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Motivation

Nothing new: material here goes back 20-30 years.

There are two classic Dynamic Programming Speedups in the literature

Knuth-Yao Quadrangle Inequality Speedup

SMAWK Algorithm for Totally Monotone Matrices

They “feel” similar. Are they related?

Both techniques have been used quite often in improving DP algorithms
for various type of constrained source coding.
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Outline

Background
Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.
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Background

Kunth-Yao Quadrangle Inequality Speedup
D. E. Knuth (1971) and F. F. Yao (1980,1982)

Θ(n) speedup: O(n3) down to O(n2)

SMAWK Algorithm for finding
Row Minima of Totally Monotone Matrices
A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, R. Wilber (1986)

Θ(n) speedup: O(n2) down to O(n)

How are the two techniques related?
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Original Motivation
Computing Optimal Binary Search Trees (Optimal BST)

[Gilbert and Moore (1959)]
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Original Motivation
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Optimal BST
Construct a search tree for n keys

n internal nodes corresponds to successful search

n + 1 external nodes corresponds to unsuccessful search

Minimize the expected number of comparisons
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Quadrangle Inequality

Original Motivation
Computing Optimal Binary Search Trees (Optimal BST)

[Gilbert and Moore (1959)]

Optimal BST
Construct a search tree for n keys

n internal nodes corresponds to successful search

n + 1 external nodes corresponds to unsuccessful search

Minimize the expected number of comparisons

Solution: Dynamic Programming

Bi,j =

⎧⎨
⎩

w(i, j) + mini<t≤j{Bi,t−1 + Bt,j} (i < j)

0 (i = j)

for some w(i, j) that can be computed in O(1) time.
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Quadrangle Inequality

Standard Calculation

Bi,j =

⎧⎨
⎩

w(i, j) + mini<t≤j{Bi,t−1 + Bt,j} (i < j)

0 (i = j)
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Quadrangle Inequality

Standard Calculation

Bi,j =

⎧⎨
⎩

w(i, j) + mini<t≤j{Bi,t−1 + Bt,j} (i < j)

0 (i = j)

Diagonal by diagonal

An example:
n = 6

0 1 2 3 4 5 6

0 0 230

1 0 146

2 0 75

3 0 43

4 0 44

5 0 52

6 0
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Quadrangle Inequality

Standard Calculation

Bi,j =

⎧⎨
⎩

w(i, j) + mini<t≤j{Bi,t−1 + Bt,j} (i < j)

0 (i = j)

Diagonal by diagonal

An example:
n = 6

0 1 2 3 4 5 6

0 0 230 433

1 0 146 260

2 0 75 141

3 0 43 119

4 0 44 121

5 0 52

6 0
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Quadrangle Inequality

Standard Calculation

Bi,j =

⎧⎨
⎩

w(i, j) + mini<t≤j{Bi,t−1 + Bt,j} (i < j)

0 (i = j)

Diagonal by diagonal

An example:
n = 6

0 1 2 3 4 5 6

0 0 230 433 586

1 0 146 260 349

2 0 75 141 250

3 0 43 119 204

4 0 44 121

5 0 52

6 0

Quadrangle-Inequality and Total-Monotonicity – p.7/30



Quadrangle Inequality

Standard Calculation

Bi,j =

⎧⎨
⎩

w(i, j) + mini<t≤j{Bi,t−1 + Bt,j} (i < j)

0 (i = j)

Diagonal by diagonal

An example:
n = 6

0 1 2 3 4 5 6

0 0 230 433 586 698
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Standard Calculation
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⎧⎨
⎩
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0 (i = j)

Diagonal by diagonal

An example:
n = 6

0 1 2 3 4 5 6
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Quadrangle Inequality

Standard Calculation

Bi,j =

⎧⎨
⎩

w(i, j) + mini<t≤j{Bi,t−1 + Bt,j} (i < j)

0 (i = j)

Diagonal by diagonal

An example:
n = 6

0 1 2 3 4 5 6

0 0 230 433 586 698 862 1002

1 0 146 260 349 491 624

2 0 75 141 250 357

3 0 43 119 204
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Quadrangle Inequality

Standard Calculation

Bi,j =

⎧⎨
⎩

w(i, j) + mini<t≤j{Bi,t−1 + Bt,j} (i < j)

0 (i = j)

Diagonal by diagonal

An example:
n = 6

Running time:
O(n3)

0 1 2 3 4 5 6

0 0 230 433 586 698 862 1002

1 0 146 260 349 491 624

2 0 75 141 250 357

3 0 43 119 204

4 0 44 121

5 0 52

6 0
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Quadrangle Inequality

Speedup: O(n3)→ O(n2) [Knuth (1971)]

Bi,j =

⎧⎨
⎩

w(i, j) + mini<t≤j{Bi,t−1 + Bt,j} (i < j)

0 (i = j)
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KB(i, j) the index t that achieves the minimum.
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0 (i = j)

KB(i, j) the index t that achieves the minimum.
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Quadrangle Inequality

Speedup: O(n3)→ O(n2) [Knuth (1971)]

Bi,j =

⎧⎨
⎩

w(i, j) + mini<t≤j{Bi,t−1 + Bt,j} (i < j)

0 (i = j)

KB(i, j) the index t that achieves the minimum.

Theorem in [Knuth (1971)]

KB(i, j − 1) ≤ KB(i, j) ≤ KB(i + 1, j)

j − 1 j

i KB(i, j − 1) KB(i, j)

i + 1 KB(i + 1, j)
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Quadrangle Inequality

Speedup: KB(i, j − 1) ≤ KB(i, j) ≤ KB(i + 1, j)

The index table

0 1 2 3 4 5 6
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Quadrangle Inequality

Speedup: KB(i, j − 1) ≤ KB(i, j) ≤ KB(i + 1, j)

The index table

0 1 2 3 4 5 6

0 0 0 0 0 1

1 1 1 1 1 2

2 2 2 2 4

3 3 4 4

4 4 5
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Quadrangle Inequality

Speedup: KB(i, j − 1) ≤ KB(i, j) ≤ KB(i + 1, j)

The index table

0 1 2 3 4 5 6

0 0 0 0 0 1 1

1 1 1 1 1 2

2 2 2 2 4

3 3 4 4

4 4 5

5 5

6
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Quadrangle Inequality

Speedup: KB(i, j − 1) ≤ KB(i, j) ≤ KB(i + 1, j)

The index table

0 1 2 3 4 5 6

0 0 0 0 0 1 1

1 1 1 1 1 2

2 2 2 2 4

3 3 4 4

4 4 5

5 5

6

Running time: O(n3) down to O(n2)
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Quadrangle Inequality

Definition [Yao (1980, 1982)]

Function f(i, j), (0 ≤ i ≤ j ≤ n)
satisfies a Quadrangle Inequality (QI), if ∀i ≤ i′ ≤ j ≤ j′

f(i, j) + f(i′, j′) ≤ f(i′, j) + f(i, j′)
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Quadrangle Inequality

Definition [Yao (1980, 1982)]

Function f(i, j), (0 ≤ i ≤ j ≤ n)
satisfies a Quadrangle Inequality (QI), if ∀i ≤ i′ ≤ j ≤ j′

f(i, j) + f(i′, j′) ≤ f(i′, j) + f(i, j′)

j j′

i′

i
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Speedup using Quadrangle Inequality

Bi,j = w(i, j) + mini<t≤j{Bi,t−1 + Bt,j}
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(A) If w(i, j) satisfies QI (and some additional constraints),
⇒ Bi,j satisfies QI.
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⇒ KB(i, j − 1) ≤ KB(i, j) ≤ KB(i + 1, j)

In optimal BST problem,

Bi,j = w(i, j) + mini<t≤j{Bi,t−1 + Bt,j}
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Speedup using Quadrangle Inequality

Bi,j = w(i, j) + mini<t≤j{Bi,t−1 + Bt,j}

Lemmas from [Yao (1980)]

(A) If w(i, j) satisfies QI (and some additional constraints),
⇒ Bi,j satisfies QI.

(B) If Bi,j satisfies QI,
⇒ KB(i, j − 1) ≤ KB(i, j) ≤ KB(i + 1, j)

In optimal BST problem,

Bi,j = w(i, j) + mini<t≤j{Bi,t−1 + Bt,j}
The specific w(i, j) satisfies QI (and the additional constraints).
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Outline

Background
Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.
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Totally Monotone Matrices

Definition M is an m× n matrix

RMM (i) is index of minimum item of row i of M .

M is Monotone if ∀i ≤ i′, RMM (i) ≤ RMM (i′).

7 2 4 3 8 9 RMM (1) = 2

5 1 5 1 6 5 RMM (2) = 4

7 1 2 0 3 1 RMM (3) = 4

9 4 5 1 3 2 RMM (4) = 4

8 4 5 3 4 3 RMM (5) = 6

9 6 7 5 6 5 RMM (6) = 6

Quadrangle-Inequality and Total-Monotonicity – p.13/30



Totally Monotone Matrices

Definition M is an m× n matrix

RMM (i) is index of minimum item of row i of M .

M is Monotone if ∀i ≤ i′, RMM (i) ≤ RMM (i′).

7 2 4 3 8 9 RMM (1) = 2

5 1 5 1 6 5 RMM (2) = 4

7 1 2 0 3 1 RMM (3) = 4

9 4 5 1 3 2 RMM (4) = 4

8 4 5 3 4 3 RMM (5) = 6

9 6 7 5 6 5 RMM (6) = 6

An m× n matrix M is Totally Monotone (TM)
if every 2× 2 submatrix is Monotone.
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SMAWK Algorithm

Motivation
Find all m row minima of an implicitly given m× n matrix M

Naive Algorithm: O(mn)

SMAWK Algorithm
[Aggarwal, Klawe, Moran, Shor, Wilber (1986)]

If M is Totally Monotone,
all m row minima can be found in O(m + n) time.
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SMAWK Algorithm

Motivation
Find all m row minima of an implicitly given m× n matrix M

Naive Algorithm: O(mn)

SMAWK Algorithm
[Aggarwal, Klawe, Moran, Shor, Wilber (1986)]

If M is Totally Monotone,
all m row minima can be found in O(m + n) time.

Usually Θ(n) speedup: O(n2) down to O(n).
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The Monge Property

Motivation
TM property is often established via Monge property.

Definition
An m× n matrix M is Monge if ∀i ≤ i′ and ∀j ≤ j′

Mi,j + Mi′,j′ ≤Mi′,j + Mi,j′
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The Monge Property

Motivation
TM property is often established via Monge property.

Definition
An m× n matrix M is Monge if ∀i ≤ i′ and ∀j ≤ j′

Mi,j + Mi′,j′ ≤Mi′,j + Mi,j′

Theorems
M is Monge⇒M is Totally Monotone
M is Monge � M is Totally Monotone

Quadrangle-Inequality and Total-Monotonicity – p.15/30



The Monge Property

Quadrangle Inequality
Function f(i, j)
∀i ≤ i′ ≤ j ≤ j′

f(i, j) + f(i′, j′) ≤ f(i′, j) + f(i, j′)

Monge
Matrix M

∀i ≤ i′ and ∀j ≤ j′

Mi,j + Mi′,j′ ≤Mi′,j + Mi,j′
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The Monge Property

Quadrangle Inequality
Function f(i, j)
∀i ≤ i′ ≤ j ≤ j′
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Matrix M
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Used differently in literature.
QI: f(i, j) is function to be calculated.
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The Monge Property

Quadrangle Inequality
Function f(i, j)
∀i ≤ i′ ≤ j ≤ j′

f(i, j) + f(i′, j′) ≤ f(i′, j) + f(i, j′)

Monge
Matrix M

∀i ≤ i′ and ∀j ≤ j′

Mi,j + Mi′,j′ ≤Mi′,j + Mi,j′

QI vs. Monge
Different names for same type of inequality.

Used differently in literature.
QI: f(i, j) is function to be calculated.

Need all f(i, j) entries.
Monge: Mi,j implicitly given.

Only need the row minima, but not other entries.
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Relationship?

Quadrangle Inequality Totally Monotone (Monge)
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Quadrangle Inequality
A matrix to be calculated

Totally Monotone (Monge)
A matrix given implicitly
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Relationship?

Quadrangle Inequality
A matrix to be calculated
Need all O(n2) entries

Totally Monotone (Monge)
A matrix given implicitly

Need only O(n) row minima
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Quadrangle Inequality
A matrix to be calculated
Need all O(n2) entries

O(n3) to O(n2) speedup

Totally Monotone (Monge)
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Relationship?

Quadrangle Inequality
A matrix to be calculated
Need all O(n2) entries

O(n3) to O(n2) speedup

Totally Monotone (Monge)
A matrix given implicitly

Need only O(n) row minima
O(n2) to O(n) speedup

This talk
QI instance is decomposed into Θ(n) TM instances

Each TM instance requires O(n) time

⇒ QI instance requires O(n2) time in total
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Outline

Background
Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.
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Decompositions

QI instance −→ Θ(n) TM instances
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Decompositions

QI instance −→ Θ(n) TM instances

Dd decomposition
Each diagonal −→ TM instance

Lm and Rm decompositions
Lm: Each row −→ TM instance

Rm: Each column −→ TM instance
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Dd Decomposition

Dd decomposition
Each diagonal −→ TM instance

−→
←−
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Lm and Rm Decompositions (Rm shown)

Lm and Rm decompositions
Lm: Each row −→ TM instance

Rm: Each column −→ TM instance
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Lm and Rm decompositions
Lm: Each row −→ TM instance
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Dd Decomposition

Definition
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Dd Decomposition

Definition
For diagonal d, (1 ≤ d < n)

Bi,i+d = w(i, i + d) + mini<j≤i+d{Bi,j−1 + Bj,i+d}
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Dd Decomposition

Definition
For diagonal d, (1 ≤ d < n)

Bi,i+d = w(i, i + d) + mini<j≤i+d{Bi,j−1 + Bj,i+d}
Define (n− d + 1)× (n + 1) matrix Dd

Dd
i,j =

⎧⎨
⎩

w(i, i + d) + {Bi,j−1 + Bj,i+d} if 0 ≤ i < j ≤ i + d ≤ n

∞ otherwise
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Dd Decomposition
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For diagonal d, (1 ≤ d < n)

Bi,i+d = w(i, i + d) + mini<j≤i+d{Bi,j−1 + Bj,i+d}
Define (n− d + 1)× (n + 1) matrix Dd

Dd
i,j =

⎧⎨
⎩

w(i, i + d) + {Bi,j−1 + Bj,i+d} if 0 ≤ i < j ≤ i + d ≤ n

∞ otherwise

Then, Bi,i+d = min0≤j≤n Dd
i,j = minimum of row i of Dd
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Dd Decomposition

Definition
For diagonal d, (1 ≤ d < n)

Bi,i+d = w(i, i + d) + mini<j≤i+d{Bi,j−1 + Bj,i+d}
Define (n− d + 1)× (n + 1) matrix Dd

Dd
i,j =

⎧⎨
⎩

w(i, i + d) + {Bi,j−1 + Bj,i+d} if 0 ≤ i < j ≤ i + d ≤ n

∞ otherwise

Then, Bi,i+d = min0≤j≤n Dd
i,j = minimum of row i of Dd

Lemma
Dd is Monge, for each 1 ≤ d < n.
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Dd Decomposition

Definition
For diagonal d, (1 ≤ d < n)

Bi,i+d = w(i, i + d) + mini<j≤i+d{Bi,j−1 + Bj,i+d}
Define (n− d + 1)× (n + 1) matrix Dd

Dd
i,j =

⎧⎨
⎩

w(i, i + d) + {Bi,j−1 + Bj,i+d} if 0 ≤ i < j ≤ i + d ≤ n

∞ otherwise

Then, Bi,i+d = min0≤j≤n Dd
i,j = minimum of row i of Dd

Lemma
Dd is Monge, for each 1 ≤ d < n.

For fixed d, SMAWK can be used to find all the Bi,i+d in O(n) time.

⇒ O(n2) time for all Dd.
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Rm Decomposition

Definition
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Rm Decomposition

Definition
For column m, (1 ≤ m ≤ n)

Bi,m = w(i, m) + mini<j≤m{Bi,j−1 + Bj,m}
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Rm Decomposition

Definition
For column m, (1 ≤ m ≤ n)

Bi,m = w(i, m) + mini<j≤m{Bi,j−1 + Bj,m}
Define (m + 1)× (m + 1) matrix Rm

Rm
i,j =

⎧⎨
⎩

w(i, m) + {Bi,j−1 + Bj,m} if 0 ≤ i < j ≤ m

∞ otherwise
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Rm Decomposition

Definition
For column m, (1 ≤ m ≤ n)

Bi,m = w(i, m) + mini<j≤m{Bi,j−1 + Bj,m}
Define (m + 1)× (m + 1) matrix Rm

Rm
i,j =

⎧⎨
⎩

w(i, m) + {Bi,j−1 + Bj,m} if 0 ≤ i < j ≤ m

∞ otherwise

Then, Bi,m = min0<j≤m Rm
i,j

Quadrangle-Inequality and Total-Monotonicity – p.23/30



Rm Decomposition

Definition
For column m, (1 ≤ m ≤ n)

Bi,m = w(i, m) + mini<j≤m{Bi,j−1 + Bj,m}
Define (m + 1)× (m + 1) matrix Rm

Rm
i,j =

⎧⎨
⎩

w(i, m) + {Bi,j−1 + Bj,m} if 0 ≤ i < j ≤ m

∞ otherwise

Then, Bi,m = min0<j≤m Rm
i,j

Lemma
Rm is Monge, for each 1 ≤ m ≤ n.
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LARSCH Algorithm

Dd decomposition
Dd

i,j = w(i, i + d) + {Bi,j−1 + Bj,i+d} (0 ≤ i < j ≤ i + d ≤ n)

SMAWK algorithm
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Dd decomposition
Dd

i,j = w(i, i + d) + {Bi,j−1 + Bj,i+d} (0 ≤ i < j ≤ i + d ≤ n)

SMAWK algorithm

Lm and Rm decomposition
Rm

i,j = w(i, m) + {Bi,j−1 + Bj,m} (0 ≤ i < j ≤ m)
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LARSCH Algorithm

Dd decomposition
Dd

i,j = w(i, i + d) + {Bi,j−1 + Bj,i+d} (0 ≤ i < j ≤ i + d ≤ n)

SMAWK algorithm

Lm and Rm decomposition
Rm

i,j = w(i, m) + {Bi,j−1 + Bj,m} (0 ≤ i < j ≤ m)

Can not use SMAWK algorithm:
Bj,m is row minimum of row j of Rm and is therefore not known.
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LARSCH Algorithm

Dd decomposition
Dd

i,j = w(i, i + d) + {Bi,j−1 + Bj,i+d} (0 ≤ i < j ≤ i + d ≤ n)

SMAWK algorithm

Lm and Rm decomposition
Rm

i,j = w(i, m) + {Bi,j−1 + Bj,m} (0 ≤ i < j ≤ m)

Can not use SMAWK algorithm:
Bj,m is row minimum of row j of Rm and is therefore not known.

LARSCH algorithm [Larmore, Schieber (1990)]
permits calculating row minima of TM matrices in O(n) time,
even with this dependency.
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LARSCH Algorithm

Dd decomposition
Dd

i,j = w(i, i + d) + {Bi,j−1 + Bj,i+d} (0 ≤ i < j ≤ i + d ≤ n)

SMAWK algorithm

Lm and Rm decomposition
Rm

i,j = w(i, m) + {Bi,j−1 + Bj,m} (0 ≤ i < j ≤ m)

Can not use SMAWK algorithm:
Bj,m is row minimum of row j of Rm and is therefore not known.

LARSCH algorithm [Larmore, Schieber (1990)]
permits calculating row minima of TM matrices in O(n) time,
even with this dependency.

O(n) time for each column⇒ O(n2) in total.
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LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency.
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LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency.

Entries of column j can de-
pend on the row minima of
rows i where Mi,j =∞.

Green: the column j.
Red: rows that column j

can depend on.

∞

j0

0

j
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LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency.

Entries of column j can de-
pend on the row minima of
rows i where Mi,j =∞.

Green: the column j.
Red: rows that column j

can depend on.

∞

0

0
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j

Quadrangle-Inequality and Total-Monotonicity – p.25/30



LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency.

Entries of column j can de-
pend on the row minima of
rows i where Mi,j =∞.

Green: the column j.
Red: rows that column j

can depend on.

∞

0

0

j

j

Rm satisfies the condition of LARSCH.
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Outline

Background
Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.
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Online Problem
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Online Problem

Definition: Two-sided online problem
Current step: Optimal BST for Keyl, . . . , Keyr
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Online Problem

Definition: Two-sided online problem
Current step: Optimal BST for Keyl, . . . , Keyr

Next step: Add either Keyl−1 or Keyr+1.
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Online Problem

Definition: Two-sided online problem
Current step: Optimal BST for Keyl, . . . , Keyr

Next step: Add either Keyl−1 or Keyr+1.

An example

Quadrangle-Inequality and Total-Monotonicity – p.27/30



Online Problem

Definition: Two-sided online problem
Current step: Optimal BST for Keyl, . . . , Keyr

Next step: Add either Keyl−1 or Keyr+1.

An example
Input = (Keyl−1,Keyl, . . . , Keyr, Keyr+1)

1 2 3 4 5 6

1

2 0 75 141 250

3 0 43 119

4 0 44

5 0

6
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Online Problem

Definition: Two-sided online problem
Current step: Optimal BST for Keyl, . . . , Keyr

Next step: Add either Keyl−1 or Keyr+1.

An example
Input = (Keyl−1,Keyl, . . . , Keyr, Keyr+1)

1 2 3 4 5 6

1

2 0 75 141 250 357

3 0 43 119 204

4 0 44 121

5 0 52

6 0
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Online Problem

Definition: Two-sided online problem
Current step: Optimal BST for Keyl, . . . , Keyr

Next step: Add either Keyl−1 or Keyr+1.

An example
Input = (Keyl−1,Keyl, . . . , Keyr, Keyr+1)

1 2 3 4 5 6

1 0 146 260 349 491 624

2 0 75 141 250 357

3 0 43 119 204

4 0 44 121

5 0 52

6 0
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Online Algorithm

1 2 3 4 5 6

1 0 146 260 349 491 624

2 0 75 141 250 357

3 0 43 119 204

4 0 44 121

5 0 52

6 0

Using Lm and Rm decomposition
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Online Algorithm

1 2 3 4 5 6

1 0 146 260 349 491 624

2 0 75 141 250 357

3 0 43 119 204

4 0 44 121

5 0 52

6 0

Using Lm and Rm decomposition
O(n) time worst case per step.

Quadrangle-Inequality and Total-Monotonicity – p.28/30



Outline

Background
Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.
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Questions?
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