetration of wire-
less LANs (WLANSs) and Wi-Fi enabled mobile devices. The
deploymof Wi-Fi positioning systems is hence cost-effective
without the need of extra infrastructure investment.

Traditional outdoor localization relies on the trilateration
and triangulation [21], [22], which requires line-of-sight (LoS)
measurement. Such schemes do not work well indoors with
obstacles and room partitions. Without assuming LoS, Wi-Fi
fingerprinting, a process of signal collection and association
with indoor locations, has become a promising approach [18],
[23]-{25]. In the scheme, a position is characterized by its de-
tected signal patterns (e.g., a vector of RSSIs [2] from different
Wi-Fi APs) [26]. Thus, without knowing exact AP locations,
fingerprinting requires neither distance nor angle measurement,
leading to its high feasibility in indoor deployment.

Wi-Fi fingerprinting is usually conducted in two phases: an
offline phase (survey) followed by an online phase (query) [22].
In Fig. 1(a), we show its basic operation. In the offline phase,
a site survey is conducted to collect the vectors of received
signal strength indicator (RSSI) of all the detected Wi-Fi signals
from different access points (APs) at many reference points
(RPs) of known locations. Hence, each RP is represented by
its fingerprint. All the RSSI vectors form the fingerprints of the
site and are stored at a database for online query.

In the online (query) phase, a user (or target) samples or
measures an RSSI vector (like the signals in Fig. 1(b)) at his/her
position and reports it to the server.! Using some similarity
metric in the signal space (such as the Euclidean distance [2]),
the server compares the received target vector with the stored
fingerprints. The target position is estimated based on the most
similar “neighbors”, the set of RPs whose fingerprints closely
match the target’s RSSI.

Wireless technology used for indoor positioning has been
reviewed in [27]-[34]. While these works are impressive, few
have focused on Wi-Fi fingerprint-based positioning system.
Furthermore, we have witnessed in recent years significant
advances in Wi-Fi localization techniques [18], [20], [35]-{39]
and its efficient deployment [40]-[43], which have not yet been
properly reviewed. The objective of this survey is to provide a
timely and comprehensive overview and comparison on these
recent approaches, so that readers may be educated in this fast
growing area. Besides discussing the strengths and weaknesses
of various state-of-the-art approaches, we also discuss our trials
and experience in deploying indoor positioning.

n this paper, we use “user”, “target” and “mobile device” interchangeably.
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Fig. 1. (a) Basic system flow and (b) site map in a Wi-Fi indoor localization
system. ([—50, —63, —68] in (b) represents signal levels in dBm from three
detected APs).

We first review advanced localization techniques to achieve
higher positioning accuracy. In particular, we discuss novel
algorithms and sensor collaboration in the following areas:

e Use of temporal and spatial signal patterns: Signal fluc-
tuation leads to location error [23]. In order to mitigate
the error, a recent approach is to make use of the correla-
tion between Wi-Fi signals and other observable measure
such as walking trajectory, indoor building structures and
AP locations. These form temporal and spatial signal
patterns to improve the localization accuracy [44], [45].

e Collaborative localization: In order to reduce the local-
ization error, we may utilize other sensors in mobile
phones such as sound [46] or Bluetooth [3] to obtain
the relative locations between neighboring users. This
serves as distance constraints in their location estimations
[47]. This is so-called collaborative localization, which
is shown to substantially improve Wi-Fi localization
accuracy [23].

e Motion-assisted localization: In contrast to device col-
laboration, the motion-assisted scheme relies on the in-
ertial sensors in a device and measures the walking

trajectory to fuse with Wi-Fi. The works in this area
mainly focus on how to improve path estimation using
inertial sensors to achieve higher accuracy [24], [38],
[48]-[50].

Besides advances in localization techniques, we review
recent practical approaches to efficiently deploy Wi-Fi
fingerprint-based positing systems. These approaches include
the following:

e Reducing site survey: Wi-Fi fingerprint collection and
maintenance are time-consuming and labor-intensive. As
Wi-Fi signals may change due to environmental change
(e.g., establishment or tear-down of partitions, introduc-
tion or removal of APs, etc.), another costly site survey
may be needed to keep the fingerprints in the database
up-to-date. We present some recent progresses in reduc-
ing site survey and online adaptation to signal/fingerprint
change.

e Calibrating heterogeneous mobile devices: The mobile
devices in the online measurement are likely to be dif-
ferent from those used in offline data collection. Thus,
if calibration between devices is not done properly, the
localization accuracy would be adversely affected. We
present emerging techniques to efficiently calibrate het-
erogeneous devices.

e Energy efficiency: Battery energy is a major concern for
mobile localization. While high accuracy and estimation
responsiveness may improve with fast Wi-Fi scanning
and intensive CPU processing, the energy consumption
may correspondingly increase. We review some light-
weight localization systems to conserve battery lifetime.

This paper is organized as follows. In Section II, we re-
view the advances in localization algorithms. We present in
Section III the schemes for efficient deployment of Wi-Fi
fingerprint-based systems. In each section, we compare the ap-
proaches qualitatively or quantitatively through our deployment
experiments. We conclude by briefly presenting some future
directions in Section I'V.

II. ADVANCED LOCALIZATION TECHNIQUES

In this section, we first introduce the basic principles for
fingerprint localization (Section II-A). Then we describe re-
cent advances on using spatial and temporal signal patterns
(Section II-B), collaborative localization (Section II-C), and
motion-assisted localization (Section II-D).

A. Basic Fingerprint Localization (Overview)

Traditional indoor localization algorithms [51] include deter-
ministic [2] and probabilistic methods [52], [53]. Deterministic
algorithms use a similarity metric to differentiate online signal
measurement and fingerprint data. Then the target is located at
the closest fingerprint location in signal space [20]. Euclidean
distance [54]-[56], cosine similarity [57] and Tanimato simi-
larity [58] have been implemented for signal comparison [31].
The major advantage of the deterministic methods is their
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ease of implementation. Traditional deterministic methods can
be easily implemented based on k nearest neighbors (k-NN)
and the computational complexity is often low. Some other
more advanced deterministic algorithms such as support vector
machine [59] and linear discriminant analysis [60] show better
localization accuracy with higher computational cost.
Probabilistic algorithms are based on statistical inference
between the target signal measurement and stored fingerprint
[61]. Using a training set, these algorithms find the target’s
location with the maximum likelihood. Horus in [52] estimates
the target location using a probabilistic model reflecting the
signal distribution in the site. Specifically, given a target signal
strength vector s = (sq,...,sr) and L APs, Horus finds the
target location x with the maximum posterior probability, i.e.,

argmsx [P(x|s)], 1)

where P(x|s) is the probability of the target at location x given
signals s. It can be further transformed into

L
arg m)?x [P(s|x)] = arg mxax [H P(s1|x):| , 2)

=1

where P(s;|x) (probability that signal s; appear given location x)
can be approximated by some parametric distributions includ-
ing Gaussian distribution.

Other probabilistic algorithms such as Bayesian network
[53], [62], expectation-maximization [63], Kullback-Leibler
divergence [64], Gaussian process [65] and conditional random
field [48] also achieve high accuracy through probabilistic
inference.

In probabilistic algorithms, each location estimation can be
indicated by a confidence interval [36]. They are also amend-
able to fuse different sensors such as motion [24], [66] and
sound [62]. For example, the location can be estimated by
maximizing the joint probability or likelihood with the sensor
measurements. However, these algorithms usually require some
probabilistic assumptions (such as Gaussian noise or proba-
bilistic independence [24]). Furthermore, training probabilistic
models [66] may be complicated, and require more datasets
than traditional deterministic algorithms.

Deterministic and probabilistic algorithms are important
building blocks for indoor localization. In the following, we
describe some advanced systems which are based on these
algorithms.

B. Exploiting Spatial and Temporal Signal Patterns

Traditional fingerprinting localization is usually based on the
RSS signal vectors [2]. Due to measurement noise (multi-path
effects [25]), the target may be mapped to a distant position
of similar signal vectors [23], [24], [70]. Higher accuracy can
be achieved if the location is estimated by jointly considering
temporal or spatial observations:

e Temporal patterns are the Wi-Fi signal sequence patterns
during walking in the indoor environment. Signal pat-
terns along the trajectory of the route walked can be used

to infer the locations. As compared with a single signal
vector at a fixed location, the pattern carries temporal
information which can be used to constrain and correct
the Wi-Fi fingerprint-based localization.

e Spatial patterns are related to the geographical distribu-
tion of signals beyond simply RSSI vector representation.
Temporal Wi-Fi patterns often require knowledge of user
motion (walking path or heading direction), which may
not be available or accurate in reality. The geographical
signal patterns can hence be used to constrain user loca-
tion. These patterns include RSSI order, signal landmarks
(AP locations) and signal coverage.

Table I shows the typical works using different patterns for
localization, which are introduced as follows.

Temporal patterns: Peak-based Wi-Fi Fingerprinting (PWF)
in [67] considers the peak in a sequence of signal values for
localization. The peak (with a predefined high signal value) of
the signal sequence [67] in the site indicates that a Wi-Fi AP is
close to the measurement point. Thus, strong signal measured
shows higher confidence than other weaker one to indicate the
target position. In order to find the peak, a sequence of Wi-Fi
data needs to be collected when the user is walking. The system
then detects the peak and also finds the corresponding location
in signal map. This algorithm provides accurate correction,
especially when the APs are installed in the ceilings of indoor
paths. However, the motion information of the user needs to be
known during measurement. Besides, if the user is moving too
fast, the peak of the measurement may not be correct due to the
scan missing of AP signals.

In noisy environment, considering a whole sequence of data
is more robust than a single peak value. Walkie-Markie [45]
considers a whole signal sequence for location classification.
Walkie-Markie first records the Wi-Fi RSSI vectors as patterns
in different corridors. As shown in Fig. 2, a walking user
along the corridor can detect the increase and decrease of
signal strength from a nearby AP. The sequence of RSSI data
can form the pattern for a given corridor. By matching the
user’s RSSI sequence during walking, Walkie-Markie knows
the location and map information of the target. Inspired by
Walkie-Markie, recent works like [71] investigate the temporal
patterns for signal and location mapping. Considering a whole
signal sequence is more robust to noise than only the peak in
the sequence.

However, the signal sequence is more suitable for narrow
corridor space rather than the indoor open space like airports or
metro station. Besides, the user motion information needs to be
considered in order to distinguish the incorrect signal sequences
due to random walking user.

Spatial patterns: Wi-Fi APs may be installed at specific
indoor positions like corridor corners or offices. Thus, we may
measure remarkable signal values limited to a specific area,
which can form the Wi-Fi “landmarks” and uniquely classify
the corresponding regions. Through some simple investigation
into the site, these landmarks can be discovered and stored
in database for online use. Inspired by such observations,
UnLoc [44] and MapCraft [48] use the unique measurement of
APs to correct the localization results. As shown in Fig. 3,



HE AND CHAN: Wi-Fi FINGERPRINT-BASED INDOOR POSITIONING: RECENT ADVANCES AND COMPARISONS

469

TABLE 1
DIFFERENT METHODS UTILIZING TEMPORAL AND SPATIAL PATTERNS
Additional
. . . Reported N
Signal Indoor Site Information Limitations
Category Schemes o R Mean
Patterns Availability for Location and Robustness
i . Accuracy
Estimation
RSSI peak . . . If the user is moving quickly, it
. Narrow path or corridor; Walking < 2min .
PWF [67] in a temporal . . . becomes difficult for accurate peak
dense AP deployment. direction. corridors. . . o
Temporal sequence. detection and location determination.
Patterns . . . . Work the best if users walk in
Walkie-Markie X Walking < 1.8 min o R
RSSI sequence. | Narrow path or corridor. . . . one direction in corridors for accurate
[45] direction. corridors. i
data collection.
L . . . Size of Wi-Fi landmarks cannot be too
Wi-Fi Narrow path or corridor; Walking < 2min .
UnLoc [44] . . large; work the best with dense land-
landmark. dense AP deployment. trajectory. corridors.
marks.
90% Granularity of using received signal
Order of Wi-Fi .. . .o order may not be very high; the RSSI
. HALLWAY [68] Room partitionings. N/A in finding .
Spatial RSSI values. order in the same room may be the
correct Tooms.
Patterns same.
Wi-Fi Signal Similar signal <6mi
m in
Coverage values form Large indoor open ind If Wi-Fi AP installations are co-located,
indoor open
Intersection signal sector; space; multiple APs N/A pd the overlapped region can be too large
space an
& Devision within sector need to be detected. P i and may not provide tight constraints.
corridors.
[57], [69] intersection.
Sequence of than the left estimation without sufficient landmark correction.
RSS Rl \Vi-Fi RSSI Similar to UnLoc, MapCraft leverages the signal landmarks to
Data . . . . .
constrain the location estimation. (Though works like UnLoc
. and MapCraft contain inertial sensors and motion information,
Positions Along . . . e -
the Corridor here we focus on their contributions in novel Wi-Fi signal
patterns here.) As the Wi-Fi APs are not densely installed in
some indoor buildings, landmark corrections may not always
be available. Therefore, they also need other signal landmarks
y like magnetic field for further location correction [72], which
k Pathway increases the complexity of system deployment.
The above approaches consider using APs individually as

Fig. 2. Illustration of temporal signal patterns in Walkie-Markie system [45].
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Trajectory
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Fig. 3. Illustration of using Wi-Fi as landmarks [44]. The target measures the
'Wi-Fi landmark (shaded area) and then corrects his/her trajectory from the left
to the right one.

given an online measurement of these landmark APs (shaded
region on the right), the user’s trajectory can be rectified to the
correct area on the right. Thus, we can achieve higher accuracy

landmarks, which in deployment may not be robust to mea-
surement errors. If the power of AP is set to be strong, then
the coverage of AP may form a large landmark. In such a case,
jointly considering multiple APs can be a more reliable choice.
HALLWAY in [68] observes that the order of signal strength
from different APs is location-dependent. For example, denote
signal strength for AP 1, 2 and 3 as s1, 52 and s3, respectively.
In room A, an order of s; < s < 53 is observed while in
room B, we may find s1 < s3 < sp. HALLWAY utilizes such
a difference to classify the rooms. Using RSS orders can reduce
the influence of device dependency and small signal fluctuation.
Therefore, it can provide relatively reliable indication for a
room or office region.

One possible limitation is that in the signal order within
a small room may be the same. Therefore, the granularity
of the location estimation may be limited to room level. In
deployment, the fingerprint needs to be carefully preprocessed
to extract their strong difference as the location patterns.

In order to provide tighter constraints, signal coverage of
different APs needs to be jointly considered. For a given AP, the
signal strength at a certain distance from AP is usually similar
and forms some geographical constraints over the target. Based
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TABLE II
TYPICAL SCHEMES OF COLLABORATIVE LOCALIZATION

Robustness
Collaborative | Distance u User e e .
Category Scheme of Distance . Limitations
Sensors Accuracy Mobility
Measurement
Not for absolut itioning;
Wi-Fi Direct; _ Affected by . o1 for absolule postiioning
VC [78] Medium R Static distance measurement may not
Bluetooth RF multipath.
be very accurate.
Require accurate pair-wise
Distance distance measurement;
based PA [23] Sound High High Static rigid network graph may suffer
from measurement error;
require synchronization.
. . . Peer synchronizati ired;
Centaur [62] Sound High High Static ee.r syne romza. o re.qu1re
designed for static devices.
. Affected by Within a small Users need to be near to
ZCL [76] ZigBee Low . group (static or each other; cannot accommo-
RF multipath. . .
moving together) | date randomly moving users.
Proximity Thresholds of encounter de-
based tecti suffer fi ise;
e . Wi-Fi Direct; Affected by Pedestrian; cOLON may SUTICr ot notse
Social-Loc [36] Low R . . encounter and non-encounter
Bluetooth RF multipath. high mobility. . . .
information using RSSI may
not be accurate.

on such observation, the work in [57] constrains the target
estimation using the intersection of signal coverage area from
several APs. For each detected AP, it first divides its coverage
area according to discrete signal levels. Similarly, using a
probabilistic approach, the work in [69] also considers using the
signal coverage to reduce the search scope of target location.
In online stage, the target is first mapped to the intersection
of several sectors. Then within the constraint, the system finds
the reference points with the most similar signal patterns as
location estimation through deterministic or probabilistic map-
ping. In this way, the constraints over the target rule out the
dispersed nearest neighbors in signal space with high similarity.
Similar region intersection or division scheme has also been
reported in some sensor network localization systems like [73]
and [74].

If the APs are co-located within a small region, the inter-
section of the APs may become too large and cannot constrain
the final estimation sufficiently. Therefore, virtual AP filtering
[75] (filtering those MAC addresses generated from the same
physical Wi-Fi router) can be conducted before finding the
signal coverage and final location decision.

To summarize, temporal and spatial patterns are new to Wi-Fi
indoor localization. They help discriminate the locations, and
significantly improve the positioning accuracy. However, these
signal patterns usually work the best under certain indoor sites,
either for narrow corridors [44], [67] or spacious area with
good AP coverage [69]. They may not be general enough to
apply in different indoor sites. Therefore, according to our
deployment experience, a system designer may need to jointly
consider the properties of the deployment sites, and select
suitable algorithms for practical use. Moreover, a fine-grained
site survey and data preprocessing may be needed in order to
mine and utilize these patterns. Thus, we also need to balance
between efforts in data analysis and improvement in Wi-Fi
location estimation.

C. Collaborative Localization Among Mobiles

Most of the current works on Wi-Fi fingerprint localization
are based on independent estimation, i.e., the system locates
each target independently [2] without considering the relative
locations of the others. Due to independent estimation errors,
two physically close targets may have markedly different es-
timated locations [23]. Thus, if the information of relative
positions can be obtained and utilized, the estimation results
can be improved from individual localization.

Recent works have begun to investigate the possibilities of
collaborative localization. Its emergence basically arises from
the following trends in mobile computing:

* Location context of social interaction: In indoor envi-
ronment, people may gather together in typical social
scenarios [76]. In museums, people often browse through
the exhibits with their family and friends. The social
interaction among them therefore shows the location
pattern. Based on such a context, we can even derive
more interesting application with indoor LBS [77].

* Pervasive mobile devices and advanced sensors: Nowa-
days smart phones have implemented many sensing tech-
niques. A mobile device can easily discover others in
its neighborhood based on various established protocols
(such as Bluetooth [3], Wi-Fi direct [78], Wi-Fi Aware
[79], Near Field Communication (NFC) [36] and sound
wave [23]). Therefore, the emerging smartphones pro-
vide the possibilities of sensing the existence of neigh-
boring users.

In Table II, we show several typical works on collaborative
localization. Based on the accuracy of mutual distance mea-
surement, we describe the related works in the following two
categories: distance-based and proximity-based algorithms:

e Distance-based: There have been works focusing on
using advanced sensors [46], [80] on smartphones to
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Fig. 4. Tlustration of indoor peer-assisted localization [23]. Users simultane-
ously measure the Wi-Fi signals and their pairwise distances.

measure distances between users. These pairwise dis-
tances can be utilized to form the network graph (topol-
ogy) of different users [23]. Then we can directly
constrain the estimation of all the involved users.

e Proximity-based: Due to the diversity of dynamic human
behaviors and social interaction, accurate pairwise dis-
tance between users may not be always available. In or-
der to relax the user mobility requirement and address the
noisy distance measurement, some recent works focus
on leveraging the proximity [76] and encounter between
users [36]. As proximity information may not be very
accurate, probabilistic inference are often implemented
for robust estimation.

Distance-based Scheme: Virtual Compass (VC) [78] pro-
poses a novel algorithm to locate neighborhood users. VC aims
at relatively locating the friends nearby based on Wi-Fi direct
and Bluetooth. VC is based on Vivaldi algorithm [81] to find the
coordinates such that all the linked users’ locations satisfy their
pairwise distance. In particular, all the users form a network,
and Vivaldi algorithm constructs the network topology given
pairwise measured distances. To mitigate the error in radio-
based distance measurement, VC fuses Bluetooth and Wi-Fi
direct together. By modeling the confidence interval of both
sensors, VC achieves better distance accuracy than using a
single sensor. However, using RF signals for distance measure-
ment is still vulnerable to the signal noises. VC has not yet been
specifically built for absolute target positioning. It provides the
potential of further adaptation based on Wi-Fi localization or
GPS fixes to estimate user absolute locations.

Instead of using radio signals, sound-based scheme [46], [80]
provides new opportunities in accurate distance measurement
between smartphones. Two typical works using sound are the
peer-assisted (PA) localization [23] and Centaur [62].

PA utilizes the technique in Beep [46] for distance measure-
ment between smartphones. As shown in Fig. 4, PA requires
peer users to collect mutual distances as well as Wi-Fi RSSIs.
Wi-Fi signals of all users are first fed in traditional fingerprint

localization for initial location estimations. Then pairwise dis-
tance information helps transform the above positions into a
network graph. By rotating and translating the network graph,
PA finds the locations of all users which minimizes the over-
all Euclidean distances from stored Wi-Fi signal map. More
specifically, suppose M users are involved in PA localization.
Let r, = (71,72, ..., r.) be the Wi-Fi fingerprint at reference
pointn (1 < n < N) from L APs. The objective of rotation and
translation of PA is to jointly find the reference point set {n}
such that the overall Euclidean distance between target signals
and fingerprints is minimized, i.e.,

M
argmin | 3 (6 = $n) (6 = )" |- 3)

m=1

The highly accurate distance measurement ensures the high
accuracy in PA localization. However, as the graph shape is
rigid, if there are distance measurement errors, the location
estimation will be significantly influenced. Moreover, pairwise
measurements are needed in building a complete graph. There-
fore, the synchronization in PA becomes complicated and may
be vulnerable to measurement errors.

Different from PA, Centaur [62] implements Bayesian net-
work for collaborative localization. Centaur does not rely on a
rigid graph, which is vulnerable to large distance measurement
error. Instead, Centaur finds the locations with the maximum
likelihood for all involved devices, and shows more robustness
under noisy environment compared with PA. However, the
prototype of Centaur focuses on static device localization while
the dynamic positioning of peer users has not been explored.
For PA and Centaur, sound estimation based on commercial
smartphones is novel and achieves high accuracy for distance
measurement. Despite the advances, in indoor environment
such sound may be audible for some users and may become a
kind of noise [82]. In the future development, such a scheme
using the smartphone sound module may need to consider
improving its applicability under crowded indoor environment.

Proximity-based scheme: Some recent works [83], [84] have
utilized the users’ temporary stop to measure the accurate
distance between each other. To improve the robustness in
practical deployment, we still need to consider the movement of
the users and imperfection in mutual distance measurement in
real application. Proximity, rather than accurate distance values,
can be utilized for dynamic measurement.

Proximity information can be obtained from Wi-Fi AP list
(or MAC addresses) [85] and Bluetooth [3] to infer the prox-
imity between users or targets [86]. A more fine-grained sys-
tem in [76] proposes ZigBee-based collaborative localization
(ZCL) for absolute location estimation under scenarios like mu-
seum environment. ZCL first implements ZigBee radio as the
neighbor-detection sensor. Then it computes a confidence score
for each target within the neighborhood, which is according to
the combination of motion model and Wi-Fi location estima-
tion. Based on the difference between the confidence scores,
the system jointly corrects the neighboring estimations through
a proposed distributed algorithm. This scheme works like the
attraction (pairwise distance constraint) between magnetic in-
teraction, filtering the candidate locations with low confidence.
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Fig. 5. Illustration of indoor encounter-based localization. The encounter of
user A and B corrects their previous location estimations.

Although ZCL provides interesting application scenarios in
museums and exhibits, ZigBee used in the system may still
suffer from multipath and therefore the proximity information
may be incorrect. To address this issue, multiple samples and
averaging filter may be applied in ZCL with cost of longer
waiting time. Besides, ZCL works the best when the users are
within a group in a relatively small region (static or moving
in the same direction), which may not accommodate more
dynamic user behaviors.

If the users are walking around in the buildings, the useful
proximity information between users is often temporary. Lever-
aging the above interaction, Social-Loc [36] proposes utilizing
users’ “meeting” or “missing” for localization. A user may
come across another user, which is defined as “encounter”. If
he does not meet another specific user during the localization
process, such an event is defined as “non-encounter”. Social-
Loc utilizes these encounter and non-encounter events to coop-
eratively correct the localization errors.

The user locations are first initialized through traditional
Wi-Fi fingerprint-based localization [52]. Each user estimation
has multiple candidates (reference points), with different prior
probability. In Fig. 5, if two users encounter each other, their
estimated locations should have overlapping. Thus, the candi-
date location which does not satisfy encounter information of
two users would be filtered out. The location estimation will
be constrained to the place where user A and B just meet.
Similarly, if the user A and B have not encountered each other
in a candidate position, the confidence for that position in
final Wi-Fi estimation will decrease. Given the above posterior
probability, the final Wi-Fi location estimations can be updated
for all involved users in Social-Loc. In real deployment, the
thresholds for encounter and non-encounter detection may suf-
fer from signal noise. If misclassification of neighboring users
happens, the localization performance probably degrades.

To summarize, collaborative localization emerging in the
above works has shown large improvement in localization
accuracy. However, in practical deployment, several issues
need to be considered. Computational complexity is high for
collaborative localization due to the pairwise communication
[87] and synchronization [23]. User mobility also makes the
user collaboration challenging, as the relative positions of peer
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Fig. 6. Tllustration of fusing Wi-Fi and motion sensors for indoor localization.

users change frequently, especially in the airport or train station
[88]. During the social interaction, sensor collaboration may
also release the information of the device owners. Therefore,
to address the privacy issues, collaborative localization in the
future work requires designing a specific secured protocol for
location share [78], [89], [90].

D. Motion-Assisted Localization

Motion-assisted Wi-Fi localization is a classical hybrid tech-
nique for indoor localization. It has advanced quickly in the
recent years due to the pervasive application of motion sensors
on mobile devices. In this survey, we focus on the following
recent advances in motion-assisted localization:

e Advances in motion measurement: Precisely monitoring
the pedestrian’s walking behaviors is important for accu-
rate motion-assisted localization. The major challenge in
obtaining motion information is that the inertial sensors
in commercial smartphones often suffer from imperfect
calibration and noisy measurement. Step counting is
currently a major approach to capture the movement and
walking path of pedestrians [91]. Therefore, recent works
aim at improving walk detection, step counting and step
length measurement. Besides, how to adapt to different
users’ personal motion profiles is also challenging.

e Advanced and efficient fusion models: How to fuse the
motion and Wi-Fi is essential to the localization accuracy.
The model used in fusion needs to capture the correlation
(either temporal or spatial) between the measured sig-
nals. Besides, if the model is highly complicated, the high
computation expenses also affect the quality of location
estimation. Therefore, finding an accurate and efficient
fusion algorithm or model is recently an important trend
for motion-assisted Wi-Fi localization [24], [48].

Fig. 6 shows a typical system of motion-assisted localization.
Motion sensors measure the user walking distance (between
two sequential Wi-Fi measurements) and heading direction.
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Fig. 7. Readings from the smartphone accelerometer (HTC One X). Each red
dot corresponds to one step.

Combining the above information and Wi-Fi signal measure-
ment, a certain fusion algorithm in the system returns the user
with the location estimation.

Advances in motion measurement: With the accelerometers,
gyroscopes and magnetometers, the recent smartphones can
capture the walking direction, distance and gesture information.
These sensors are usually called microelectromechanical sys-
tems (MEMS). Accelerometers measure the 3D linear acceler-
ation (m/s?) or g-force (gravity or g) of the device. Gyroscopes
give the angular velocity (rad/s) and measure the orientation
in principle of angular momentum. Magnetometers provide the
strength and direction of magnetic fields [92]. With gyroscopes
and magnetometers, we can know the heading direction of the
user. Based on the sensors and signal filtering techniques, more
advanced motion detection can be conducted, such as device
rotation, step counting and gesture recognition.

To measure the walking distance of the user, pedometer (step
counter) is a suitable scheme for the pedestrian localization
[93]. In terms of getting the position offset, pedometer has
better performance than direct integration of acceleration since
the signal drift leads to large errors after double integration. As
shown in Fig. 7, we show the readings from accelerometers on
an HTC One X smartphone, where the signal patterns during
walking can be used for step inference. In recent works utilizing
the pedometer [93], researchers have focused on the following
three components:

— Walk detection: Walk detection first classifies the current
motion state of the target (such as using thresholds in
accelerometer readings or advanced learning algorithms
[93]). If a user is identified as “moving”, the step count-
ing starts to work.

— Step counting: Simple step detection can be based on
peak detection or zero crossing of acceleration readings
[94]. However, it may suffer from noisy sensor readings
or imperfect calibration. More advanced schemes like
[93], [95]-97] focus on finding repetitive step patterns
from sensors. It can be based on autocorrelation of step
patterns [96] or extracting the step frequency pattern
through Fast Fourier Transformation (FFT) [97].

— Stride length measurement: Through walk detection and
step counting, the mobile device can measure the walking

distance by multiplying the stride length with the step
counts. The stride length depends on the step frequency,
user height and other factors [98]. Some works utilize
Gaussian distribution to model the noise in step length
[99]. More advanced works implements some linear step
model [98], [100] to calibrate the relationship between
stride length and step frequency. Some other work [101]
models the relationship between step length and height
change of user waist during walking.

In real application, users may show heterogeneity in their
motion patterns, including their stride length, walking gesture,
step frequency and other information which affect the sensor
readings. Therefore, the motion sensors may still require spe-
cific calibration for different users in real deployment [93].
However, they either require offline calibration [38], [44] or
external infrastructures for distance estimation [102]. Some
recent works propose online calibration on step counter [96],
which measures the step length when the user is walking in
indoor corridors. With indoor map constraints, the system may
estimate the walking distance more accurately and learn the
stride length. More advanced works like [103], [104] calibrates
the step length through particle filter learning or expectation
maximization.

Most of the works above usually assume the mobile phone
is at a static position relative to the user body throughout the
movement. However, in reality, the relative position of the
smartphone changes and hence may influence the step counter
and heading direction accuracy. Therefore, some compensation
on rotation angle is needed to correct the drift, which is intro-
duced by relative change of device position from the user body
[105]. Another approach is to use wearable devices, which can
be attached to human body, and capture more accurate motion
information for localization [101], [106], [107].

Fusion problems, algorithms and model simplification:
Given motion measurement, how to conduct fusion is a chal-
lenging and interesting question. In Table III, we summarize
the corresponding approaches used in this section, which will
be further elaborated as follows.

Traditional fusion often focuses on problems of finding the
target location [38] and reduces the errors in wireless local-
ization [24]. Motion information in fusion filters the incorrect
positions returned from Wi-Fi localization, especially under
signal fluctuation or fingerprint ambiguity. Map information is
often available and may contribute to location filtering [99].

A more complicated problem, Wi-Fi-based Simultaneous
Localization and Mapping (SLAM) [108], focuses on simulta-
neously localizing the target and constructing the indoor maps.
To approach this, Wi-Fi-based SLAM [109] utilizes fusion
of Wi-Fi and motion measurement to jointly minimize the
location difference with the indoor structure and infer the map.
It has also been widely applied in robot localization application
scenarios without explicit map information [110].

Robot localization [111] has leveraged the motion informa-
tion to improve wireless localization. Some early approaches
like signal-strength-based SLAM [109] utilizes the Gaussian
process [65] to estimate the position of robots. However, robots
are different from human in motion patterns. It is more difficult
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TABLE III
RECENT APPROACHES FOR MOTION-ASSISTED WI1-FI LOCALIZATION
Localizati Moti Onli Reported
ocalization otion nline
Scheme . . . Robustness Mean Limitations
Algorithm Information Complexity
Accuracy
Step counts - . .
(aut ati Utilize map information to filter Crowd d sienal dat
. ) autocorrelation . . . rowdsourced signal data
Zee [99] Particle Filter High incorrect particles; robust under <2m K g
-based); K may carry noise.
. . . narrow corridors.
heading direction.
Utilize particle filter to fuse Work the best when different
Step counts different signal ic fi ignals (cell, GPS and Wi-Fi)
. . . ifferent signals; a generic frame- signals (cell, an i-Fi
XINS [120] | Particle Filter | (peak detection); High £ g . N/A £ . .
. . X work to accommodate different are available for location
heading direction. i . i . .
environment with different signals. fixing.
. . Step counts
Particle filter . . . .
Graph (peak detection); Simplify the indoor map .
. and graph . K . X . Large indoor open space
-Fusion . o heading direction; Medium model; high accuracy for narrow <2m . . .
discretization . . . is hard to be discretized.
[38] X online stride corridors.
of indoor map . .
length estimation.
. Require independence assumption Training HMM requires
HMM Hidden Markov | Step counts; . . ..
. . . . Low between Wi-Fi signals and motion; <6m large training data set;
Fusion [66] Model heading direction. X . K R .
influenced by signal noise. expensive training process.
Step counts
Maximum (autocorrelation L .
. Require independence assumption .
Moloc likelihood -based); . . Need to collect user motion
. . Low between Wi-Fi signals and motion; <1lm . L
[24] of fingerprint crowdsourced . . K profile for later localization.
. . influenced by signal noise.
and motion motion profile;
heading direction.
. Joint consideration of motion and .
MapCraft Conditional Step counts; . Rely on large training sets;
. o Low Wi-Fi signals; no dependence <2m . o
[48] random field heading direction. . . complicated training.
assumption needed; high robustness.

to associate the sensor data with the human motion information
due to the higher randomness in pedestrian motion. Based

on the idea of SLAM [112], some recent works like Wi-Fi

GraphSLAM [113] and WiSLAM [114] propose fusing
Wi-Fi and user motion for pedestrian indoor localization. Wi-Fi
GraphSLAM [113] formulates an optimization problem to find
the mapping of target position to the indoor map. In order to
facilitate the SLAM convergence, WiSLAM [114] instead uses
Bayesian inference in target localization.

Approaching SLAM problems includes algorithms of finding
the best graph matching and solving optimization problems
[113], which can be computationally expensive. To approach
traditional localization or SLAM problems, the fusion algo-
rithms in some more recent works of pedestrian or smartphone
localization include

— Kalman filter: Kalman filter is a typical formulation

to describe the discrete time system. Fusing Wi-Fi fin-
gerprints and inertial sensors based on Kalman filter
has been studied extensively in works like [20], [87],
[115]-[118]. Compared with other techniques like least
square estimation schemes [113], Kalman filter achieves
better results under linear Gaussian environment [87].
Assuming the knowledge of walking motion model with
additive Gaussian noise, conventional Kalman filter can
effectively solve the localization fusion problem, espe-
cially for the linear motion model. Some further exten-
sions, including extended Kalman filter and unscented

Kalman filter, have been proposed to approach some
nonlinear problems.
Farticle filter: Compared with traditional Kalman filter,
particle filter is often more general and suitable for more
sophisticated tracking problems based on the nonlinear
motion model. Particle filter [119] first spreads parti-
cles in the potential indoor area. Then those particles
inconsistent with walking distance, estimated location
fixes and map constraints will be filtered. Therefore, the
particles approximate the confidence of potential trajec-
tories and the location with the more particles surviving
gets the higher weight in final estimation. In practical
deployment, however, engineers may not choose particle
filter if the conventional Kalman filter-based schemes
can already produce satisfactory results with much lower
computational cost.

Using more advanced and efficient fusion models: Recent

works like [24], [38], [48] propose using some advanced

and efficient models between wireless signals and motion
to locate the target by:

1) Reducing number of particles, which considers sim-
plifying indoor map structures [38] to reduce the need
of many generated particles.

2) Using efficient or simplified probabilistic models,
which implements Hidden Markov Model (HMM)
[66] or conditional random field (CRF) [48] to sim-
plify the localization computation while achieving
satisfactory estimations.
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Kalman filter has been implemented for fusion with wireless
signals in robot and later pedestrian localization. In order to
support more challenging pedestrian localization, some work
proposes using Extended Kalman filter (EKF) to achieve more
adaptivity in motion modeling [121]. Fingerprint Kalman filter
(FKF) in [116] utilizes the best linear unbiased estimator, com-
bining all the current and past signal measurements. Kalman
filter achieves high computation efficiency, as the knowledge
of system models and Gaussian noise may provide an simple
closed form formulation. However, in practice, sensor noise
may not be Gaussian and the motion model is rather com-
plicated, which may degrade the performance of traditional
Kalman filter. Furthermore, Kalman filter may not be suitable
for some scenarios with only map information and user mo-
tion information [122]. To improve Kalman filter performance,
dense input of wireless localization fixes and knowledge (or
some heuristics) of noise covariance may be often required in
implementation [122].

In the traditional localization system for pedestrian, the map
information is often available and therefore accurate local-
ization is more important. In more recent works, Sequential
Monte Carlo method (SMC) [119] has been implemented for
fusing Wi-Fi and motion sensing. Particle filter is a well-known
application of SMC method. In particle filter, the estimations
of Wi-Fi and motion sensing are merged based on weighted
particles. With the map constraints and weight resampling, the
particles with incorrect locations are filtered and the location
estimation converges to a more accurate position.

Zee [99] and XINS [120] are two typical works using particle
filter. Zee utilizes the map constraints to filter the particles and
narrows the search region of target localization. Therefore, the
incorrect heading directions and trajectories will be filtered.
XINS also leverages other signals like GPS or GSM to in-
crease the chance of location fixes. Based on motion sensors
and particle filter, some recent works make a further step to
recognize the user activity and embed this information in LBS
system. The activity information, when the user is in elevators
[105], [123] or passes through the indoor corners [124], shows
location-dependent patterns, which can be leveraged to narrow
the search scope.

Particle filter achieves promising localization accuracy while
requiring large quantities of particles. Therefore, many recent
works have focused on addressing the issues of computational
complexity.

Reducing particle number: A 2-D map representation of the
large open space needs many particles. If we discretize the map
and represent the corridor path with the 1-D line segment, the
number of particles can be reduced.

Based on the above idea, Graph-Fusion [38] proposes a
system which simplifies the computation of particle filter.
To reduce online localization complexity, during offline map
preprocessing, Graph-Fusion discretizes the indoor map into
simplified connected graph by removing the unimportant de-
grees of freedom. Therefore, fewer particles are needed to
traverse along the narrow edges of the graph. By measuring
the walking frequency and walking distance, the system also
considers fitting different users in location estimation. Despite
the expensive work load in graph preprocessing over the indoor

maps, this work provides a practical and efficient motion-
assisted localization algorithm. Nevertheless, for large indoor
open space like the airport, the sharp reduction in particles
may lead to large estimation errors. It is because the random-
ness of pedestrians in the airport is higher than in narrow
corridors. A large number of particles are still needed in such
sites.

As using many particles significantly increases the complex-
ity [66], some other works focus on using more efficient fusion
models to replace particle filter.

Simplified probabilistic models: HMM Fusion [66] proposes
using Hidden Markov Model (HMM) to fuse the sensor and
simplify the fusion process. As in the HMM formulation the
motion state only depends on the previous state, the com-
putational complexity is low. However, HMM requires large
training sequence of data and the offline training process is still
computationally heavy [24].

Beyond HMM model, MoLoc [24] models the probabilistic
transition between different locations in the site based on the
user’s walking length and direction. Meanwhile, it considers
the probability of different locations returned from Wi-Fi es-
timation. By independently considering the joint probability
of Wi-Fi and motion, the system simplifies the calculation
and localizes the target. Through the motion matching, the
ambiguous Wi-Fi fingerprints at distant locations can also be
filtered. In particular, let d and o be the walking displace-
ment and heading direction, respectively. Denote P(x|s) as
the conditional probability of target at location x given Wi-Fi
measurement s, and P(x|d, 0) as conditional probability of
target at location x given motion measurement d and o. Based
on the independence assumption, MoLoc finds the location with
the maximum likelihood, i.e.,

“

arg max P(x[s, d, 0) o argmax P(x|s)P(x|d, o),
X X

which therefore simplifies the localization model and increases
computation efficiency. In reality, however, fingerprint and po-
sition transition may be well correlated [48], [122]. Assuming
independence between fingerprints and motion matching may
leave out some useful observations for better performance. If
they are jointly considered, higher accuracy and robustness can
be achieved.

In order to increase location accuracy and computational
efficiency, some recent works focus on jointly considering the
correlation between Wi-Fi measurement and motion. MapCraft
[48], [122] proposes a system based on conditional random
field (CRF). CRF [125] is previously implemented in natural
language processing in order to classify the sequence of words.
By modeling the indoor sensor measurement (Wi-Fi, mag-
netic field, walking distance and direction) as data sequences,
MapCraft utilizes CRF to map them onto the indoor map and
locates the target. Without spreading many particles, CRF in
MapCraft jointly considers the wireless signal observations and
motion measurement. Therefore, it achieves higher robustness
towards signal noise compared with other works. The online
localization complexity using CRF is small once the conditional
probability model is trained.
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TABLE IV
DIFFERENT ALGORITHMS FOR OFFLINE SURVEY REDUCTION

. Erroneous .
Explicit User Extra Training A
Scheme . . Data N Limitations
Participation | Site Survey . Complexity
Filtering
OIL [130] Yes No Yes Low Pr.omp.t users f(')r sigr.1a1 update; may
bring inconvenience in deployment.
WILL [18] No No Yes High Rely on step counter avccgracy; survey
data may come from limited areas.
Rely on relative RSSI signals mapping
EZ [131] No No Yes Low and location fix of other devices; RSSI
carries noise and affects mapping.
Rel licit knowledge of AP
WiGEM [35] No No Yes High €'y on expicil knowledge of A%
locations; computationally expensive.
K-means clustering of signals requires
ific setti f clust ber;
HIWL [132] Yes Yes Yes High Spectiic setng o cluster mumber
the training of Hidden Markov model
(HMM) is computationally expensive.
Designed for room localization;
UMLI [133] Yes Yes No High hierarchal localization leads to higher
computation and risk of large error.
Work best with similar floor plans in a
Co-Embedding [134] Yes Yes No High given building; unlabeled data contains
error, which requires filtering.

However, the offline training of CRF is more computationally
expensive [125] than that of HMM [126]. To ensure high
localization accuracy, large data set of pedestrian information
is usually needed, which makes CRF training difficult. All the
sequences have to be labeled beforehand in order to maintain
the training accuracy [127].

To summarize, improving Wi-Fi fingerprinting localization
with inertial sensor measurements is an interesting direction
for indoor LBS system deployment. Compared with collabo-
rative localization in Section II-C, the motion-assisted scheme
does not rely on neighboring users, and therefore achieves
higher adaptability and scalability. Although many emerging
smartphones and sensors, including devices in Google Project
Tango [128], have laid a hardware foundation for motion-
assisted scheme, how to accurately capture the user motion
without expensive calibration in practice is still challenging and
worth further exploration. Besides, energy efficiency for sensor
measurement and location computation is also important for
future studies.

III. EFFICIENT SYSTEM DEPLOYMENT

In this section, we will present some recent approaches on
efficient system deployment. We will first focus on survey
reduction in Section III-A and III-B. As the site survey for
Wi-Fi localization consists of offline fingerprint database con-
struction and online database update (maintenance). Therefore,
we will investigate the recent progresses in reducing labor-
intensive site survey (Section III-A) and adapting to online
measurement variation (Section III-B) respectively. Then we
will describe the recent development in addressing device
heterogeneity (Section III-C). Finally, we present the recent
works on reducing energy consumption of Wi-Fi fingerprint
localization (Section III-D).

A. Reducing Offline Site Survey

Traditional fingerprinting algorithms are often labor-
intensive. Take the Hong Kong International Airport as an
example. Given a survey site of 8,000 m?2, if we choose 5 m as
the site survey grid size, there are still many reference points for
survey. Therefore, reducing the density of site survey or cutting
down direct large-scale survey is currently an important issue
for fingerprinting localization [34], [129]. The tradeoff between
cost and accuracy is also an interesting question.

Based on user incentive in Wi-Fi data collection and degree
of user participation, we discuss the following directions in the
offline survey reduction:

e Explicit crowdsourcing-based data collection: Differ-
ent from the implicit fingerprinting, users can be also
prompted to participate in data collection. If more people
have incentive to join the site survey in a crowdsourcing
manner, we can also reduce the costly site survey from
the professional surveyors. The major advantage is that
crowdsourcing splits the tedious survey into reasonably
small portion of work for each involved user.

e Implicit data collection: Reducing site survey does not
mean no Wi-Fi fingerprint signal collection. Offline sur-
vey reduction can be achieved by conducting data col-
lection implicitly or transparently, i.e., the data collectors
do not need to have incentive to participate in signal
collection. Therefore, signal collection is transparent to
the users merging with their daily life, and the survey cost
can be reduced significantly.

o Partially-labeled fingerprints: Some Wi-Fi measurement
data may be already labeled with indoor locations. In
reality, the users may also collect unlabeled signal data
without corresponding location information. If these
unassociated RSSI signals can be labeled according to a
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Fig. 8. Illustration of building fingerprint database through crowdsourcing.
Depth of the color indicates the density of survey data. As more users provide
feedbacks, the fingerprint database at the rooms grows with more Wi-Fi data
collection (the room color becomes darker).

certain association rule, the workload of professional site
survey can be also reduced. Such a method is particularly
suitable for scaling up existing Wi-Fi based systems
equipped with fingerprint database with low cost.

In Table IV, we show the corresponding recent approaches
which fully or partially remove site survey, which are presented
as follows.

Explicit crowdsourcing-based data collection: In many re-
cent works, crowdsourcing-based approaches [130], [135] have
been proposed to replace the professional site survey with
explicit and unprofessional user participation. We show in
Fig. 8 a typical crowdsourcing-based localization system [130].
The system prompts the volunteer users to report their current
locations and corresponding Wi-Fi fingerprints. We can observe
that as more users are walking around and uploading signals
at different locations, the colors of these areas become darker,
which means that the fingerprint database organically “evolves”
with data input. The concept of “organic indoor localization”
(OIL) is derived from such steady user update of fingerprint
database.

To reduce the influence of feedback error or noise in OIL, a
clustering-based method has been proposed to filter the wrong
user input. Different signal data will be fed into the clustering
process. The correct signal data will be clustered together while
outliers correspond to incorrect data. Thus, the influence from
erroneous input can be reduced.

However, in reality, prompting users for instant feedbacks
brings inconvenience for user experience. The quality of the
feedback remains to be further improved, since crowdsourced
fingerprints are vulnerable to imperfect fingerprint data. In our
deployment experience, feedback data usually carries much
noise in the first several trials, since the involved users need
to get accustomed to the feedback systems. To maintain the
online LBS experience and fingerprint quality, the volunteers
may need some trainings before they start site survey.

Implicit user participation: To reduce user burden, some
recent work, including WILL [18], is proposed to map collected
RSSI vectors onto the indoor map during users’ daily walk.
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Fig. 9. Illustration of implicit site survey through user trajectory. The paths
where users walk along indicate the locations of fingerprints.

Users do not need to intensively conduct data collection and
the specialized site survey is not needed. By measuring walking
path and direction, the users’ locations can be leveraged to label
the position of each Wi-Fi fingerprint.

As shown in Fig. 9, when the user is walking during the
training phase, RSSI vectors and the relative distance between
them is recorded by the inertial motion sensors [18]. Based
on these relative distances and RSSI vectors, the system maps
the corresponding RSSI vectors to the floor plan, and builds
up the signal map. The novelty is that even when the user is
working with routine business and walking in the office, the
site survey can be conducted transparently. Hence, there is no
need to conduct dense fingerprinting by professional surveyors.
As the mapping results may contain errors, WILL proposes
a floor plan correction scheme to mitigate the influence of
noise. A recent work PilLoc [136] also proposes a similar
approach for indoor signal collection through motion sensors.
PiLoc improves from WILL by providing more insights into
the indoor map construction.

One limitation of the works like WILL is that the quality of
fingerprint collection largely relies on the step counter and dis-
placement measurement. Given noisy measurement and users’
biased input (the collected data may gather around certain
area), the quality of survey data would be affected. In real
deployment, some landmark points (such as RFID tag or Wi-Fi
signal landmark) for motion-sensor calibration can be deployed
in the indoor site. Then the error of step counting can be further
reduced.

Signal measurements may come from unknown locations,
making it difficult to construct fingerprint database. However,
spatial distribution of signal measurements is constrained by
the physics of wireless propagation. If mapping relationship
between RSSIs and locations can be obtained, with some
occasional location report or fix from GPS of some devices,
the other users can be located based on the RSS mapping
[131] scheme. Inspired by such an observation, EZ [131]
models these geometric constraints based on Wi-Fi signal data,
and finds the location mapping based on the relative signal
measurement. The constraint is modeled using traditional path
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loss model. In other words, the received signal strength s at a
location x given distance d is given by

s=s"— 10y log a d=vx—c)Tx—c), ()
IOdO’ l l lv

where s and y are hyperparameters, dy is the reference dis-
tance, and ¢; is the estimated location of AP /. Then a genetic
algorithm locates the target position efficiently. Therefore, the
prior knowledge of the RF environment is not required and the
survey cost is significantly reduced.

However, EZ needs occasional GPS signal in order to get
location fix. In real deployment, the external fix may not
always be available or accurate. Besides, the dynamics of
Wi-Fi environment may also affect the geometric constraints,
leading to measurement errors in distance. Therefore, more ad-
vanced works like EZPerfect [62] have used labeled fingerprints
to derive the distance constraints and improve localization
accuracy.

Advanced machine learning schemes have been implemented
for survey reduction. To reduce the survey cost, a potential
approach is to model the signal propagation for signal pre-
diction at different indoor locations. WiGEM [35] utilizes
Gaussian mixture model (GMM) and expectation maximization
to estimate target location, and learns the signal propagation
parameters. Then, the signal strength at different locations can
be predicted correspondingly. Therefore, the survey process is
greatly reduced given implicit user signal data. However, it
relies on explicit knowledge of AP locations. Moreover, the
computation in parameter training is rather heavy and should
be conducted on a server.

Using partially labeled fingerprints: For explicit and implicit
data collection, labeling locations for fingerprints is often te-
dious, especially in spacious area. HIWL [132] proposes using
Hidden Markov Model (HMM) to classify the unlabeled signal
data to the locations. It requires limited topology information
of indoor environments in the HMM training phase. Through
HMM training, the system learns the mapping relationship
in geographical and signal distribution. Therefore, HIWL can
match the unlabeled fingerprints to the corresponding physi-
cal locations based on the mapping model. However, training
HMM increases the computational complexity of the system
[137] and requires large training data set to ensure the learning
accuracy. Meanwhile, HIWL implements k-mean clustering to
partition the signal data, which requires user to specify the
number of clusters.

To reduce computation, UMLI [133] proposes using clus-
tering methods to classify the unlabeled signal data. Through
clustering analysis, it has been observed that neighboring ref-
erence points show similar signal patterns and tend to cluster
together. By utilizing the clustering method, unlabeled signal
data can be classified into locations storing similar signals,
achieving less site survey and labeling work. Using a hierarchal
structure, UMLI first classifies the unlabeled fingerprints to
the corresponding rooms. Then based on the coarse location
result, it conducts further fine-grained localization. The results
show that UMLI is more suitable to classify the room locations.
Hierarchal localization in UMLI increases the localization

complexity. If the coarse stage of estimation is incorrect, the
deviation of final results will increase.

Utilizing the correlation within labeled Wi-Fi fingerprints
can also help in labeling new data at different floors in a
given building. Inspired by this observation, Co-Embedding
[134] proposes a new algorithm aiming at reducing multi-floor
survey cost. The idea of this work is based on the similar floor
plans at different floors in a building. Therefore, the wireless
signals at different floors are correlated. This algorithm first
analyzes the embedded relationship between the fingerprints
at different floors based on labeled reference points. By learn-
ing their spatial correlation and signal similarity, the system
finds the locations of the unlabeled reference points at other
floors. Similarly, the transfer learning based algorithm [41] has
been implemented to map the unlabeled signal data with the
corresponding indoor locations. The mapping is also based on
the correlated signal patterns in indoor environment. However,
such an assumption may not be valid for buildings with sig-
nificantly different floor plans. Moreover, Co-Embedding does
not provide error analysis and filtering for the unlabeled signal
data. The computational complexity for correlation analysis is
also high.

The major concern about offline survey reduction is how to
balance between localization accuracy and survey cost. Some
research shows that due to uncertainty in signal collection local-
ization accuracy under survey reduction is relatively lower than
that based on traditional fingerprinting [138]. In order to filter
the noise or errors, post-processing after sampling becomes
important here, and may increase the system complexity and
deployment cost. Thus, professional survey may be still needed
in scenarios with high accuracy demand.

A more reasonable consideration is to conduct site survey
in a flexible and cost-effective manner. Specifically, for sites
with dense visitors and high accuracy demand, the traditional
site survey plays a major role in localization system setup. For
sites with low user access, different survey reduction algorithms
above can be applied to reduce overall deployment cost.

B. Adapting to Fingerprint Changes

Given site survey data, it is also imperative to maintain
fingerprint database for the dynamically changing environment.
The online signal strength in the survey site may vary signifi-
cantly overtime due to various factors. Firstly, crowds of people
and humidity change can influence the signal strength [139].
Secondly, dynamic power control in WLAN may also change
the transmission power [36]. What is more, Wi-Fi APs may be
added, replaced or removed due to the renovation of the build-
ing [43]. Therefore, the signal database may become outdated
and large estimation error happens. Conducting another site
survey is not cost-effective. To address this, there have been
a lot of works focusing on adapting to online signal variation.
These approaches include:

o Infrastructure-based schemes: Recent works [140]-[142]
propose deploying external infrastructures to monitor
the signal variation in the survey site. Two key compo-
nents for infrastructure monitoring are Wi-Fi monitors
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TABLE V
ADAPTING TO FINGERPRINT CHANGES
Update Extra Deployment | Robustness Update
Scheme P . X POy u P Limitations
Algorithm Infrastructure Cost of Update | Frequency
Sparse sniffer deployment
.Wi—Fi ijaussian process; . Wi-Fi .monitor High High Fast may degrade the.perfor—
Sniffer [142] signal map regression. (sniffer) mance; AP locations
need to be known.
Monitor environmental REID: Contexts of environment
Hybrid factors; change the ’ . . may change from the
.y . & Bluetooth High High Fast 'y . g .
Monitor [139] | signal map based on training stage; stored signal
sensor
environmental contexts. map may be outdated.
High computation expense
Tr'fmsfer ]?imension reduction.; N/A Low N/A N/A f01“ online local%zation;
Learning [143] | signal space correlation. suitable for environment
with small signal variation.
. Explicit user feedback; User feedback contains
Crowdsourcing . . .
[144] upload of location and N/A Medium Low Slow noise; need more error
signal vectors. filtering.
Crowdsourcing | Localization and .
Fusi ith i int maint Rely on accurate motion
using wi ngerprint maintenance; . .
K J i g rp N/A Low High Slow sensors for trajectory
Motion Sensor | implicit data update; .
. mapping.
[43] erroneous data filtering.

(sniffers) and signal map reconstruction [140]. By de-
tecting the environmental change, the system can update
the fingerprint database with the measured signals, using
regression or other machine learning algorithms.

e Non-infrastructure-based schemes: Non-infrastructure-
based schemes are based on algorithmic adaptation to
fingerprint signal noise. These works consider using the
spatial and temporal correlation between the locations
and signal measurement to reconstruct the Wi-Fi finger-
prints. Recent works often leverage the signal correlation
[143], user feedback [144] and crowdsourcing [43].

In Table V, we show the corresponding algorithms adapt-
ing to the Wi-Fi fingerprint changes, which are presented as
follows.

Infrastructure-based: The signal map reconstruction [142]
reveals the overall change in signal spatial distribution and
provides information of the dynamics at the RPs (distribution
model). As shown in Fig. 10, deployed Wi-Fi sniffers can detect
the temporal change of the APs and environment. Then the
system reconstructs the signal map in the site based on:

— Regression-based algorithms [141] are based on the sig-
nal propagation model (like path loss model). These al-
gorithms perform well in indoor large open space and the
complexity of signal map reconstruction is relatively low
[141], [142]. However, with wall partitioning and signal
fluctuation, the regression may not produce satisfactory
results.

— Advanced machine-learning algorithms:For complex in-
door environment with wall partitioning, other machine
learning algorithms are more suitable since they consider
the inherent signals and spatial correlations without as-
suming LoS measurement [142], [145], [146].

Time T

Monitored
Wi-Fi APs

;

i l Time T+1 Wi-Fi
Overtime Wi-Fi # Sniffers
Signal Map

Fig. 10. Illustration of dynamic signal map adaptation using Wi-Fi sniffers.
Color map indicates different RSSI distribution (warm colors mean strong RSSI
while cool colors mean weak RSSI). Deep blue colors mean that no RSSI is
collected due to building structure partition.

Given some labeled reference points and online signal mea-
surement, these algorithms achieve higher signal reconstruction
accuracy [142]. Typical algorithms include Gaussian process
[142] and decision tree [145], [146], which are based on exist-
ing statistical learning techniques [147], [148].

Gaussian process (GP) [142] is utilized to reconstruct the
signal spatial distribution based on Wi-Fi sniffer measurements.
GP models the relationship between signal fluctuation and
distance between the reference points. The work in [142] pro-
poses two schemes based on Bayesian inference and the signal
propagation model respectively.
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Fig. 11. Illustration of different potential environmental factors that affect the
Wi-Fi signal online measurement [139].
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To be more specific, let sx be the signal strength at a location
X, which can be further expressed as

sx =f(X) + €, (6)

where € is an additive zero-mean Gaussian noise. Given N
training locations X and fingerprints S, let N-by-N matrix K
be the covariance matrix between these samples. An element
k(x;, x;) in K is usually given by an exponential kernel. Based
on Gaussian process [142], the predicted RSSI for unknown
location x* is given by

pxr = m(x*) + k(x*, X) (K + o,%I)il S —mX), ()

where o), are the hyper-parameters of GP. The mean function,
m(x*), is given by either kernel regression (using Bayesian
inference) or propagation model regression.

Experimental studies show the latter signal model achieves
higher reconstruction accuracy given locations of Wi-Fi APs.
One strength of GP is that statistical inference can be integrated
with existing probabilistic localization algorithms and sensor
fusion [149]. However, training of these machine learning
algorithms is usually computationally expensive.

If the dynamic environmental factors can be monitored, the
change in the signal map can then be predicted and updated
accordingly. If we can prepare a signal map for each context of
Wi-Fi measurement, we can also adapt the system to the envi-
ronmental changes. As shown in Fig. 11, the relative humidity
level, people’s movement, and open/closed doors are assumed
to be the important factors which influence the Wi-Fi finger-
prints [139]. In [139], [150], different sensors are deployed
to monitor these changes. Based on these sensor readings,
the system learns the environmental changes as well as signal
maps for corresponding environment contexts. In other words,
different environments correspond to different signal maps and
settings. Therefore, given the online sensor readings, the system
adapts the current signal map for better online localization.

The signal measurement using sniffers and sensors is accu-
rate if the infrastructures are densely deployed. Besides, snif-
fers can immediately capture the signal change and therefore
achieves rapid update. However, infrastructure-based monitor-
ing brings the extra deployment cost, which may not be suitable
for large survey site.

Non-infrastructure-based: The transfer learning based algo-
rithm [151] has been proposed to adapt to the signal change
[143]. It is based on the observation that nearby positions
have more similar RSS values than those far away. Given
the training fingerprint set, the system learns the correlation
between fingerprints and the locations. The target RSSI vector
can be then projected to a physically near location. However,
the offline training and online localization complexity is rela-
tively high. Besides, such a scheme relies on the stored finger-
prints and aims at approaching small signal variation. If many
APs are changed in transmission power, removed or added
in the environment, this algorithm cannot adapt to such large
change.

Therefore, a more adaptive scheme is to update the signal
map. It can be achieved through user feedback or “crowdsourc-
ing” [144]. Based on the online user feedback, the system can
get the RSSI vectors and the corresponding locations. Then the
signal map can be updated according to the signal interpola-
tion. Besides, if the AP transmission power is changed [152],
the system can also detect and update the fingerprints [43],
[144], [153].

Crowdsourcing can provide sufficient fingerprint updates for
indoor LBS. However, in some cases it may be inconvenient
to prompt users to upload their collected signal data. Explicit
fingerprint and position uploading brings inconvenience and
privacy issue for signal map update. Another concern is the
correctness of database updates. Feedbacks from the users are
likely to carry noise. Therefore, error filtering are still needed
before the updates of the database.

The work in [43] proposes crowdsourcing-based update au-
tomation (CUA) for fingerprint update. CUA conducts implicit
fingerprint collection while the user is using LBS for location
estimation. Through motion sensors, the trajectory of the user
along with the collected fingerprints can be jointly mapped to
the indoor map. By comparing similarity between the signal
sequences with the stored signal map, CUA filters the incorrect
trajectory mapped. Meanwhile, mislabeled fingerprints can be
filtered by a clustering algorithm of all fingerprints. Compared
with [18] in Section III-A, CUA utilizes previously collected
fingerprint map to reduce trajectory mapping errors. Similar
works like [154]-[156] also implement motion sensors to im-
prove fingerprint update.

One limitation of CUA is that the accuracy of motion sensor
may still suffer from measurement noise. Therefore, a robust
sensor-fusion-based location estimation needs to be considered
in deploying CUA for future development.

For above crowdsourcing-based algorithms, a common chal-
lenge lies in the frequency of user updates. Moving users may
not have stable Internet connection and the data upload is likely
to be delayed. Thus, the later uploaded data may be already
outdated and the fingerprint update performance may degrade
correspondingly.
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Host Chipset Wi-Fi Antenna Year
Smartphone P Channels Positon [159]
HTC One X Broadcomm BCM4335 802.11 a/b/g/n Middle Left 2012
LG Nexus 4 Qualcomm WCN3360 802.11 a/b/g/n Upper Right 2012
LG Nexus 5 Broadcomm BCM4339 | 802.11 a/b/g/n/ac Upper Right 2013
Samsung Galaxy Note 3 | Broadcomm BCM4339 | 802.11 a/b/g/n/ac Upper Right 2013
Samsung Galaxy S5 Qualcomm QCA6174 | 802.11 a/b/g/n/ac | Top of the Phone | 2014
To summarize, the well-designed combination of differ- -60
ent fingerprint update schemes, infrastructure-based and non- 65| _
infrastructure-based, can be a potentially feasible approach in = 2
. A}
real deployment. Infrastructures can be deployed in a large open @ TTO e
area with high visitors flow in order to maintain localization 7 -75| y: -}
1
accuracy. User feedbacks can be leveraged at other areas to @ J A
reduce the deployment cost. o ~80p H\
©
g -85
C. Calibrating Heterogeneous Devices _90( “B-HTC One X
The rapid evolution of mobile computing has spawned a Lenovo AG80

very heterogeneous spectrum of mobile devices in indoor LBS.
Various devices are implemented in offline and online signal
measurement. Such device heterogeneity will affect the perfor-
mance of indoor localization [157].

We first briefly describe the device dependency and the
related factors [40], which may provide some intuition in cali-
brating heterogeneous devices. Specifically, denote the received
signal strength (RSS) from a given AP at distance d as P(d)
(dBm). P4p represents the transmission power of AP. G4p and
Gy represent the antenna gain at the AP and the mobile phone,
respectively. Let dp be the reference distance. The received
signal strength at distance d is given by [40]

PapGapGunA3p ( d )
P(d) =101lo ———— 22 ) —1081o —
(d) gm( 1672d2L1 Blogo &

+X(0,0%). (8)

Due to different Wi-Fi network interface controllers (NICs)
embedded in smartphones, the antenna gain (G4p and Gyn)
may be different across different devices.

In Table VI, we show some differences in Wi-Fi chipsets,
channels supported, and antenna positions relative to the phone
body [158] of different Android smartphones. To summarize,
the device heterogeneity mainly comes from the following
aspects:

* Wi-Fi chipset sensitivity: The Wi-Fi chipsets on different
smartphones may be sensitive to different Wi-Fi APs and
channels. The antenna gain and detected AP channels
in signal strength measurements are different. Therefore,
we can observe the differences in the signal values and
length of signal vectors [40].

* Antenna installation position: As the antennas may be
installed at different positions on the phones [67], the
signals received when the users are facing different di-
rections are likely to differ.

1 2 3 4 5 6 7 8 9
Index of Wi-Fi APs
Fig. 12. Wi-Fi RSSI measured by HTC One X and Lenovo A680.

* Operating systems (OS) of smartphones: The OS of
smartphones may support different Wi-Fi APs. The de-
tection rate and number of APs can be different [159].
Therefore, even the same device may still have hetero-
geneity given different operating systems.

To further illustrate the device dependency, we conduct an
experiment to show the RSSI heterogeneity measured by two
different smartphones at the same location. We use a Lenovo
A680 and HTC One X to collect RSS from nine different APs at
a fixed location in an HKUST office, respectively. Then we plot
the mean RSSI values in Fig. 12 for each detected AP. From this
figure, we can observe the noticeable difference in the signal
measurement.

From Table VI and Fig. 12, we obtain a basic understanding
of device dependency. Given above, we will go through the
recent works addressing the device heterogeneity issues as
follows:

e Offline calibration: These schemes consider adapting the
target RSSI via offline calibration. In the offline stage,
the system collects large quantities of signal data from
different smartphones and finds the corresponding signal
mapping models given different user smartphones.

e Online signal calibration and adaptation: In contrast
to offline methods, online calibration and adaptation
schemes focus on utilizing only target Wi-Fi data (online
measurement) for self-calibrating and adapting to the
heterogeneous devices instantly. Therefore, the manual
efforts can be largely reduced compared with offline
training.

Offline calibration: The works in [160], [161] observe that
RSSIs at different devices follow a linear model for the same
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signals. Given signals from two devices, they conduct regres-
sion and derive the linear calibration model. Clearly, it requires
offline training before an accurate mapping relationship can
be learned. However, manual data collection and calibration
bring inconvenience for the deployment. To reduce such labor-
intensive work, some crowdsourcing-based algorithms [162] can
be implemented to provide sufficient signal data for calibration.

However, signal variation may affect the linear mapping
relationship between values. The work in [163] observes that
the major characteristics of signal strength diversity lie not only
in the linear signal difference between devices, but also in the
signal deviation and shape of individual RSSI distributions.
Therefore, it utilizes the kernel function for location estimation
by mapping between signal distributions of different devices
instead of only linear transformation. In order to accommodate
different devices, the system adjusts the shape of the kernel
density functions so that the signal distribution can be matched.

Online calibration and adaptation: In order to calibrate
a given device, some works consider the common patterns
between the device measurements which are irrelevant of the
heterogeneity factors. Based on the signals and antenna gain
model, signal strength difference (SSD) [40] proposes a simple
algorithm which picks out one AP measurement and each of
other RSSIs is deducted by its signal values. Therefore, the
constant factor of antenna gain is deducted. Another similar
idea is using the RSSI ratio [164]. The work in [164] selects one
of the AP measurements and each of other AP signals is divided
by this constant value. These methods are easy to implement for
online calibration of signal vectors.

Expectation Maximization (EM) [165] is proposed for joint
localization and signal calibration. By adding the constant value
into Euclidean distance [2] between signal vectors, the system
measures the offset between the signals of two devices. Then
it learns the signal difference by iteratively minimizing the
offsets in Euclidean distance between fingerprints. The joint
calibration and localization can reduce the effect of signal
noise. However, the process of applying EM algorithm is more
computationally expensive than SSD or RSSI ratio above, and
the calibration quality may be affected by signal noise.

Combining the advantages of signal ratio and linear depen-
dency, the work in [166] proposes an algorithm which jointly
finds the reference points matching both AP signal order and
linear relationship. Pearson product moment correlation coef-
ficient [147], which gets rid of device constant difference, is
implemented to compare the linear relationship between two
signal vectors.

The major concern for online calibration is that large signal
noise can influence the signal values under limited RSSI sam-
pling. The process of signal deduction and ratio is vulnerable
to measurement noise, which may further lead to localization
errors. Therefore, the average of multiple RSSI samples may
be implemented to filter the noise.

Besides calibration, online adaptation is another recent ap-
proach to tolerate the device dependency in location estimation.
The works in [67] and [167] leverage the signal order of
multiple APs and the peak of an RSSI sequence respectively
to address the device dependency issue. These patterns can
reduce the calculation efforts in the online calibration schemes.

TABLE VII
DIFFERENT APPROACHES OF CALIBRATING HETEROGENEOUS DEVICES

Calibration Robustness of
Category
Scheme Calibration
Linear calibration Require large data set
[160], [161], [168] for regression or fitting.
Require training of
Offline Kernel-based 4 . £
. . . . kernel width; need large
Calibration calibration [163]
data set.
Contains signal noise;
Crowdsourcing [162] | need erroneous data
filtering.
Signal strength Suffer from signal noise
difference [40] fluctuation.
Signal strength Suffer from signal noise
ratio [169] fluctuation.
. Adding constant to
Expectation . .
R L signal values during
Online maximization i int o
Calibration [165] JINECIPHRY cOmPparison:
influenced by noise.
and - - -
. Joint consideration
Adaptation Homogeneous . .
of signal strength ratio
patterns [166] ,
and linear dependency.
. X Granularity of location
Received signal T .
estimation is relatively
strength order [167]
low.
Peak of the Peak detection is sensi-
signal sequence [67] | tive to signal noise.

Besides, patterns like signal strength order are less vulnerable to
small RSSI fluctuation than the above online value calibration,
which tailors for concrete signal values.

However, the RSSI order may be the same in a room and
lead to low granularity of localization. How to select the subsets
of all APs for order comparison is also challenging. For the
signal peak, the online signal fluctuation may also influence
the accurate measurement of signal peak. Therefore, these
patterns work the best for narrow indoor space (corridors and
small rooms [67]), where signal order and peak can be more
distinguishable. For more general cases in different indoor sites,
the online calibration of signal values is a reasonable choice.

To summarize, we have shown the different schemes and the
robustness of their calibration performance in Table VII. Offline
scheme is usually based on large data samples and regression
calculation. To reduce the efforts in offline stage, crowdsourc-
ing may be a possible solution as it may provide large data
samples [162]. For crowdsourced data, error filtering may be-
come important to mitigate influence of outliers. In practical
deployment, however, online calibration is more convenient and
adaptive given unknown devices, but the inherent signal noise
can invalidate the calibration assumption. Multiple samples are
needed in order to filter the inherent uncertainty. Besides, online
calibration increases the computational complexity compared
with the traditional algorithm. In online schemes, an extra stage
is added before the final location estimation can be conducted.

Note that traditional Wi-Fi fingerprint systems usually use
certain signal comparison metrics for location estimation. If the
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TABLE VIII
RECENT SCHEMES TO ACHIEVE ENERGY EFFICIENCY

Energy Deployment | Computational e er e
Cat Schi Depl t Limitat
ategory cheme Reduction Cost Complexity eployment Limitations
Reducing User I‘I:lObl]lty Low Low Low Rely. on accurate Vmotlon sensor
Scannin suppression [171] readings and motion classification.
& Wi-Fi scanning . . Useful for the long-term energy
Frequency L. Medium Low High . . .
optimization [170] scheduling; computationally expensive.
— . Require modification on smartphones
Wi-Fi select
! 1. selective Medium Medium N/A beforehand; need to conduct AP
. scanning [159] . .
Reducing filtering or selection.
APs Used Dimension Selected APs based on offline training
reduction Medium Low Low may be different from those needed
[175], [176] in online measurement.
Replaci
°p .ac1.n & Scanning Wi-Fi . . Require specialized OS supports and
Wi-Fi . R High High N/A . . .
. with ZigBee [42] modifications on existing smartphones.
Scanning

signal comparison metric implemented is device independent,
the traditional system can adapt to different devices without
significant design modification. This is also a practical direction
in improving existing Wi-Fi fingerprint systems.

D. Achieving Energy Efficiency for Mobiles

Green computing is a recently hot topic in mobile computing.
For LBS system, how to achieve energy efficiency has also
recently attracted much attention. The battery capacity in smart-
phones is usually small. For outdoor location-based service, it
is well-known that the intensive use of GPS often leads to high
energy consumption [170], which can cause complete drain
of battery in short time. Similar to GPS, Wi-Fi scanning and
data transmission are also energy-consuming for indoor LBS
systems [171].

For server-based indoor LBS systems [172], the computation
of localization is conducted on the server. Thus, Wi-Fi scanning
as well as the data communication between the client and
the server causes the major energy concern for the mobiles.
For client-based localization systems [173], the computation of
location decision is conducted locally on smartphones. There-
fore, the client does not have to intensively communicate with
the server through Wi-Fi or cellular network. However, high
computational complexity leads to high energy consumption,
since the local fingerprint database often contains thousands
of reference points and introduces large signal comparison
calculation. Frequent Wi-Fi scanning also consumes the battery
power quickly. Therefore, we can observe the Wi-Fi scanning,
data transmission and computation are the major energy issues
for indoor LBS [174].

Based on their influence and modification over Wi-Fi scan-
ning, we mainly discuss the following directions:

e Frequency of Wi-Fi scanning: Traditional Wi-Fi finger-
printing requires intensive use of Wi-Fi for real-time
navigation. However, frequency of Wi-Fi scanning for
localization purpose can be reduced when the user is
static or the localization accuracy is relaxed. Typical
schemes include using motion or other sensors to control
the Wi-Fi scanning.

e Number of APs scanned: Traditional scanning in smart-
phones goes through all the channels in order to maintain
quality of communication. A smartphone in an indoor
site may detect at a single position tens of Wi-Fi APs,
among which only some are important for accurate lo-
calization [159] (i.e., differentiating the reference points
in site for further classification). If the number of APs can
be reduced, we can reduce the energy used for scanning
and localization computation.

e Replacing Wi-Fi with other RF signals: Some recent
works have proposed cross-interface technology using
ZigBee to scan Wi-Fi signals. Such RF signals can im-
prove the energy efficiency of existing Wi-Fi localization
system. Coexistence of these heterogeneous signals may
be possible and may introduce some further interesting
applications [177].

In Table VIII, we show the recent works to achieve energy
efficiency for Wi-Fi fingerprint-based indoor localization. In the
following, we introduce some emerging schemes accompanied
by their strengths and weaknesses for real deployment.

Reducing scanning frequency: A simple method for energy
consumption reduction is to control the scanning frequency of
Wi-Fi. Mobility suppression [170], [178]-[180] utilizes motion
sensors to monitor the motion state of the target and controls the
scanning frequency. If the motion sensors like accelerometers
detect the user is static, the mobile device suppresses Wi-Fi
scanning until the user begins to move. However, motion
sensors often carry noise and lead to decision error in user
motion state. The state recognition may not be very accurate.
Therefore, in real deployment, such a simple method cannot
fully address the high energy consumption problem.

Some advanced algorithms consider optimizing the Wi-Fi
scanning according to the need of location accuracy and appli-
cation scenarios [171], [181]. This scheme finds the optimized
allocation of Wi-Fi scanning and sensor utilization. In the en-
ergy optimization, we can relax the localization accuracy based
on algorithm complexity and sensor implementation. Through
some simple algorithms or low-energy sensors, we may satisfy
the positioning accuracy while the energy consumption in
CPU calculation and sensing can be reduced. It is especially
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Fig. 13. Illustration of optimizing Wi-Fi energy consumption based on hybrid
sensor scheduling.

important given limited battery budget. Combinatorial use of
motion sensors [174], [182] and other low-energy sensing tech-
niques (like Bluetooth 4.0) can decrease the need of frequent
Wi-Fi scanning [181].

Fig. 13 shows the basic idea of optimizing energy consump-
tion scheduling for Wi-Fi indoor localization. The traditional
approach conducts Wi-Fi scanning all the way from location
A to B. Instead of only using Wi-Fi, different sensors (inertial
sensors [183] or Bluetooth 4.0 [4], [184]) can be scheduled for
certain parts of the walking path while the overall accuracy
does not degrade significantly [185]. As the walking path (or
indoor context) and energy consumption of sensors are jointly
considered, optimal sensor scheduling extends the overall bat-
tery life. Compared with simple mobility suppression, such an
optimized scheme can achieve better energy saving [183]. How-
ever, the complexity of the optimization algorithm is often high.
Therefore, it is usually suitable for scheduling long pathway
at the server side while simplified or heuristic algorithms are
implemented for mobiles.

Reducing APs scanned: Selective scanning in [159] modifies
the Wi-Fi scanning in order to reduce the number of APs
to be scanned. By focusing on the useful channels of APs
for localization [186], the overall scanning time and energy
consumption can be reduced. Though it is a novel approach
to save energy from physical layer modification, configuring
the Wi-Fi scanning requires OS support, which may not be
applicable for all the smartphones. Priority of communication
quality is usually higher than localization purpose, and some
smartphone vendors may not allow such modification. Besides,
it is also important to know how to select the subset of APs
in advance. The selected APs should contribute to localization
estimation the most so that we can ensure the estimation error
will not increase significantly.

Some other algorithms focus on utilizing subsets of given
AP lists to reduce online computation, which is usually de-
fined as dimension reduction in machine learning. As each
AP in a signal vector can be considered as a dimension or
feature [176], reducing the dimensions can decrease the online
computation time. CaDet in [173] computes the entropy of

each AP and selects those with high information gain for
localization. In CaDet setting, the survey site is discretized into
different reference grids G, (1 < n < N). In analysis of AP [,
let H(G) = — Zﬁ;l P(Gp) log P(G,) be the entropy of the
grids when AP I’s value is not known. Here the user is assumed
to be distributed in the survey site and therefore P(G,) follows
uniform distribution. The conditional entropy of grid G given
AP [ is defined as
N
H(GI) =~ Y PGulsi =) log P(Gylsi =), (9)

v n=1

where P(Gy|s; = v) is the conditional probability that the lo-
cation is at G, given a signal measurement value s; = v (v is
within the potential RSSI range). Then the information gain of
AP lis

InfoGain(l) = H(G) — H(G)]). (10)

The top several APs with highest InfoGain(/) are selected. After
the filtering in CaDet, the computation can be significantly
reduced without large accuracy loss.

Principal Component Analysis (PCA) in [175] has also been
proposed to reduce the dimensions used in location computa-
tion. By finding the principal components [151] through the
correlation of APs, PCA replaces the APs with some compo-
nents which differentiate the signal measurements the most.

The AP-grouping scheme proposed in [176] divides the AP
sets into groups and evaluates the contribution of each group
over positioning. This group-based scheme considers the cor-
relation between APs in improving localization, assuming APs
can have joint effect in location estimation. If they are not kept
together for localization, large estimation errors may happen.
Therefore, this work considers differentiating the groups and
finding the important ones for localization.

A major concern with dimension reduction for Wi-Fi fin-
gerprint localization is that the AP reduction principles and
models derived from offline training samples may be different
from APs needed in online measurement. It is because the
environment dynamically changes and the importance of APs
in online localization will also change. If the training samples
are too small or outdated, the performance of training for
dimension reduction is likely to degrade.

Replacing Wi-Fi with energy-efficient collectors: Ziloc [42]
and ZiFind [172] are typical works using ZigBee (802.15.4) to
collect the Wi-Fi signals. The key observation is that ZigBee
and Wi-Fi share similar frequency channels in 2.4 GHz band.
The network interface of ZigBee can be programmed to capture
the packages in the adjacent frequency bands with Wi-Fi. By
adding such an extra interface to the smartphones and laptops,
these mobile devices can conduct Wi-Fi fingerprinting and
online measurement through ZigBee interface. Therefore, the
energy consumption in Wi-Fi scanning can be significantly re-
duced. Other more recent works like HOWiES [187] investigate
using ZigBee to replace Wi-Fi for more general communication
purposes. However, in real deployment adding external chipsets
on smartphones increases the deployment cost, and brings
inconvenience for users. Besides, how to cope with device
dependency in signal measurement is also a practical problem.
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TABLE IX
SOME COMMERCIAL INDOOR LOCALIZATION ENGINES IN THE MARKETS (UNTIL MAR. 2015)

Localization Technology Service Features
Social Location Ind Other Reported | Years of
ndoor
Engine . . | AGPS Map | Network | Geo- -based Features Mean Establish-
Wi-Fi | BLE' INS o . /Outdoor
/GPS Search & fencing" | Advertise . Accuracy ment
. Switch
Sharing -ment
Insiteo Visualize the user
2m 2009
[189] v v v v v v v behaviors for analysis.
Wifarer v Y Y v J J Y Combined Wi'th various <i3m 2010
[190] wearable devices.
Indoo.rs Optimizing battery life;
<2m 2010
[191] v v v v v v v building transition.
Pole Star Map data fusion for
Vi v VvV Y v v v . 2m 2002
[191] better user experience.
Infsoft Extra infrastructures for
VA VA VA VA v v v . ~1m 2006
[192] user analytics.
Navizon N Y v Y N N Provide W?—Fi tags for <1m 2005
[193] asset tracking.
Skvhook Hybrid and cross
00
[};94] v Vv 4 v v -platform approach for | 3 ~5 m 2003
precise localization.

IBLE = Bluetooth Low Energy i Geo-fencing defines geographical boundaries using RF signals and forms a virtual barrier.

In summary, Wi-Fi scanning and algorithmic facilitation
should be based on the accuracy demand, user experience and
battery budgets [188]. It is possible that the overall accuracy
may diminish due to energy saving. However, if the degradation
in localization accuracy is ignorable or there is no substantial
influence over user experience, the scheme of achieving energy
efficiency is acceptable and worth large-scale deployment.

IV. CONCLUSION AND FUTURE DIRECTIONS

Due to ease of deployment beyond existing network and
adaptivity to indoor environment, Wi-Fi fingerprint-based lo-
calization has attracted much attention in recent research and
industrial trials. Therefore, we conduct this survey to review
the popular and important techniques in the recent works.

We briefly go through the recent development of Wi-Fi
fingerprinting positioning techniques. The demand for accu-
rate and cost-effective localization has triggered two major
directions in Wi-Fi based fingerprint positioning: advanced
localization techniques and efficient system deployment. For
each direction, we introduce several recently popular issues and
the related works.

In advanced localization techniques, we describe the new
signal patterns, collaborative localization and motion-assisted
schemes. Then in efficient system deployment, we introduce
the emerging schemes in survey reduction, device calibration
and energy saving. By reviewing several typical works in each
selected direction, we sum up their basic principles and also
qualitatively compare their overall performance for practical
deployment. Through the timely and comprehensive overview
of the recent works, this survey may further encourage new
research efforts into this promising field.

We briefly go through some future research directions as
follows. Some other emerging fields of Wi-Fi fingerprint-based
localization may include:

Channel state information (CSI) is an emerging technique
to replace RSSI information [195]-[197]. CSI describes how
a signal propagates from the transmitter to the receiver.
Such information represents the combined effect of, for ex-
ample, scattering, fading, and power decay with distance.
It achieves higher robustness than traditional RSSI informa-
tion and therefore can be used for fingerprinting. Currently,
Wi-Fi interfaces on smartphones do not support the data col-
lection of CSI. Therefore, specialized infrastructures are still
needed in current prototype systems [198]. Other signal pat-
terns, including channel impulse response [199] and signal
eigenvector [200], [201], are also emerging for better indoor
localization.

Consistent localization experience has become important
for indoor LBS. The traditional localization system under dif-
ferent environment may show different localization accuracy
(localizability) for the target, including the open indoor hall
space [37] and narrow office environment [202]. Switching
between indoor and outdoor also leads to different localization
performance [203], [204]. If we have a generic approach which
caters for different scenarios with suitable signals and devices,
we can achieve seamless switching and optimal combinatorial
localization accuracy [165].

Combining vision with Wi-Fi fingerprinting localization is
also an interesting research direction. Some recent works [13],
[205]-[208] have proposed using vision for indoor or outdoor
localization. Through digital cameras and the inertial sensors,
fusion with vision provides more location information to assist
wireless signal localization. Integrating vision within existing
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Wi-Fi fingerprint localization will also provide more abundant
applications.

Accessibility of localization system for physically disabled
people has become important for indoor LBS. Through motion
sensing, sound detection [209], special user interface design
(including augmented reality) [210], many indoor LBS sys-
tems have improved their accessibility for visually disabled
people [211].

Floor recognition of targets [212]-[215] is an important
issue for indoor localization, especially for sites with different
floors [216], [217]. Users may need to be located on a certain
floor first through existence of signals [217], fusion of sensors
[214] or crowdsourcing [215]. Then the traditional 2-D local-
ization is conducted on the corresponding floor map. Higher
dimension for indoor localization will be 3-D localization, and
may target at higher accuracy with information of human body
and gesture recognition [196], [218].

Optimizing deployment for accuracy improvement or cost
reduction has recently attracted research attentions in Wi-Fi
fingerprinting localization, including placement of APs [219],
[220], reference points [221], accuracy assessment [222] and
signal reporting strategy [223]. These works investigate the pos-
sibility of achieving high localization performance under low
deployment cost or system modification. Further investigation
into some optimality of deployment may provide theoretical
guidance or inspiration for engineers.

With the increasingly pervasive deployment of indoor local-
ization, large-scale location-based data mining [224] becomes
possible and more lucrative. For example, people may tend to
cluster at some region or share a certain location through social
network. Leveraging such location information, more interest-
ing applications such as indoor landmark discovery [225], geo-
fencing and queue detection [82], [226] significantly increase
the business and social values of indoor LBS.

Building a practical Wi-Fi-based indoor positioning system
has become more and more challenging. Table IX has listed
several existing indoor location engines, accompanied by their
similarity and difference. Some of these features have more or
less reflected the recent advances that we have reviewed. We can
observe that despite accuracy and deployment cost, diversity in
applications and services is also increasingly important to attract
various LBS customers. Boosting more novel and distinguished
features under diversified application demands also makes the
indoor LBS market increasingly interesting and competitive.
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Princeton (1993). He is a member of honor societies Tau Beta Pi, Sigma Xi and
Phi Beta Kappa.
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