
1-1

Improving Dynamic Programming

Mordecai Golin
Hong Kong UST

Last Updated 25/08/2010



2-1

Dynamic Programming

DP creates a search space and calculates optimal cost
for every item in the search space.

Optimal cost of larger items is based on optimal cost of smaller items.

Final Result: usually cost of largest item in search space.

Running time of DP algorithm, is time required to calculate all costs.



2-2

Dynamic Programming

DP creates a search space and calculates optimal cost
for every item in the search space.

Optimal cost of larger items is based on optimal cost of smaller items.

Final Result: usually cost of largest item in search space.

Running time of DP algorithm, is time required to calculate all costs.

Chain Matrix Multiplication: Finding “cheapest” way to multiply
matrices A1, . . . , An where Ai is a pi−1 × pi matrix.

m[i, j] =
{

0 if i = j
mini≤k<j m[i, k] + m[k + 1, j] + pi−1pkpj if i > j

m[i, j] is “best” way of multiplying Ai, . . . , Aj



2-3

Dynamic Programming

DP creates a search space and calculates optimal cost
for every item in the search space.

Optimal cost of larger items is based on optimal cost of smaller items.

Final Result: usually cost of largest item in search space.

Running time of DP algorithm, is time required to calculate all costs.

Chain Matrix Multiplication: Finding “cheapest” way to multiply
matrices A1, . . . , An where Ai is a pi−1 × pi matrix.

m[i, j] =
{

0 if i = j
mini≤k<j m[i, k] + m[k + 1, j] + pi−1pkpj if i > j

Want m[1, n] and corresponding set of multiplications

m[i, j] is “best” way of multiplying Ai, . . . , Aj



2-4

Dynamic Programming

DP creates a search space and calculates optimal cost
for every item in the search space.

Optimal cost of larger items is based on optimal cost of smaller items.

Final Result: usually cost of largest item in search space.

Running time of DP algorithm, is time required to calculate all costs.

Longest Common Subsequence: Find LCS of strings
X =< x1, . . . , xm >, Y =< y1, . . . , yn >.

c[i, j] =

{ 0 if i = 0 or j = 0
c[i − 1, j − 1] + 1 if i, j > 0 and xi = xj
max(c[i − 1, j], c[i, j − 1]) if i, j > 0 and xi 6= xj

c[i, j] is length of LCS of < x1, . . . , xi >, < y1, . . . , yj >.



2-5

Dynamic Programming

DP creates a search space and calculates optimal cost
for every item in the search space.

Optimal cost of larger items is based on optimal cost of smaller items.

Final Result: usually cost of largest item in search space.

Running time of DP algorithm, is time required to calculate all costs.

Longest Common Subsequence: Find LCS of strings
X =< x1, . . . , xm >, Y =< y1, . . . , yn >.

c[i, j] =

{ 0 if i = 0 or j = 0
c[i − 1, j − 1] + 1 if i, j > 0 and xi = xj
max(c[i − 1, j], c[i, j − 1]) if i, j > 0 and xi 6= xj

c[i, j] is length of LCS of < x1, . . . , xi >, < y1, . . . , yj >.

Want c[m, n] and corresponding LCS.



3-1

DP is taught to all CS undergrads.

Isn’t it well understood? What’s left to do?



3-2

DP is taught to all CS undergrads.

Isn’t it well understood? What’s left to do?

A LOT!:
There are techniques for speeding up DP computations
by an order of magnitude.
Also techniques for reducing space requirements
by an order of magnitude



3-3

DP is taught to all CS undergrads.

Isn’t it well understood? What’s left to do?

A LOT!:
There are techniques for speeding up DP computations
by an order of magnitude.
Also techniques for reducing space requirements
by an order of magnitude

Ad-hoc techniques, developed on problem-by-problem basis.
Individual techniques found wide applicability in areas outside
original application.



3-4

DP is taught to all CS undergrads.

Isn’t it well understood? What’s left to do?

A LOT!:
There are techniques for speeding up DP computations
by an order of magnitude.
Also techniques for reducing space requirements
by an order of magnitude

Ad-hoc techniques, developed on problem-by-problem basis.
Individual techniques found wide applicability in areas outside
original application.

New speedups are still being found, still on ad-hoc basis.
Crying need for a general theory of speedups, that can be
referenced by application users.



4-1

In this talk, will combine

• one well-known time speedup:
Monge Property + SMAWK algorithm and

• one basic Θ(n) space improvement
(Hirschberg 1975)



4-2

In this talk, will combine

• one well-known time speedup:
Monge Property + SMAWK algorithm and

• one basic Θ(n) space improvement
(Hirschberg 1975)

More details in:

A Dynamic Programming Approach to Length-Limited Huffman Coding:
Space Reduction With the Monge Property

M. Golin & Y. Zhang

IEEE Transactions on Information Theory, Aug 2010



5-1

Well known that, under “special”
circumstances, Dynamic Programming
can be sped up.



5-2

(a) H(i) = min
0≤j<i

(
H(j) + w(j, i)

)

Well known that, under “special”
circumstances, Dynamic Programming
can be sped up.



5-3

(a) H(i) = min
0≤j<i

(
H(j) + w(j, i)

)

Well known that, under “special”
circumstances, Dynamic Programming
can be sped up.

(b) H(i, d) = min
0≤j<i

(
H(j, d−1)+w(j, i)

)



5-4

(a) H(i) = min
0≤j<i

(
H(j) + w(j, i)

)

Well known that, under “special”
circumstances, Dynamic Programming
can be sped up.

(b) H(i, d) = min
0≤j<i

(
H(j, d−1)+w(j, i)

)

Θ(n2) time

0 ≤ i ≤ n
0 ≤ d ≤ D

0 ≤ i ≤ n

Θ(Dn2) time



5-5

(a) H(i) = min
0≤j<i

(
H(j) + w(j, i)

)

Well known that, under “special”
circumstances, Dynamic Programming
can be sped up.

(b) H(i, d) = min
0≤j<i

(
H(j, d−1)+w(j, i)

)

Θ(n2) time

0 ≤ i ≤ n
0 ≤ d ≤ D

0 ≤ i ≤ n

Θ(Dn2) time

+ Monge Property



5-6

(a) H(i) = min
0≤j<i

(
H(j) + w(j, i)

)

Well known that, under “special”
circumstances, Dynamic Programming
can be sped up.

(b) H(i, d) = min
0≤j<i

(
H(j, d−1)+w(j, i)

)

Θ(n2) time

0 ≤ i ≤ n
0 ≤ d ≤ D

0 ≤ i ≤ n

Θ(Dn2) time

+ Monge Property

Θ(n) time

Θ(Dn) time



6-1

H(i) = min
0≤j<i

(
H(j) + w(j, i)

)
H(i, d) = min

0≤j<i

(
H(j, d− 1) + w(j, i)

) 0 ≤ i ≤ n
0 ≤ d ≤ D



6-2

H(i) = min
0≤j<i

(
H(j) + w(j, i)

)
H(i, d) = min

0≤j<i

(
H(j, d− 1) + w(j, i)

) 0 ≤ i ≤ n
0 ≤ d ≤ D

n2 → n
Dn2 → Dn



6-3

H(i) = min
0≤j<i

(
H(j) + w(j, i)

)
H(i, d) = min

0≤j<i

(
H(j, d− 1) + w(j, i)

) 0 ≤ i ≤ n
0 ≤ d ≤ D

n2 → n
Dn2 → Dn

Calculating H(n, D) requires only O(n) space.

Note that storing the table uses Θ(Dn) space,
where D could be quite large.

Naive method of constructing solution from DP table,
requires backtracking through table
requires storing entire DP table
⇒ Θ(Dn) space.



6-4

H(i) = min
0≤j<i

(
H(j) + w(j, i)

)
H(i, d) = min

0≤j<i

(
H(j, d− 1) + w(j, i)

) 0 ≤ i ≤ n
0 ≤ d ≤ D

n2 → n
Dn2 → Dn

Calculating H(n, D) requires only O(n) space.

Note that storing the table uses Θ(Dn) space,
where D could be quite large.

Naive method of constructing solution from DP table,
requires backtracking through table
requires storing entire DP table
⇒ Θ(Dn) space.

Will see how to reduce this to O(n) space.



7-1

Outline

• The Monge Speedup

• Saving Space While Saving Time



8-1

The Monge Speedup
• M is an m× n matrix



8-2

The Monge Speedup
• M is an m× n matrix

• RMM (i) is column index of (rightmost) min item on row i of M .

• M is Monotone if ∀i ≤ i′, RMM (i) ≤ RMM (i′).



8-3

The Monge Speedup
• M is an m× n matrix

• RMM (i) is column index of (rightmost) min item on row i of M .

7 2 4 3 9 9
5 1 5 1 6 5
7
9
8
9

1
4
4
6

5
5
7

2 0
1

3 1
3 2
43

5 6 5
3

RMM (1) = 2

RMM (2) = 4

RMM (3) = 4

RMM (4) = 4

RMM (5) = 6

RMM (6) = 6

• M is Monotone if ∀i ≤ i′, RMM (i) ≤ RMM (i′).



8-4

The Monge Speedup
• M is an m× n matrix

• RMM (i) is column index of (rightmost) min item on row i of M .

• M is Monotone if ∀i ≤ i′, RMM (i) ≤ RMM (i′).

• 2× 2 monotone matrices have form

2 4
5

7 1
2

2 3
34 5 2

• An m× n matrix M is Totally Monotone (TM)
if every 2× 2 submatrix is Monotone.

(submatrix: not necessarily contiguous in the original matrix)

7 1
32



9-1

The SMAWK Algorithm
• Motivation:

Find all m row minima of an implicitly given m× n matrix M



9-2

The SMAWK Algorithm
• Motivation:

Find all m row minima of an implicitly given m× n matrix M

• Naive Algorithm: O(mn)



9-3

The SMAWK Algorithm
• Motivation:

Find all m row minima of an implicitly given m× n matrix M

• Naive Algorithm: O(mn)

• SMAWK Algorithm
[Aggarwal, Klawe, Moran, Shor, Wilber (1986)]

• If M is Totally Monotone,
all m row minima can be found in O(m + n) time.

• Usually m = Θ(n)
Θ(n) speedup: O(n2) down to O(n).

• See http://www.cs.ust.hk/mjg lib/Classes/COMP572 Fall07/Notes/SMAWK.pdf for proof



9-4

The SMAWK Algorithm
• Motivation:

Find all m row minima of an implicitly given m× n matrix M

• Naive Algorithm: O(mn)

• SMAWK Algorithm
[Aggarwal, Klawe, Moran, Shor, Wilber (1986)]

• If M is Totally Monotone,
all m row minima can be found in O(m + n) time.

• Usually m = Θ(n)
Θ(n) speedup: O(n2) down to O(n).

• See http://www.cs.ust.hk/mjg lib/Classes/COMP572 Fall07/Notes/SMAWK.pdf for proof

• SMAWK was culmination of decade(s) of work on similar problems;
speedups using convexity and concavity.
Has been used to speed up many DP problems, e.g., computational
geometry, bioinformatics, k-center on a line, etc.



10-1

The Monge Property

• Motivation: TM is often established via Monge property



10-2

The Monge Property

• Motivation: TM is often established via Monge property

• m× n matrix M is Monge if ∀i ≤ i′ and ∀j ≤ j′

Mi,j + Mi′,j′ ≤Mi′,j + Mi,j′



10-3

The Monge Property

• Motivation: TM is often established via Monge property

• m× n matrix M is Monge if ∀i ≤ i′ and ∀j ≤ j′

Mi,j + Mi′,j′ ≤Mi′,j + Mi,j′

• M is Monge ⇒ M is Totally Monotone



10-4

The Monge Property

• Motivation: TM is often established via Monge property

• m× n matrix M is Monge if ∀i ≤ i′ and ∀j ≤ j′

Mi,j + Mi′,j′ ≤Mi′,j + Mi,j′

• M is Monge ⇒ M is Totally Monotone

• Also, if ∀i, j, Mi,j + Mi+1,j+1 ≤Mi+1,j + Mi,j+1,
⇒ M is Monge.



10-5

The Monge Property

• Motivation: TM is often established via Monge property

• m× n matrix M is Monge if ∀i ≤ i′ and ∀j ≤ j′

Mi,j + Mi′,j′ ≤Mi′,j + Mi,j′

• M is Monge ⇒ M is Totally Monotone

• Also, if ∀i, j, Mi,j + Mi+1,j+1 ≤Mi+1,j + Mi,j+1,
⇒ M is Monge.

• ⇒ Only need to prove Monge property for
adjacent rows and columns.



11-1

An Example of a Monge Matrix



11-2

An Example of a Monge Matrix
From http://en.wikipedia.org/wiki/Monge array

To see that it’s Monge, only need to check
the 24 instances of
Mi,j + Mi+1,j+1 ≤Mi+1,j + Mi,j+1



11-3

An Example of a Monge Matrix
From http://en.wikipedia.org/wiki/Monge array

To see that it’s Monge, only need to check
the 24 instances of
Mi,j + Mi+1,j+1 ≤Mi+1,j + Mi,j+1

e.g., 10 + 22 ≤ 17 + 17



11-4

An Example of a Monge Matrix
From http://en.wikipedia.org/wiki/Monge array

To see that it’s Monge, only need to check
the 24 instances of
Mi,j + Mi+1,j+1 ≤Mi+1,j + Mi,j+1

e.g., 10 + 22 ≤ 17 + 17

Since it’s Monge, it’s Totally Monotone, so the SMAWK algo-
rithm can find the row minima in time linear in the perimeter
(not area) or the matrix!



11-5

An Example of a Monge Matrix
From http://en.wikipedia.org/wiki/Monge array

To see that it’s Monge, only need to check
the 24 instances of
Mi,j + Mi+1,j+1 ≤Mi+1,j + Mi,j+1

e.g., 10 + 22 ≤ 17 + 17

Since it’s Monge, it’s Totally Monotone, so the SMAWK algo-
rithm can find the row minima in time linear in the perimeter
(not area) or the matrix!



11-6

An Example of a Monge Matrix
From http://en.wikipedia.org/wiki/Monge array

To see that it’s Monge, only need to check
the 24 instances of
Mi,j + Mi+1,j+1 ≤Mi+1,j + Mi,j+1

e.g., 10 + 22 ≤ 17 + 17

Since it’s Monge, it’s Totally Monotone, so the SMAWK algo-
rithm can find the row minima in time linear in the perimeter
(not area) or the matrix!

Monge (or Total Monotonicity) seems an esoteric condition.
In reality, it occurs very often.

Finding row minima can be used as a DP primitive.
⇒ the SMAWK algorithm can be used to speed up many DPs.



12-1

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Using The Monge Property

Suppose we are given DP (H(i, 0) known, i ≤ n, d ≤ D):



12-2

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Using The Monge Property

Suppose we are given DP (H(i, 0) known, i ≤ n, d ≤ D):

For j < i, set Mj,i = H(j, d− 1) + w(j, i); else Mj,i =∞



12-3

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Using The Monge Property

Suppose we are given DP (H(i, 0) known, i ≤ n, d ≤ D):

For j < i, set Mj,i = H(j, d− 1) + w(j, i); else Mj,i =∞

To calculate H(∗, d), simply find row-minima in M



12-4

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Using The Monge Property

Suppose we are given DP (H(i, 0) known, i ≤ n, d ≤ D):

For j < i, set Mj,i = H(j, d− 1) + w(j, i); else Mj,i =∞

To calculate H(∗, d), simply find row-minima in M

Fact: If w(j, i) are Monge ⇒ M is Monge



12-5

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Using The Monge Property

Suppose we are given DP (H(i, 0) known, i ≤ n, d ≤ D):

For j < i, set Mj,i = H(j, d− 1) + w(j, i); else Mj,i =∞

To calculate H(∗, d), simply find row-minima in M

Fact: If w(j, i) are Monge ⇒ M is Monge

Given H(∗, d− 1), SMAWK finds all H(∗, d) in O(n) time;



12-6

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Using The Monge Property

Suppose we are given DP (H(i, 0) known, i ≤ n, d ≤ D):

For j < i, set Mj,i = H(j, d− 1) + w(j, i); else Mj,i =∞

To calculate H(∗, d), simply find row-minima in M

Fact: If w(j, i) are Monge ⇒ M is Monge

Given H(∗, d− 1), SMAWK finds all H(∗, d) in O(n) time;

H(∗, 0)
O(n)⇒ H(∗, 1)

O(n)⇒ H(∗, 2)
O(n)⇒ · · · O(n)⇒ H(∗, d)



12-7

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Using The Monge Property

Suppose we are given DP (H(i, 0) known, i ≤ n, d ≤ D):

For j < i, set Mj,i = H(j, d− 1) + w(j, i); else Mj,i =∞

To calculate H(∗, d), simply find row-minima in M

Fact: If w(j, i) are Monge ⇒ M is Monge

Given H(∗, d− 1), SMAWK finds all H(∗, d) in O(n) time;

H(∗, 0)
O(n)⇒ H(∗, 1)

O(n)⇒ H(∗, 2)
O(n)⇒ · · · O(n)⇒ H(∗, d)

So, O(Dn) time to calculate H(n, d) and we are done!



13-1

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Examples of

i ≤ n, d ≤ D



13-2

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Examples of

i ≤ n, d ≤ D

• Length Limited Huffman Codes

w(j, i) = S2j−i where Sk =
∑k

i=1 pi.

0 ≤ p1 ≤ p2 ≤ · · · ≤ pn

H(n− 1, D) is cost of min-cost D-limited code



13-3

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Examples of

i ≤ n, d ≤ D

• Length Limited Huffman Codes

w(j, i) = S2j−i where Sk =
∑k

i=1 pi.

0 ≤ p1 ≤ p2 ≤ · · · ≤ pn

H(n− 1, D) is cost of min-cost D-limited code

• Wireless mobile paging p1 ≥ p2 ≥ · · · ≥ pn ≥ 0

w(j, i) = i
(∑i

`=j+1 p`

)
H(n, D) is min expected bandwidth required to page all
items using ≤ D paging rounds



14-1

• D-Medians on a Directed Line

w1 w2 w3 w4 wn−1 wn

d1 d2 d3 dn−1

Woeginger ’00



14-2

• D-Medians on a Directed Line

w1 w2 w3 w4 wn−1 wn

d1 d2 d3 dn−1

Identify D nodes as service centers.

Nodes can only be serviced by node to their left (or themselves)
so node 1 must be a service center.

Cost of servicing request wi, is wi times distance from node i
to nearest service center.

Problem is to find location of D service centers
that minimize total service cost.

Woeginger ’00



14-3

• D-Medians on a Directed Line

w1 w2 w3 w4 wn−1 wn

d1 d2 d3 dn−1

Let H(i, d) be cost of
servicing nodes [1, i] using exactly d servers.

H(i, d) =


0 n = d
w(0, i) d = 0, i ≥ 1
min

d−1≤j<i
(H(j, d− 1) + w(j, i)), 1 ≤ d < n

w(j, i) =
∑i

l=j+1
wl(vl − vj+1), vk =

∑k−1

j=1
dj

Woeginger ’00



15-1

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Examples of

i ≤ n, d ≤ D

• Length Limited Huffman Codes

w(j, i) = S2j−i where Sk =
∑k

i=1 pi.

• Wireless mobile paging w(j, i) = i
(∑i

`=j+1
p`

)
• D-Medians on a Directed Line w(j, i) =

∑i

l=j+1
wl(vl − vj+1)



15-2

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
Examples of

i ≤ n, d ≤ D

• Length Limited Huffman Codes

w(j, i) = S2j−i where Sk =
∑k

i=1 pi.

• Wireless mobile paging w(j, i) = i
(∑i

`=j+1
p`

)
• D-Medians on a Directed Line w(j, i) =

∑i

l=j+1
wl(vl − vj+1)

All these w(j, i) = wj,i satisfy Monge property

wj,i + wj+1,i+1 ≤ wj,i+1 + wj+1,i

⇒ H(n, D) can be calculated in O(nD) time



16-1

Outline

• Review of the Monge Speedup

• Saving Space While Saving Time



17-1

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)Given a DP in the form

in which, the w(j, i) are Monge, e.g., D-limited Huffman Encoding,
D-Median on a line or Wireless Paging , the H(·, ·) table can be
filled in using only O(nD) time.

0 ≤ i ≤ n
0 ≤ d ≤ D



17-2

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)Given a DP in the form

in which, the w(j, i) are Monge, e.g., D-limited Huffman Encoding,
D-Median on a line or Wireless Paging , the H(·, ·) table can be
filled in using only O(nD) time.

0 ≤ i ≤ n
0 ≤ d ≤ D

On the other hand, finding actual “solution path” of DP, correspond-
ing to min-cost tree, median locations or paging schedule, requires
backtracking through DP table. This implies storing entire table,
using Θ(nD) space.

Furthermore, calculation of H(·, d) only requires knowledge of
H(·, d − 1). So, if H(n, D) is final goal, we can fill in table iter-
atively, for d = 1, 2, . . . , D, using only O(n) space.



18-1

Context:
H(i, d) = min

0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

D-Length-Limited Huffman Coding

w(j, i) = S2j−i where Sk =
∑k

i=1
pi.(*)



18-2

Context:
H(i, d) = min

0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

D-Length-Limited Huffman Coding

w(j, i) = S2j−i where Sk =
∑k

i=1
pi.

Larmore & Hirschberg (’90) O(nD) time, O(n) space.

Very clever special-purpose algorithm; culmination of a long
series of papers by various authors on this problem.

(*)



18-3

Context:
H(i, d) = min

0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

D-Length-Limited Huffman Coding

w(j, i) = S2j−i where Sk =
∑k

i=1
pi.

Larmore & Hirschberg (’90) O(nD) time, O(n) space.

Very clever special-purpose algorithm; culmination of a long
series of papers by various authors on this problem.

(*)

Larmore & Przytycka (’91) Derived (*) DP formulation

Easy O(nD) time (Monge) algorithm but not interesting since
it requires Θ(nD) space as well.



18-4

Context:
H(i, d) = min

0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

D-Length-Limited Huffman Coding

w(j, i) = S2j−i where Sk =
∑k

i=1
pi.

Larmore & Hirschberg (’90) O(nD) time, O(n) space.

Very clever special-purpose algorithm; culmination of a long
series of papers by various authors on this problem.

(*)

Larmore & Przytycka (’91) Derived (*) DP formulation

Easy O(nD) time (Monge) algorithm but not interesting since
it requires Θ(nD) space as well.

Would like to reduce space for (*) down to Θ(n)



19-1

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D



19-2

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

Alternative Interpretation:

Consider a layered graph in which
edges only go down one level and to
the right.



19-3

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

Alternative Interpretation:

Consider a layered graph in which
edges only go down one level and to
the right.

w
(

(d− 1, j)→ (d, i)
)

= w(j, i)



19-4

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

Alternative Interpretation:

Consider a layered graph in which
edges only go down one level and to
the right.

w
(

(d− 1, j)→ (d, i)
)

= w(j, i)

H(i, d) = cost of min-cost path from (0, 0) to (d, i).

Given row H(·, d − 1), SMAWK calculates row H(·, d) in O(n)
time. By throwing away uneeded rows, can calculate H(·, D) in
O(nD) time and O(D) space.



19-5

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

Alternative Interpretation:

Consider a layered graph in which
edges only go down one level and to
the right.

w
(

(d− 1, j)→ (d, i)
)

= w(j, i)

H(i, d) = cost of min-cost path from (0, 0) to (d, i).

Given row H(·, d − 1), SMAWK calculates row H(·, d) in O(n)
time. By throwing away uneeded rows, can calculate H(·, D) in
O(nD) time and O(D) space.



19-6

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

Alternative Interpretation:

Consider a layered graph in which
edges only go down one level and to
the right.

w
(

(d− 1, j)→ (d, i)
)

= w(j, i)

H(i, d) = cost of min-cost path from (0, 0) to (d, i).

Given row H(·, d − 1), SMAWK calculates row H(·, d) in O(n)
time. By throwing away uneeded rows, can calculate H(·, D) in
O(nD) time and O(D) space.



19-7

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

Alternative Interpretation:

Consider a layered graph in which
edges only go down one level and to
the right.

w
(

(d− 1, j)→ (d, i)
)

= w(j, i)

H(i, d) = cost of min-cost path from (0, 0) to (d, i).

Given row H(·, d − 1), SMAWK calculates row H(·, d) in O(n)
time. By throwing away uneeded rows, can calculate H(·, D) in
O(nD) time and O(D) space.



19-8

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

Alternative Interpretation:

Consider a layered graph in which
edges only go down one level and to
the right.

w
(

(d− 1, j)→ (d, i)
)

= w(j, i)

H(i, d) = cost of min-cost path from (0, 0) to (d, i).

Given row H(·, d − 1), SMAWK calculates row H(·, d) in O(n)
time. By throwing away uneeded rows, can calculate H(·, D) in
O(nD) time and O(D) space.



19-9

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

Alternative Interpretation:

Consider a layered graph in which
edges only go down one level and to
the right.

w
(

(d− 1, j)→ (d, i)
)

= w(j, i)

H(i, d) = cost of min-cost path from (0, 0) to (d, i).

Given row H(·, d − 1), SMAWK calculates row H(·, d) in O(n)
time. By throwing away uneeded rows, can calculate H(·, D) in
O(nD) time and O(D) space.



19-10

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

Alternative Interpretation:

Consider a layered graph in which
edges only go down one level and to
the right.

w
(

(d− 1, j)→ (d, i)
)

= w(j, i)

H(i, d) = cost of min-cost path from (0, 0) to (d, i).

Given row H(·, d − 1), SMAWK calculates row H(·, d) in O(n)
time. By throwing away uneeded rows, can calculate H(·, D) in
O(nD) time and O(D) space.

On the other hand, finding optimal path to H(D,n) requires
keeping entire Θ(nD) space table to backtrack through



20-1

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

We will now see how to find path
using O(D + n) space.

Modification of idea due to

Hirschberg (’75)

Munro & Ramirez (’82)



20-2

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

We will now see how to find path
using O(D + n) space.

Modification of idea due to

Hirschberg (’75)

Munro & Ramirez (’82)

Let y be below and to the right of x.
Assume existence of an oracle
Mid(x, y) that returns a midpoint
(hop distance) on some min-cost x-y
path.

x

y



21-1

Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y



21-2

Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y

We now have a simple recursive pro-
cedure for building min-cost path

Buildpath(x,y)

If yd = xd+1

return (x→ y)

else

z = Mid(x, y)

Buildpath(x,z)

Buildpath(z,y)

(0, 0)

(D, n)



21-3

Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y

We now have a simple recursive pro-
cedure for building min-cost path

Buildpath(x,y)

If yd = xd+1

return (x→ y)

else

z = Mid(x, y)

Buildpath(x,z)

Buildpath(z,y)

(0, 0)

(D, n)



21-4

Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y

We now have a simple recursive pro-
cedure for building min-cost path

Buildpath(x,y)

If yd = xd+1

return (x→ y)

else

z = Mid(x, y)

Buildpath(x,z)

Buildpath(z,y)

(0, 0)

(D, n)



21-5

Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y

We now have a simple recursive pro-
cedure for building min-cost path

Buildpath(x,y)

If yd = xd+1

return (x→ y)

else

z = Mid(x, y)

Buildpath(x,z)

Buildpath(z,y)

(0, 0)

(D, n)



21-6

Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y

We now have a simple recursive pro-
cedure for building min-cost path

Buildpath(x,y)

If yd = xd+1

return (x→ y)

else

z = Mid(x, y)

Buildpath(x,z)

Buildpath(z,y)

(0, 0)

(D, n)



21-7

Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y

We now have a simple recursive pro-
cedure for building min-cost path

Buildpath(x,y)

If yd = xd+1

return (x→ y)

else

z = Mid(x, y)

Buildpath(x,z)

Buildpath(z,y)

(0, 0)

(D, n)



21-8

Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y

We now have a simple recursive pro-
cedure for building min-cost path

Buildpath(x,y)

If yd = xd+1

return (x→ y)

else

z = Mid(x, y)

Buildpath(x,z)

Buildpath(z,y)

(0, 0)

(D, n)



22-1

Buildpath(x,y)

If yd = xd+1

return (x→ y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)



22-2

Buildpath(x,y)

If yd = xd+1

return (x→ y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: If Mid(x, y) uses O(D + n) space

⇒ Buildpath(0,F) uses O(D + n) space



22-3

Buildpath(x,y)

If yd = xd+1

return (x→ y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: If Mid(x, y) uses O(D + n) space

⇒ Buildpath(0,F) uses O(D + n) space

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time



23-1

If yd = xd+1

return (x→ y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time

Buildpath(x,y)



23-2

If yd = xd+1

return (x→ y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time

Proof: Rectangles at recursion level i are height ≤ D/2i

⇒ Total work at level i is ≤ nD/2i

⇒ Total work ≤ n

(
D

20
+

D

21
+

D

22
+

D

23
+ · · ·

)
≤ 2nD

Buildpath(x,y)



23-3

If yd = xd+1

return (x→ y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time

Proof: Rectangles at recursion level i are height ≤ D/2i

⇒ Total work at level i is ≤ nD/2i

⇒ Total work ≤ n

(
D

20
+

D

21
+

D

22
+

D

23
+ · · ·

)
≤ 2nD

Buildpath(x,y)



23-4

If yd = xd+1

return (x→ y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time

Proof: Rectangles at recursion level i are height ≤ D/2i

⇒ Total work at level i is ≤ nD/2i

⇒ Total work ≤ n

(
D

20
+

D

21
+

D

22
+

D

23
+ · · ·

)
≤ 2nD

Buildpath(x,y)



23-5

If yd = xd+1

return (x→ y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time

Proof: Rectangles at recursion level i are height ≤ D/2i

⇒ Total work at level i is ≤ nD/2i

⇒ Total work ≤ n

(
D

20
+

D

21
+

D

22
+

D

23
+ · · ·

)
≤ 2nD

Buildpath(x,y)



23-6

If yd = xd+1

return (x→ y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time

Proof: Rectangles at recursion level i are height ≤ D/2i

⇒ Total work at level i is ≤ nD/2i

⇒ Total work ≤ n

(
D

20
+

D

21
+

D

22
+

D

23
+ · · ·

)
≤ 2nD

Buildpath(x,y)



24-1

Just saw that if Mid(x, y) can be
implemented using O(D + n) space and
Area(x, y) time, then path can be built using
O(D + n) space and O(Dn) time.

x

y

There are two different methods in literature for implementing
Mid(x, y). They can both be used here, but we will use (b).

(a) Hirschberg (’75)

(b) Munro & Ramirez (’82)

For longest common subsequence problem.
Runs two modified Dijkstra’s that meet in “middle”
Every vertex had constant outdegree (≤ 3)
Used extensively in bioinformatics.

For graphs like our’s
Runs one modified Dijkstra
Uses Θ(Dn2) time (we can improve to Θ(Dn) with Monge)



25-1

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.



25-2

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.



25-3

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-4

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-5

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-6

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-7

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-8

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-9

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-10

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-11

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-12

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-13

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-14

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-15

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-16

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-17

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



25-18

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.



26-1

Implemented Mid(x, y) in O(D + n) space and Area(x, y) time



26-2

Implemented Mid(x, y) in O(D + n) space and Area(x, y) time

⇒ Buildpath(x, y) uses O(D + n) space and O(Area(x, y)) time



26-3

Implemented Mid(x, y) in O(D + n) space and Area(x, y) time

⇒ Buildpath(x, y) uses O(D + n) space and O(Area(x, y)) time

⇒ Buildpath((0, 0), (n, D)) uses O(D+n) space and O(Dn) time



26-4

Implemented Mid(x, y) in O(D + n) space and Area(x, y) time

⇒ Buildpath(x, y) uses O(D + n) space and O(Area(x, y)) time

⇒ Buildpath((0, 0), (n, D)) uses O(D+n) space and O(Dn) time

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

⇒ can calculate value of H(n, D) defined by



26-5

Implemented Mid(x, y) in O(D + n) space and Area(x, y) time

⇒ Buildpath(x, y) uses O(D + n) space and O(Area(x, y)) time

⇒ Buildpath((0, 0), (n, D)) uses O(D+n) space and O(Dn) time

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

⇒ can calculate value of H(n, D) defined by

using O(D + n) space and O(Dn) time



27-1

Outline

••• Review of the Monge Speedup

• Conclusion

• Saving Space While Saving Time



28-1

Conclusion
We just saw one technique for reducing time in dynamic
programming and another for reducing space.

There are many such DP improvement techniques.

The problem is that they’re they are all ad-hoc techniques,
primarily known to specialists.

Need to develop a general theory of DP improvements, es-
pecially speedups, that is accessible to “users”.

Goal is a recipe book that DP designers can check to see
how to speed up their application-specific problems.



28-2

Conclusion
We just saw one technique for reducing time in dynamic
programming and another for reducing space.

There are many such DP improvement techniques.

The problem is that they’re they are all ad-hoc techniques,
primarily known to specialists.

Need to develop a general theory of DP improvements, es-
pecially speedups, that is accessible to “users”.

Goal is a recipe book that DP designers can check to see
how to speed up their application-specific problems.

Thank You. Questions?



29-1

• Two-Sided Online K-Median on a Line

w1 w2 w3 w4 wn−1 wn

d1 d2 d3 dn−1

Identify k nodes as service centers. Cost of servicing request
wi, is wi times distance from node i to nearest service center.
Problem is to find location of k service centers that minimize
total service cost.

Open Question



29-2

• Two-Sided Online K-Median on a Line

w1 w2 w3 w4 wn−1 wn

d1 d2 d3 dn−1

Identify k nodes as service centers. Cost of servicing request
wi, is wi times distance from node i to nearest service center.
Problem is to find location of k service centers that minimize
total service cost.
• Naive DP: O(kn2)

• Using Monge property: O(kn)

• Online, adding new element to right: Amortized O(k)

Open Question



29-3

• Two-Sided Online K-Median on a Line

w1 w2 w3 w4 wn−1 wn

d1 d2 d3 dn−1

Identify k nodes as service centers. Cost of servicing request
wi, is wi times distance from node i to nearest service center.
Problem is to find location of k service centers that minimize
total service cost.
• Naive DP: O(kn2)

• Using Monge property: O(kn)

• Online, adding new element to right: Amortized O(k)

Online Problem: Adding new elements to right and left.
Best known is O(kn). Just as bad as reconstructing from scratch.
Is there a better way?

Open Question


