
Counting Structures in Grid
Graphs, Cylinders and Tori Using

Transfer Matrices: Survey and
New Results

Mordecai J. Golin∗ Yiu Cho Leung∗ Yajun Wang∗ Xuerong Yong∗∗

∗Department of Computer Science

Hong Kong Univeristy of Science and Technology
∗∗DIMACS

ANALCO’05 – p.1/43

Outline

1. Introduction:
Graphs & Problems

2. Survey of Results

3. The Transfer Matrix Technique

4. Related Work & Open Problems

ANALCO’05 – p.2/43

Four Graphs & a Problem
(n,m) denotes width n and height m

G(n,m) : Grid Graph

FC(n,m) : Fat-Cylinder
Connect left side of Grid to right

TC(n,m) : Thin-Cylinder
Connect bottom of Grid to top

T (n,m) : Torus
Connect left side of Thin-Cylinder to right

The Problem: Count the number of structures, e.g., spanning trees,
Hamiltonian paths, independent sets, etc., in the given graphs.

ANALCO’05 – p.3/43

Four Graphs

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

Grid Graph G(6, 5) Thin Cylinder TC(6, 5)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

Fat Cylinder FC(6, 5) Torus T (6, 5)

ANALCO’05 – p.4/43

Four Graphs

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

Grid Graph G(6, 5) Thin Cylinder TC(6, 5)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

Fat Cylinder FC(6, 5) Torus T (6, 5)

ANALCO’05 – p.4/43

The Problem
Fix a structure type S , e.g, spanning trees (ST),

Hamiltonian paths, independent sets, etc..

Let G be one of the four graphs introduced.

Let SG(n,m) be set of S structures in graph G(n,m).
e.g., STT (m,n) is set of spanning trees in n×m torus.

Generic problem: For fixed S,G, calculate |SG(n,m)|

“Usual” problem:
For fixed S,G and fixed m (height):

(i) derive closed form for f(n) = |SG(n,m)|
(ii) show that f(n) satisfies constant-order

linear recurrence relation (RR)

ANALCO’05 – p.5/43

The Problem
Fix a structure type S , e.g, spanning trees (ST),

Hamiltonian paths, independent sets, etc..

Let G be one of the four graphs introduced.

Let SG(n,m) be set of S structures in graph G(n,m).
e.g., STT (m,n) is set of spanning trees in n×m torus.

Generic problem: For fixed S,G, calculate |SG(n,m)|

“Usual” problem:
For fixed S,G and fixed m (height):

(i) derive closed form for f(n) = |SG(n,m)|
(ii) show that f(n) satisfies constant-order

linear recurrence relation (RR)

ANALCO’05 – p.5/43

History
Came to this problem via circulant graphs (see later).

Reviewing literature noted large number of
such results on grids for many different structures

most using same technique (transfer matrix),
many without knowing about other papers,

or that technique is well-known
Almost no results on tori.

This paper:
(i) survey of results, put all into same general framework
(ii) one “new” result (Eulerian Tours on tori)
(iii) observation that, with small twist,

framework will work for tori (and cylinders) as well,
so all structures can be counted on tori (cylinders).

(iv) uses general framework to introduce open questions.

ANALCO’05 – p.6/43

History
Came to this problem via circulant graphs (see later).

Reviewing literature noted large number of
such results on grids for many different structures

most using same technique (transfer matrix),
many without knowing about other papers,

or that technique is well-known
Almost no results on tori.

This paper:
(i) survey of results, put all into same general framework
(ii) one “new” result (Eulerian Tours on tori)
(iii) observation that, with small twist,

framework will work for tori (and cylinders) as well,
so all structures can be counted on tori (cylinders).

(iv) uses general framework to introduce open questions.

ANALCO’05 – p.6/43

Outline

1. Introduction:

Graphs & Problems

2. Survey of Results

3. The Transfer Matrix Technique

4. Related Work & Open Problems

ANALCO’05 – p.7/43

Counting Structures in Grids

Independent Sets/2D (1,∞) RLL codes

Dimer Matchings

Hamilton Cycles

Spanning Trees/Forests

Eulerian Orientations/Ice Condition

Eulerian Tour

Cycle Covers/Directed Cycle Covers

Acyclic Orientations

Colorings

ANALCO’05 – p.8/43

Independent Sets

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

Two independent sets of G(6, 5):

ANALCO’05 – p.9/43

Independent Sets
An Independent Set is a set of vertices s.t.

V ′ ⊆ V s. t. ∀u, v ∈ V ′, (u, v) /∈ E.

Independent sets in grid graphs are in 1-1 correspondence
with 2-Dimensional (1,∞) run-length limited codes.

K. Engel On the Fibonacci number of an M ×N lattice 1990

N. Calkin and H. Wilf The number of independent sets in a grid
graph. 1998

A. Kato and K. Zeger On the capacity of two-dimensional
run-length constrained channels. 1999

R. M. Roth et al. Efficient coding schemes for the hard-square
model. 2001

S. Halevy et al. Improved bit-stuffing bounds on two-dimensional
constrains. 2004

ANALCO’05 – p.9/43

Dimer Matchings
A Dimer Matching is a placement of 1× 2 “dominos” that
covers G such that a domino covers nodes u, v iff (u, v) ∈ E.

Only complicated structure in which a “closed formula” is
known in m,n for counting problem in G(m,n)

H. N. V. Temperley and M. E. Fisher. Dimer problem in
statistical mechanics: an exact result. 1961

P. W. Kasteleyn. The statistics of dimers on a lattice, i. the
number of dimer arrangements on a quadratic lattice. 1961

R. Stanley. On dimer coverings of rectangles of fixed width.
1985

ANALCO’05 – p.10/43

Hamiltonian Cycles

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

Two Hamiltonian cycles of G(6, 5):

ANALCO’05 – p.11/43

Hamiltonian Cycles
A simple cycle that contains all of the vertices.

Y. H. Kwong and D. G. Rogers. A matrix method for counting
Hamiltonian cycles on a grid graphs. 1994

R. Stoyan and V. Strehl. Enumerations of Hamiltonian circuits
in rectangular grids. 1996
nice use of Motzkin words to enumerate “states”

ANALCO’05 – p.11/43

Spanning Trees (Forests)

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

Two spanning trees of G(6, 5):

ANALCO’05 – p.12/43

Spanning Trees (Forests)
A Spanning Tree is a connected acyclic subgraph containing
all vertices.

C. Merino and Welsh. Forest, colourings and acyclic
orientations of the square lattice. 1999

R. Shrock and F. Y. Wu. Spanning trees on graphs and lattices
in d dimensions. 2000

M. Desjarlais and R. Molina. Counting spanning trees in grid
graphs. 2000

ANALCO’05 – p.12/43

Eulerian Orientations/Ice Condition
A simple example for T (6, 5):

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

ANALCO’05 – p.13/43

Eulerian Orientations/Ice Condition
An Eulerian Orientation (EO) is orientation of edges in which
every vertex has indegree = outdegree = 2
(only defined for tori).

E. Lieb. The residual entropy of square ice. 1967

Lieb calculates closed form for entropy,

lim
n,m→∞

|EOT (m,n)|1/mn

Corresponding limit is not known for any other problem,
despite extensive study for Independent sets

(this is Fibonacci number of graph and

exp of capacity of 2D RLL (1,∞)-codes)

ANALCO’05 – p.13/43

Eulerian Tour
An Eulerian Tour is an orientation of the edges along with a
cyclical ordering of the edges such that the source of each
edge is equal of the sink of its predecessor (only defined for
tori).

this paper.

ANALCO’05 – p.14/43

Cycle Covers/Directed Cycle Cover
A Cycle Cover is a collection of simple cycles that together
contain each vertex exactly once.

A Directed Cycle Cover is a Cycle Cover along with an
orientation (clockwise/counterclockwise) of each vertex.

H. L. Abbott and J. W. Moon. On the number of cycle covers
of the rectangular grid graph. 1999

ANALCO’05 – p.15/43

Acyclic Orientations
An Acyclic Orientation is an orientation of the edges that
contains no directed cycle.

C. Merino and Welsh. Forests, colourings and acyclic
orientations of the square lattice. 1999

N. Calkin et al. Improved bounds for the number of forests and
acyclic orientations in the square lattice. 2003

ANALCO’05 – p.16/43

k Colorings
A k Coloring is a function f : E → {1, . . . , k} such that if
(u, v) ∈ E then f(u) 6= f(v).

C. Merino and Welsh. Forests, colourings and acyclic
orientations of the square lattice. 1999

ANALCO’05 – p.17/43

Outline

1. Introduction: Graphs & Problems

2. Survey of Results

3. The Transfer Matrix Technique

4. Related Work & Open Problems

ANALCO’05 – p.18/43

Structural Properties of the Graphs
G(n+ 1,m) can be built recursively from size n grid

(and TC(n+ 1,m) from size n thin-cylinder)
by adding constant # of edges (independent of value of n)
to right side.

This is property used by most papers to derive
recurrence relation (RR) on f(n) for G and TC.

FC(n,m) can be built from G(n,m)
(and T (n,m) built from TC(n,m))
by adding constant # of edges, indep. of value of n.
These are “hooking” edges,

connecting left border to right

This is property we can use to derive RR for f(n)
when graph is FC and T .

ANALCO’05 – p.19/43

Structural Properties of the Graphs
G(n+ 1,m) can be built recursively from size n grid

(and TC(n+ 1,m) from size n thin-cylinder)
by adding constant # of edges (independent of value of n)
to right side.

This is property used by most papers to derive
recurrence relation (RR) on f(n) for G and TC.

FC(n,m) can be built from G(n,m)
(and T (n,m) built from TC(n,m))
by adding constant # of edges, indep. of value of n.
These are “hooking” edges,

connecting left border to right

This is property we can use to derive RR for f(n)
when graph is FC and T .

ANALCO’05 – p.19/43

Recursive Construction

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

(0,4) (1,4) (2,4) (3,4)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

(0,4) (1,4) (2,4) (3,4)

EG(n + 1, m) = EG(n, m) ∪ RtG(n, m)

ETC(n + 1, m) = ETC(n, m) ∪ RtTC(n, m)

ANALCO’05 – p.20/43

Recursive Construction

(4,0)

(4,1)

(4,2)

(4,3)

(4,4)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

(0,4) (1,4) (2,4) (3,4)

(4,0)

(4,1)

(4,2)

(4,3)

(4,4)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

(0,4) (1,4) (2,4) (3,4)

EG(n + 1, m) = EG(n, m) ∪ RtG(n, m)

ETC(n + 1, m) = ETC(n, m) ∪ RtTC(n, m)

ANALCO’05 – p.20/43

Recursive Construction

(5,0)

(5,1)

(5,2)

(5,3)

(5,4)

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,3) (1,3) (2,3) (3,3) (4,3)

(0,4) (1,4) (2,4) (3,4) (4,4)

(5,0)

(5,1)

(5,2)

(5,3)

(5,4)

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,3) (1,3) (2,3) (3,3) (4,3)

(0,4) (1,4) (2,4) (3,4) (4,4)

EG(n + 1, m) = EG(n, m) ∪ RtG(n, m)

ETC(n + 1, m) = ETC(n, m) ∪ RtTC(n, m)

ANALCO’05 – p.20/43

EFC(n, m) = EG(n, m) ∪ Side(n, m)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

Grid Graph G(5, 5) Grid Graph G(6, 5)

ANALCO’05 – p.21/43

EFC(n, m) = EG(n, m) ∪ Side(n, m)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

Fat Cylinder FC(5, 5) Fat Cylinder FC(6, 5)

Side(n,m) is independent of n

ANALCO’05 – p.21/43

ET (n, m) = EG(n, m) ∪ Top(n, m) ∪ Side(n, m)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

Thin Cylinder FC(5, 5) Thin Cylinder FC(6, 5)

ANALCO’05 – p.22/43

ET (n, m) = EG(n, m) ∪ Top(n, m) ∪ Side(n, m)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,3) (1,3)

(0,4) (1,4)

(n-1,0)

(n-1,1)

(n-1,2)

(n-1,3)

(n-1,4)

Torus T (5, 5) Torus T (6, 5)

Side(n,m) are independent of n

ANALCO’05 – p.22/43

Recursively Constructable Graphs
A family Gn of graphs is recursive if its Tutte
polynomial satisfies a linear recurrence relation
with polynomial coefficients.
Biggs,Damerell, Sands (1972)

In this case the number of spanning trees and
acyclic orientations will also satisfy a recurrence
relation.

ANALCO’05 – p.23/43

Recursively Constructable Graphs
We have seen that for G ∈ {G,FC, TC, T},
G(n+ 1,m) can be built from G(n,m) by
adding & subtracting a constant set of edges indep. of n

Such graphs were recently (2004) labelled
recursively constructable by Noy and Ribó who showed that

recursively constructable implies recursive
(and used grids, tori and cylinders as examples)

This immediately implies some of the results in the survey
but not others.

We now show that, as long as they obey a small # of
abstract properties, many other structures can be directly
counted by using the transfer matrix method.

ANALCO’05 – p.23/43

Legal objects and a ST example
Fix m; Define L(n,m), the set of legal objects in G(n,m);

superset of set of (good) S-structures.

For ST in G(n,m), legal objects are forests in which
each component contains at least one “side” vertex.

Define P, set of object Classifications.
For L ∈ L(n,m), C(L) ∈ P.

∀ structures S, and legal objects L,
if C(L) = C(S) ⇒ L is a structure.

Define LX(n,m) = {L ∈ L(n,m), C(L) = X}.

Important: Classification does not depend upon value of n.

In ST , classification of L is
partition of side nodes induced by components of L

ANALCO’05 – p.24/43

Legal objects and a ST example
Fix m; Define L(n,m), the set of legal objects in G(n,m);

superset of set of (good) S-structures.

For ST in G(n,m), legal objects are forests in which
each component contains at least one “side” vertex.

Define P, set of object Classifications.
For L ∈ L(n,m), C(L) ∈ P.

∀ structures S, and legal objects L,
if C(L) = C(S) ⇒ L is a structure.

Define LX(n,m) = {L ∈ L(n,m), C(L) = X}.

Important: Classification does not depend upon value of n.

In ST , classification of L is
partition of side nodes induced by components of L

ANALCO’05 – p.24/43

Legal objects and a ST example
Fix m; Define L(n,m), the set of legal objects in G(n,m);

superset of set of (good) S-structures.

For ST in G(n,m), legal objects are forests in which
each component contains at least one “side” vertex.

Define P, set of object Classifications.
For L ∈ L(n,m), C(L) ∈ P.

∀ structures S, and legal objects L,
if C(L) = C(S) ⇒ L is a structure.

Define LX(n,m) = {L ∈ L(n,m), C(L) = X}.

Important: Classification does not depend upon value of n.

In ST , classification of L is
partition of side nodes induced by components of L

ANALCO’05 – p.24/43

Legal objects and a ST example
Fix m; Define L(n,m), the set of legal objects in G(n,m);

superset of set of (good) S-structures.

For ST in G(n,m), legal objects are forests in which
each component contains at least one “side” vertex.

Define P, set of object Classifications.
For L ∈ L(n,m), C(L) ∈ P.

∀ structures S, and legal objects L,
if C(L) = C(S) ⇒ L is a structure.

Define LX(n,m) = {L ∈ L(n,m), C(L) = X}.

Important: Classification does not depend upon value of n.

In ST , classification of L is
partition of side nodes induced by components of L

ANALCO’05 – p.24/43

Objects with same classification

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

n = 4

X = { {(0, 0), (0, 2), (n− 1, 2)}, {(0, 1)}, {(n− 1, 0), (n− 1, 1)} }

ANALCO’05 – p.25/43

Objects with same classification

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

n = 4

X = { {(0, 0), (0, 1), (0, 2)}, {(n− 1, 0)}, {(n− 1, 1), (n− 1, 2)} }

ANALCO’05 – p.26/43

Another required property
Let E ⊆ RtG(n,m). If L ∈ L(n,m) ⇒ L ∪ E ⊆ G(n+ 1,m)

If L1, L2 ∈ LX(n,m) for some X ∈ P then
(i) either both L1 ∪ E and L2 ∪ E are not legal
(ii) or both are legal and, for some Y ∈ P ,

C(L1 ∪ E) = C(L2 ∪ E) = Y

We then write X ∪ E = Y .

In spanning tree case if L1, L2 are
legal forests in G(n,m) with same classification then

(i) either both L1 ∪E and L2 ∪E are not forests in G(n+ 1,m)
(ii)or both are legal forests in G(n+ 1,m) and

they have the same classification.

ANALCO’05 – p.27/43

Another required property
Let E ⊆ RtG(n,m). If L ∈ L(n,m) ⇒ L ∪ E ⊆ G(n+ 1,m)

If L1, L2 ∈ LX(n,m) for some X ∈ P then
(i) either both L1 ∪ E and L2 ∪ E are not legal
(ii) or both are legal and, for some Y ∈ P ,

C(L1 ∪ E) = C(L2 ∪ E) = Y

We then write X ∪ E = Y .

In spanning tree case if L1, L2 are
legal forests in G(n,m) with same classification then

(i) either both L1 ∪E and L2 ∪E are not forests in G(n+ 1,m)
(ii)or both are legal forests in G(n+ 1,m) and

they have the same classification.

ANALCO’05 – p.27/43

X ∪ E = ∅

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

In G(4, 3),

X = { {(0, 0), (0, 2), (n− 1, 2)}, {(0, 1)}, {(n− 1, 0), (n− 1, 1)} }

In G(5, 3), X ∪ E is not legal.

ANALCO’05 – p.28/43

X ∪ E 6= ∅

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

In G(4, 3),

X = { {(0, 0), (0, 2), (n− 1, 2)}, {(0, 1)}, {(n− 1, 0), (n− 1, 1)} }

In G(5, 3), X ∪ E =

X ′ = { {(0, 0), (0, 2), (n− 1, 1), (n− 1, 2)}, {(0, 1)}, {(n− 1, 0)} }

ANALCO’05 – p.29/43

Final property
If L is legal in L(n+ 1,m) then

L− RtG(n,m) is legal in L(n,m)

So,all legal objects in G(n+ 1,m)
can be built from legal objects in G(n,m)

For spanning trees this means that
if L is a forest in G(n+ 1,m) in which

each component contains at least one side vertex
and the rightmost comb is removed

then what remains is a forest with the same property.

ANALCO’05 – p.30/43

Final property
If L is legal in L(n+ 1,m) then

L− RtG(n,m) is legal in L(n,m)

So,all legal objects in G(n+ 1,m)
can be built from legal objects in G(n,m)

For spanning trees this means that
if L is a forest in G(n+ 1,m) in which

each component contains at least one side vertex
and the rightmost comb is removed

then what remains is a forest with the same property.

ANALCO’05 – p.30/43

ST Example

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

In G(4, 3), X =
{ {(0, 0), (0, 2), (n− 1, 2)}, {(0, 1)}, {(n− 1, 0), (n− 1, 1)} }

In G(3, 3) (left), X =
{ {(0, 0), (0, 2), (n− 1, 2)}, {(0, 1)}, {(n− 1, 0), (n− 1, 1)} }

In G(3, 3) (right),

X = { {(0, 0), (0, 2), (n− 1, 0), (n− 1, 1), (n− 1, 2)}, {(0, 1)}}

ANALCO’05 – p.31/43

ST Example

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

In G(4, 3), X =
{ {(0, 0), (0, 2), (n− 1, 2)}, {(0, 1)}, {(n− 1, 0), (n− 1, 1)} }

In G(3, 3) (left), X =
{ {(0, 0), (0, 2), (n− 1, 2)}, {(0, 1)}, {(n− 1, 0), (n− 1, 1)} }

In G(3, 3) (right),

X = { {(0, 0), (0, 2), (n− 1, 0), (n− 1, 1), (n− 1, 2)}, {(0, 1)}}

ANALCO’05 – p.31/43

Calculating f (n) in Grid Graphs
fX(n) = |LX(m,n)|. ~f(n) = (fX(n))X∈P

Let aY,X = |{E ⊆ RtG(n,m) : X ∪ E = Y }.
A =

(

aY,X

)

Y,X∈P
is the Transfer Matrix

Then ~f(n+ 1) = A~f(n), so ~f(n) = An−2 ~f(2)

Recall L is a structure iff C(L) is good.
Then f(n) =

∑

Xgood fX(n).

Set bX = 1 if X good, bX = 0 otherwise. ~b = (bX)X∈P

Then f(n) = ~btAn−2f(2) and
f(n) satisfies RR; At worst, minimal polynomial of A.

ANALCO’05 – p.32/43

Calculating f (n) in FC
For FC, need 2 more properties (in addition to grid ones).

If L is a good structure in FC(n,m)
L− Side(n,m) is a legal object in G(n,m).

In ST this just means that deleting the edges hooking left & right
from a spanning tree in FC(n,m) leaves a legal object in G(n,m).

Let E ⊆ Side(n,m) and X ∈P . ∀L ∈LX (n,m) either
(i) all L ∪ E are good structures in FC(n,m), (X ∪ E good)
(ii) or no L ∪ E is a good structures in FC(n,m)

In Spanning tree case this just says that if L1, L2 legal forests in
G(n,m) with C(L1) = C(L2), and E ∈ Side(n,m) then either
(i) both L1 ∪ E and L2 ∪ E are ST in FC(n,m) or (ii) neither are

ANALCO’05 – p.33/43

Calculating f (n) in FC
For FC, need 2 more properties (in addition to grid ones).

If L is a good structure in FC(n,m)
L− Side(n,m) is a legal object in G(n,m).

In ST this just means that deleting the edges hooking left & right
from a spanning tree in FC(n,m) leaves a legal object in G(n,m).

Let E ⊆ Side(n,m) and X ∈P . ∀L ∈LX (n,m) either
(i) all L ∪ E are good structures in FC(n,m), (X ∪ E good)
(ii) or no L ∪ E is a good structures in FC(n,m)

In Spanning tree case this just says that if L1, L2 legal forests in
G(n,m) with C(L1) = C(L2), and E ∈ Side(n,m) then either
(i) both L1 ∪ E and L2 ∪ E are ST in FC(n,m) or (ii) neither are

ANALCO’05 – p.33/43

Calculating f (n) in FC
For FC, need 2 more properties (in addition to grid ones).

If L is a good structure in FC(n,m)
L− Side(n,m) is a legal object in G(n,m).

In ST this just means that deleting the edges hooking left & right
from a spanning tree in FC(n,m) leaves a legal object in G(n,m).

Let E ⊆ Side(n,m) and X ∈P . ∀L ∈LX (n,m) either
(i) all L ∪ E are good structures in FC(n,m), (X ∪ E good)
(ii) or no L ∪ E is a good structures in FC(n,m)

In Spanning tree case this just says that if L1, L2 legal forests in
G(n,m) with C(L1) = C(L2), and E ∈ Side(n,m) then either
(i) both L1 ∪ E and L2 ∪ E are ST in FC(n,m) or (ii) neither are

ANALCO’05 – p.33/43

Calculating f (n) in FC
For FC, need 2 more properties (in addition to grid ones).

If L is a good structure in FC(n,m)
L− Side(n,m) is a legal object in G(n,m).

In ST this just means that deleting the edges hooking left & right
from a spanning tree in FC(n,m) leaves a legal object in G(n,m).

Let E ⊆ Side(n,m) and X ∈P . ∀L ∈LX (n,m) either
(i) all L ∪ E are good structures in FC(n,m), (X ∪ E good)
(ii) or no L ∪ E is a good structures in FC(n,m)

In Spanning tree case this just says that if L1, L2 legal forests in
G(n,m) with C(L1) = C(L2), and E ∈ Side(n,m) then either
(i) both L1 ∪ E and L2 ∪ E are ST in FC(n,m) or (ii) neither are

ANALCO’05 – p.33/43

Example: adding different E

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

X =
{ {(0, 0), (0, 2), (n− 1, 2)}, {(0, 1)}, {(n− 1, 0), (n− 1, 1)} }

X ∪ { ((0, 0), (3, 0)), ((0, 1), (3, 1)) } is a spanning tree.

X ∪ { ((0, 1), (3, 1)), ((0, 2), (3, 2)) } is NOT a spanning tree.

ANALCO’05 – p.34/43

Adding E to 2 objects with same X

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

X =
{ {(0, 0), (0, 2), (n− 1, 2)}, {(0, 1)}, {(n− 1, 0), (n− 1, 1)} }

X ∪ { ((0, 1), (3, 1)), ((0, 2), (3, 2)) } is not a spanning tree.

ANALCO’05 – p.35/43

Calculating f (n) in FC (cont)
Previously defined fX(n) = |LX(m,n)| and

~f(n) = (fX(n))X∈P

Already saw ~f(n) = An−2 ~f(2) and, when counting ST
in Grid Graphs, f(n) = ~btAn−2 ~f(2)

Define cX = |{E ⊆ Side(n,m) : X ∪ E good}|
~c = (cX)X∈P

Then, when counting ST in Fat Cylinders,
f(n) =

∑

X∈P cXfX(n) or f(n) = ~ctAn−2 ~f(2)

ANALCO’05 – p.36/43

The Punchlines (new)
All structures in survey satisfy given abstract properties.
Therefore, general technique can be used for all of them.
In particular,

Grids and FC always share same transfer matrix.

Note: Simple observation but doesn’t seem to have been
explicitly noted before. Probably because, when
concentrating specifically on grid graph„ there is a different
natural transfer matrix

For all structures can also show that
1st properties hold for TC and 2nd properties for tori.

Thus, counting in TC and Tori can be done using the same
transfer matrix (different from the G/FC one).

ANALCO’05 – p.37/43

Outline

1. Introduction: Graphs & Problems

2. Survey of Results

3. The Transfer Matrix Technique

4. Related Work & Open Problems

ANALCO’05 – p.38/43

Comparing f (n) for different graphs
Have seen that f(n) = ~atAn~b; ⇒ f(n) satisfies RR
~a, A and b depend upon structure and graph

A, b are the same for Grids/FC and also for TC/Tori.

How do f(n) of Grids & TC compare? Of TC & Tori?
How do RR of Grids & TC compare? Of TC & Tori?
Asymptotics of f(n) (RR)?

We calculated f(n) for ST for all four graphs for n× 3.
Saw that RR for Grids “divided” RR for FC.

RR for TC “divided” RR for Tori.
Also, for appropriate φi, ci, c

′
i, i = 1, 2.

STG(n, 3) ∼ c1φ
n
1
, STFC(n, 3) ∼ c′

1
nφn

1
,

STTC(n, 3) ∼ c2φ
n
2
, STT (n, 3) ∼ c′

2
nφn

2

ANALCO’05 – p.39/43

Comparing f (n) for different graphs
Have seen that f(n) = ~atAn~b; ⇒ f(n) satisfies RR
~a, A and b depend upon structure and graph

A, b are the same for Grids/FC and also for TC/Tori.

How do f(n) of Grids & TC compare? Of TC & Tori?
How do RR of Grids & TC compare? Of TC & Tori?
Asymptotics of f(n) (RR)?

We calculated f(n) for ST for all four graphs for n× 3.
Saw that RR for Grids “divided” RR for FC.

RR for TC “divided” RR for Tori.
Also, for appropriate φi, ci, c

′
i, i = 1, 2.

STG(n, 3) ∼ c1φ
n
1
, STFC(n, 3) ∼ c′

1
nφn

1
,

STTC(n, 3) ∼ c2φ
n
2
, STT (n, 3) ∼ c′

2
nφn

2

ANALCO’05 – p.39/43

Circulant Graphs and Tori
The Circulant Graph, Cs1,s2,...,sk

n has

V = {0, . . . , n− 1}, E = {(i, j) : |i− j| ∈ {s1, s2, . . . , sk} }

The si are jumps on the circle.

Circulant Graph C1,n
mn is identical to torus

except for side edges
all of whose left endpoints are shifted up by one.

Is it possible to extend Lieb’s result exactly calculating the
“entropy” of the Eulerian Orientations of the torus to these
circulant graphs?

ANALCO’05 – p.40/43

Circulant Graphs and Tori

0 1

2

3

4

5

6
78

9

10

11

12

13

14 (0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

Torus T (5, 3)

Circulant Graph C
1,n
3n for n = 5, both in circular form and lattice form.

ANALCO’05 – p.41/43

State Space/Eigenspace Reduction
The largest “practical” drawback to the technique is

large state space (# of classifications).
This tends to grow exponentially (or worse!) with m.

In general, very little can be done about this.
But, for many individual problems, reducing the state space
can be a challenging (and fun) problem.

Example 2: For many problems it is possible to show that
transfer matrix has a special structure, reducing the size of
the characteristic polynomial of the transfer matrix.

Strongly related to work done by Minc in the 80’s on
calculating the permanent of circulant 0-1 matrices.

ANALCO’05 – p.42/43

State Space/Eigenspace Reduction
The largest “practical” drawback to the technique is

large state space (# of classifications).
This tends to grow exponentially (or worse!) with m.

In general, very little can be done about this.
But, for many individual problems, reducing the state space
can be a challenging (and fun) problem.

Example 1: For Hamiltonian Cycles on Grids, Stoyan &
Strehl showed correspondence between reachable states
in state space and Motzkin words (reducing state space)

Example 2: For many problems it is possible to show that
transfer matrix has a special structure, reducing the size of
the characteristic polynomial of the transfer matrix.

Strongly related to work done by Minc in the 80’s on
calculating the permanent of circulant 0-1 matrices.

ANALCO’05 – p.42/43

State Space/Eigenspace Reduction
The largest “practical” drawback to the technique is

large state space (# of classifications).
This tends to grow exponentially (or worse!) with m.

In general, very little can be done about this.
But, for many individual problems, reducing the state space
can be a challenging (and fun) problem.

Example 2: For many problems it is possible to show that
transfer matrix has a special structure, reducing the size of
the characteristic polynomial of the transfer matrix.

Strongly related to work done by Minc in the 80’s on
calculating the permanent of circulant 0-1 matrices.

ANALCO’05 – p.42/43

Outline

1. Introduction: Graphs & Problems

2. Survey of Results

3. The Transfer Matrix Technique

4. Related Work & Open Problems

5. Questions?

ANALCO’05 – p.43/43

	Outline
	Four Graphs & a Problem
	Four Graphs
	The Problem
	History
	Outline
	Counting Structures in Grids
	Independent Sets
	Dimer Matchings
	Hamiltonian Cycles
	Spanning Trees (Forests)
	Eulerian Orientations/Ice Condition
	Eulerian Tour
	Cycle Covers/Directed Cycle Cover
	Acyclic Orientations
	k Colorings
	Outline
	Structural Properties of the Graphs
	Recursive Construction
	$E_{FC}(n,m)
= E_G(n,m) cup mbox {	t Side}(n,m)$
	
ormalsize $E_T(n,m)
= E_{G}(n,m) cup mbox {	t Top}(n,m) cup mbox {	t Side}(n,m)$
	Recursively Constructable Graphs
	�lue {Legal objects} �lack {and a}
ed {ST example}
	Objects with same classification
	Objects with same classification
	Another required property
	$X cup E = emptyset $
	$X cup E
ot = emptyset $
	Final property
	ST Example
	Calculating $f(n)$
in Grid Graphs
	Calculating $f(n)$
in FC
	Example: adding different E
	Adding E to 2 objects with same X
	Calculating $f(n)$
in FC (cont)
	The Punchlines (new)
	Outline
	Comparing $f(n)$
for different graphs
	Circulant Graphs and Tori
	Circulant Graphs and Tori
	State Space/Eigenspace Reduction
	Outline

