The Knuth-Yao Quadrangle Inequality Speedup is a Consequence of Total Monotonicity

Wolfgang W. Bein (University of Nevada)

Mordecai J. Golin (Hong Kong UST)

Lawrence L. Larmore (University of Nevada)

Yan Zhang (Hong Kong UST)

Motivation

- Nothing new: material here goes back 20-30 years.
- There are two classic Dynamic Programming Speedups in the literature
 - Knuth-Yao Quadrangle Inequality Speedup
 - SMAWK Algorithm for Totally Monotone Matrices
- They "feel" similar. Are they related?
- Both techniques have been used quite often in improving DP algorithms for various type of constrained source coding.

Outline

- Background
 - Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
 - SMAWK Algorithm for finding
 Row Minima of Totally Monotone (TM) Matrices
- The D^d Decomposition
 A transformation from QI to TM such that
 SMAWK solves KY problem as quickly as KY.
- The L^m and R^m Decompositions
 Another transformation from QI to TM that
 (1) implies KY speedup and (2) enables online solution.

Outline

- Background
 - Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
 - SMAWK Algorithm for finding
 Row Minima of Totally Monotone (TM) Matrices
- The D^d Decomposition
 A transformation from QI to TM such that
 SMAWK solves KY problem as quickly as KY.
- The L^m and R^m Decompositions
 Another transformation from QI to TM that
 (1) implies KY speedup and (2) enables online solution.

- Kunth-Yao Quadrangle Inequality Speedup
 - D. E. Knuth (1971) and F. F. Yao (1980,1982)
 - ullet $\Theta(n)$ speedup: $O(n^3)$ down to $O(n^2)$

- Kunth-Yao Quadrangle Inequality Speedup
 - D. E. Knuth (1971) and F. F. Yao (1980,1982)
 - $\Theta(n)$ speedup: $O(n^3)$ down to $O(n^2)$
- SMAWK Algorithm for finding Row Minima of Totally Monotone Matrices
 - A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, R. Wilber (1986)
 - $\Theta(n)$ speedup: $O(n^2)$ down to O(n)

- Kunth-Yao Quadrangle Inequality Speedup
 - D. E. Knuth (1971) and F. F. Yao (1980,1982)
 - $\Theta(n)$ speedup: $O(n^3)$ down to $O(n^2)$
- SMAWK Algorithm for finding Row Minima of Totally Monotone Matrices
 - A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, R. Wilber (1986)
 - $\Theta(n)$ speedup: $O(n^2)$ down to O(n)
- How are the two techniques related?

Original Motivation

Computing Optimal Binary Search Trees (Optimal BST) [Gilbert and Moore (1959)]

Original Motivation

Computing Optimal Binary Search Trees (Optimal BST) [Gilbert and Moore (1959)]

Optimal BST

- Construct a search tree for n keys
- n internal nodes corresponds to successful search
- > n+1 external nodes corresponds to unsuccessful search
- Minimize the expected number of comparisons

Original Motivation

Computing Optimal Binary Search Trees (Optimal BST) [Gilbert and Moore (1959)]

Optimal BST

- Construct a search tree for n keys
- n internal nodes corresponds to successful search
- > n+1 external nodes corresponds to unsuccessful search
- Minimize the expected number of comparisons

Solution: Dynamic Programming

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

for some w(i, j) that can be computed in O(1) time.

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

Standard Calculation

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

Diagonal by diagonal

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

- Diagonal by diagonal
- An example:

$$n = 6$$

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

- Diagonal by diagonal
- An example:

$$n = 6$$

	0	1	2	3	4	5	6
0	0						
1		0					
2			0				
3				0			
4					0		
5						0	
6							0

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

- Diagonal by diagonal
- An example:

$$n = 6$$

	0	1	2	3	4	5	6
0	0	230					
1		0	146				
2			0	75			
3				0	43		
4					0	44	
5						0	52
6							0

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

- Diagonal by diagonal
- An example:

$$n = 6$$

	0	1	2	3	4	5	6
0	0	230	433				
1		0	146	260			
2			0	75	141		
3				0	43	119	
4					0	44	121
5						0	52
6							0

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

- Diagonal by diagonal
- An example:

$$n = 6$$

	0	1	2	3	4	5	6
0	0	230	433	586			
1		0	146	260	349		
2			0	75	141	250	
3				0	43	119	204
4					0	44	121
5						0	52
6							0

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

- Diagonal by diagonal
- An example:

$$n = 6$$

	0	1	2	3	4	5	6
0	0	230	433	586	698		
1		0	146	260	349	491	
2			0	75	141	250	357
3				0	43	119	204
4					0	44	121
5						0	52
6							0

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

- Diagonal by diagonal
- An example:

$$n = 6$$

	0	1	2	3	4	5	6
0	0	230	433	586	698	862	
1		0	146	260	349	491	624
2			0	75	141	250	357
3				0	43	119	204
4					0	44	121
5						0	52
6							0

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

- Diagonal by diagonal
- An example:

$$n = 6$$

	0	1	2	3	4	5	6
0	0	230	433	586	698	862	1002
1		0	146	260	349	491	624
2			0	75	141	250	357
3				0	43	119	204
4					0	44	121
5						0	52
6							0

Standard Calculation

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

- Diagonal by diagonal
- An example:

$$n = 6$$

Running time:

$$O(n^3)$$

	0	1	2	3	4	5	6
0	0	230	433	586	698	862	1002
1		0	146	260	349	491	624
2			0	75	141	250	357
3				0	43	119	204
4					0	44	121
5						0	52
6							0

■ Speedup: $O(n^3) \rightarrow O(n^2)$ [Knuth (1971)]

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

■ Speedup: $O(n^3) \rightarrow O(n^2)$ [Knuth (1971)]

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

• $K_B(i,j)$ the index t that achieves the minimum.

• Speedup: $O(n^3) \rightarrow O(n^2)$ [Knuth (1971)]

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

- $K_B(i,j)$ the index t that achieves the minimum.
- Theorem in [Knuth (1971)]

$$K_B(i, j - 1) \le K_B(i, j) \le K_B(i + 1, j)$$

• Speedup: $O(n^3) \rightarrow O(n^2)$ [Knuth (1971)]

$$B_{i,j} = \begin{cases} w(i,j) + \min_{i < t \le j} \{B_{i,t-1} + B_{t,j}\} & (i < j) \\ 0 & (i = j) \end{cases}$$

- $K_B(i,j)$ the index t that achieves the minimum.
- Theorem in [Knuth (1971)]

$$K_B(i, j - 1) \le K_B(i, j) \le K_B(i + 1, j)$$

	j-1	j
i	$K_B(i,j-1)$	$K_B(i,j)$
i+1		$K_B(i+1,j)$

• Speedup: $K_B(i, j - 1) \le K_B(i, j) \le K_B(i + 1, j)$

- Speedup: $K_B(i, j 1) \le K_B(i, j) \le K_B(i + 1, j)$
- The index table

- Speedup: $K_B(i, j 1) \le K_B(i, j) \le K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0					
1			1				
2				2			
3					3		
4						4	
5							5
6							

- Speedup: $K_B(i, j 1) \le K_B(i, j) \le K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0	0				
1			1				
2				2			
3					3		
4						4	
5							5
6							

- Speedup: $K_B(i, j 1) \le K_B(i, j) \le K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0	0				
1			1	1			
2				2			
3					3		
4						4	
5							5
6							

- Speedup: $K_B(i, j 1) \le K_B(i, j) \le K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0	0				
1			1	1			
2				2	2		
3					3		
4						4	
5							5
6							

- Speedup: $K_B(i, j 1) \le K_B(i, j) \le K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0	0				
1			1	1			
2				2	2		
3					3	4	
4						4	
5							5
6							

- **Speedup:** $K_B(i, j 1) ≤ K_B(i, j) ≤ K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0	0				
1			1	1			
2				2	2		
3					3	4	
4						4	5
5							5
6							

- Speedup: $K_B(i, j 1) \le K_B(i, j) \le K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0	0				
1			1	1			
2				2	2		
3					3	4	
4						4	5
5							5
6							

- **Speedup:** $K_B(i, j 1) ≤ K_B(i, j) ≤ K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0	0	0			
1			1	1	1		
2				2	2	2	
3					3	4	4
4						4	5
5							5
6							

- **Speedup:** $K_B(i, j 1) ≤ K_B(i, j) ≤ K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0	0	0	0		
1			1	1	1	1	
2				2	2	2	4
3					3	4	4
4						4	5
5							5
6							

- **Speedup:** $K_B(i, j 1) ≤ K_B(i, j) ≤ K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0	0	0	0	1	
1			1	1	1	1	2
2				2	2	2	4
3					3	4	4
4						4	5
5							5
6							

- Speedup: $K_B(i, j 1) \le K_B(i, j) \le K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0	0	0	0	1	1
1			1	1	1	1	2
2				2	2	2	4
3					3	4	4
4						4	5
5							5
6							

- Speedup: $K_B(i, j 1) \le K_B(i, j) \le K_B(i + 1, j)$
- The index table

	0	1	2	3	4	5	6
0		0	0	0	0	1	1
1			1	1	1	1	2
2				2	2	2	4
3					3	4	4
4						4	5
5							5
6							

■ Running time: $O(n^3)$ down to $O(n^2)$

Definition [Yao (1980, 1982)]

- Definition [Yao (1980, 1982)]
 - Function $f(i,j), (0 \le i \le j \le n)$

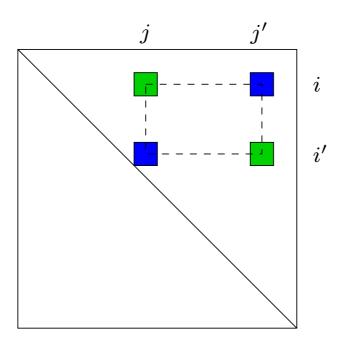
satisfies a Quadrangle Inequality (QI), if $\forall i \leq i' \leq j \leq j'$

$$f(i,j) + f(i',j') \le f(i',j) + f(i,j')$$

- Definition [Yao (1980, 1982)]
 - Function $f(i,j), (0 \le i \le j \le n)$

satisfies a Quadrangle Inequality (QI), if $\forall i \leq i' \leq j \leq j'$

$$f(i,j) + f(i',j') \le f(i',j) + f(i,j')$$



$$B_{i,j} = w(i,j) + \min_{i < t \le j} \{ B_{i,t-1} + B_{t,j} \}$$

$$B_{i,j} = w(i,j) + \min_{i < t \le j} \{ B_{i,t-1} + B_{t,j} \}$$

Lemmas from [Yao (1980)]

$$B_{i,j} = w(i,j) + \min_{i < t \le j} \{ B_{i,t-1} + B_{t,j} \}$$

- Lemmas from [Yao (1980)]
 - (A) If w(i, j) satisfies QI (and some additional constraints), $\Rightarrow B_{i,j}$ satisfies QI.

$$B_{i,j} = w(i,j) + \min_{i < t \le j} \{ B_{i,t-1} + B_{t,j} \}$$

- Lemmas from [Yao (1980)]
 - (A) If w(i,j) satisfies QI (and some additional constraints), $\Rightarrow B_{i,j}$ satisfies QI.
 - (B) If $B_{i,j}$ satisfies QI, $\Rightarrow K_B(i,j-1) \leq K_B(i,j) \leq K_B(i+1,j)$

$$B_{i,j} = w(i,j) + \min_{i < t \le j} \{ B_{i,t-1} + B_{t,j} \}$$

- Lemmas from [Yao (1980)]
 - (A) If w(i, j) satisfies QI (and some additional constraints), $\Rightarrow B_{i,j}$ satisfies QI.
 - (B) If $B_{i,j}$ satisfies QI, $\Rightarrow K_B(i,j-1) \leq K_B(i,j) \leq K_B(i+1,j)$
- In optimal BST problem,

$$B_{i,j} = w(i,j) + \min_{i < t < j} \{B_{i,t-1} + B_{t,j}\}$$

$$B_{i,j} = w(i,j) + \min_{i < t \le j} \{ B_{i,t-1} + B_{t,j} \}$$

- Lemmas from [Yao (1980)]
 - (A) If w(i, j) satisfies QI (and some additional constraints), $\Rightarrow B_{i,j}$ satisfies QI.
 - (B) If $B_{i,j}$ satisfies QI, $\Rightarrow K_B(i,j-1) \leq K_B(i,j) \leq K_B(i+1,j)$
- In optimal BST problem,

$$B_{i,j} = w(i,j) + \min_{i < t \le j} \{ B_{i,t-1} + B_{t,j} \}$$

• The specific w(i,j) satisfies QI (and the additional constraints).

Outline

- Background
 - Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
 - SMAWK Algorithm for finding
 Row Minima of Totally Monotone (TM) Matrices
- The D^d Decomposition
 A transformation from QI to TM such that
 SMAWK solves KY problem as quickly as KY.
- The L^m and R^m Decompositions
 Another transformation from QI to TM that
 (1) implies KY speedup and (2) enables online solution.

Definition

Definition M is an $m \times n$ matrix

- **Definition** M is an $m \times n$ matrix
 - $Arr RM_M(i)$ is index of minimum item of row i of M.

- **Definition** M is an $m \times n$ matrix
 - $Arr RM_M(i)$ is index of minimum item of row i of M.
 - M is Monotone if $\forall i \leq i'$, $\mathsf{RM}_M(i) \leq \mathsf{RM}_M(i')$.

- **Definition** M is an $m \times n$ matrix
 - $Arr RM_M(i)$ is index of minimum item of row i of M.
 - M is Monotone if $\forall i \leq i'$, $\mathsf{RM}_M(i) \leq \mathsf{RM}_M(i')$.

7	2	4	3	8	9
5	1	5	1	6	5
7	1	2	0	3	1
9	4	5	1	3	2
8	4	5	3	4	3
9	6	7	5	6	5

$$RM_{M}(1) = 2$$

$$\mathsf{RM}_M(2) = 4$$

$$RM_M(3) = 4$$

$$RM_M(4) = 4$$

$$RM_M(5) = 6$$

$$\mathsf{RM}_M(4) = 4$$
 $\mathsf{RM}_M(5) = 6$ $\mathsf{RM}_M(6) = 6$

- **Definition** M is an $m \times n$ matrix
 - $Arr RM_M(i)$ is index of minimum item of row i of M.
 - M is Monotone if $\forall i \leq i'$, $\mathsf{RM}_M(i) \leq \mathsf{RM}_M(i')$.

7	2	4	3	8	9
5	1	5	1	6	5
7	1	2	0	3	1
9	4	5	1	3	2
8	4	5	3	4	3
9	6	7	5	6	5

$$\mathsf{RM}_M(1) = \mathbf{2}$$

$$RM_M(2) = 4$$

$$RM_M(3) = 4$$

$$\mathsf{RM}_M(4) = \mathbf{4}$$

$$RM_M(5) = 6$$

$$RM_M(6) = 6$$

• An $m \times n$ matrix M is Totally Monotone (TM) if every 2×2 submatrix is Monotone.

Motivation

Find all m row minima of an implicitly given $m \times n$ matrix M

- Motivation
 Find all m row minima of an implicitly given $m \times n$ matrix M
- ightharpoonup Naive Algorithm: O(mn)

- Motivation
 Find all m row minima of an implicitly given $m \times n$ matrix M
- ightharpoonup Naive Algorithm: O(mn)
- SMAWK Algorithm
 [Aggarwal, Klawe, Moran, Shor, Wilber (1986)]

- Motivation
 Find all m row minima of an implicitly given $m \times n$ matrix M
- ightharpoonup Naive Algorithm: O(mn)
- SMAWK Algorithm [Aggarwal, Klawe, Moran, Shor, Wilber (1986)]
 - If M is Totally Monotone, all m row minima can be found in O(m+n) time.

- Motivation
 Find all m row minima of an implicitly given $m \times n$ matrix M
- ightharpoonup Naive Algorithm: O(mn)
- SMAWK Algorithm
 [Aggarwal, Klawe, Moran, Shor, Wilber (1986)]
 - If M is Totally Monotone, all m row minima can be found in O(m+n) time.
 - Usually $\Theta(n)$ speedup: $O(n^2)$ down to O(n).

Motivation

TM property is often established via Monge property.

Motivation

TM property is often established via Monge property.

Definition

An $m \times n$ matrix M is Monge if $\forall i \leq i'$ and $\forall j \leq j'$

$$M_{i,j} + M_{i',j'} \le M_{i',j} + M_{i,j'}$$

Motivation

TM property is often established via Monge property.

Definition

An $m \times n$ matrix M is Monge if $\forall i \leq i'$ and $\forall j \leq j'$

$$M_{i,j} + M_{i',j'} \le M_{i',j} + M_{i,j'}$$

Theorems

M is Monge $\Rightarrow M$ is Totally Monotone

M is Monge $\not\leftarrow M$ is Totally Monotone

Quadrangle Inequality

Function
$$f(i, j)$$

 $\forall i \leq i' \leq j \leq j'$
 $f(i, j) + f(i', j') \leq f(i', j) + f(i, j')$

Monge

$$\begin{aligned} & \mathsf{Matrix}\ M \\ & \forall i \leq i' \ \mathsf{and}\ \forall j \leq j' \\ & M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \end{aligned}$$

Quadrangle Inequality

Function
$$f(i, j)$$

 $\forall i \leq i' \leq j \leq j'$
 $f(i, j) + f(i', j') \leq f(i', j) + f(i, j')$

QI vs. Monge

Monge

 $\begin{aligned} & \mathsf{Matrix}\ M \\ & \forall i \leq i' \ \mathsf{and}\ \forall j \leq j' \\ & M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \end{aligned}$

Quadrangle Inequality

Function
$$f(i, j)$$

 $\forall i \leq i' \leq j \leq j'$
 $f(i, j) + f(i', j') \leq f(i', j) + f(i, j')$

Monge

 $\begin{aligned} & \text{Matrix } M \\ & \forall i \leq i' \text{ and } \forall j \leq j' \\ & M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \end{aligned}$

- QI vs. Monge
 - Different names for same type of inequality.

Quadrangle Inequality

Function
$$f(i, j)$$

 $\forall i \leq i' \leq j \leq j'$
 $f(i, j) + f(i', j') \leq f(i', j) + f(i, j')$

Monge

 $\begin{aligned} & \mathsf{Matrix}\ M \\ & \forall i \leq i' \ \mathsf{and}\ \forall j \leq j' \\ & M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \end{aligned}$

- QI vs. Monge
 - Different names for same type of inequality.
 - Used differently in literature.

The Monge Property

Quadrangle Inequality

Function
$$f(i, j)$$

 $\forall i \leq i' \leq j \leq j'$
 $f(i, j) + f(i', j') \leq f(i', j) + f(i, j')$

Monge

- QI vs. Monge
 - Different names for same type of inequality.
 - Used differently in literature.
 - QI: f(i,j) is function to be calculated.
 - ullet Monge: $M_{i,j}$ implicitly given.

The Monge Property

Quadrangle Inequality

Function f(i, j) $\forall i \leq i' \leq j \leq j'$ $f(i, j) + f(i', j') \leq f(i', j) + f(i, j')$

Monge

 $\begin{aligned} & \text{Matrix } M \\ & \forall i \leq i' \text{ and } \forall j \leq j' \\ & M_{i,j} + M_{i',j'} \leq M_{i',j} + M_{i,j'} \end{aligned}$

- QI vs. Monge
 - Different names for same type of inequality.
 - Used differently in literature.
 - QI: f(i,j) is function to be calculated. Need all f(i,j) entries.
 - Monge: $M_{i,j}$ implicitly given.

 Only need the row minima, but not other entries.

Quadrangle Inequality

Totally Monotone (Monge)

Quadrangle Inequality

A matrix to be calculated

Totally Monotone (Monge)

A matrix given implicitly

Quadrangle Inequality

A matrix to be calculated Need all $O(n^2)$ entries Totally Monotone (Monge)

A matrix given implicitly Need only O(n) row minima

Quadrangle Inequality

A matrix to be calculated Need all $O(n^2)$ entries $O(n^3)$ to $O(n^2)$ speedup

Totally Monotone (Monge)

A matrix given implicitly Need only O(n) row minima $O(n^2)$ to O(n) speedup

Quadrangle Inequality

A matrix to be calculated Need all $O(n^2)$ entries $O(n^3)$ to $O(n^2)$ speedup

This talk

Totally Monotone (Monge)

A matrix given implicitly Need only O(n) row minima $O(n^2)$ to O(n) speedup

Quadrangle Inequality

A matrix to be calculated Need all $O(n^2)$ entries $O(n^3)$ to $O(n^2)$ speedup

Totally Monotone (Monge)

A matrix given implicitly Need only O(n) row minima $O(n^2)$ to O(n) speedup

This talk

ullet QI instance is decomposed into $\Theta(n)$ TM instances

Quadrangle Inequality

A matrix to be calculated Need all $O(n^2)$ entries $O(n^3)$ to $O(n^2)$ speedup

Totally Monotone (Monge)

A matrix given implicitly Need only O(n) row minima $O(n^2)$ to O(n) speedup

This talk

- ullet QI instance is decomposed into $\Theta(n)$ TM instances
- Each TM instance requires O(n) time

Quadrangle Inequality

A matrix to be calculated Need all $O(n^2)$ entries $O(n^3)$ to $O(n^2)$ speedup

Totally Monotone (Monge)

A matrix given implicitly Need only O(n) row minima $O(n^2)$ to O(n) speedup

This talk

- ullet QI instance is decomposed into $\Theta(n)$ TM instances
- Each TM instance requires O(n) time
- ightharpoonup ightharpoonup QI instance requires $O(n^2)$ time in total

Outline

- Background
 - Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
 - SMAWK Algorithm for finding
 Row Minima of Totally Monotone (TM) Matrices
- The D^d Decomposition
 A transformation from QI to TM such that
 SMAWK solves KY problem as quickly as KY.
- The L^m and R^m Decompositions Another transformation from QI to TM that (1) implies KY speedup and (2) enables online solution.

QI instance $\longrightarrow \Theta(n)$ TM instances

QI instance $\longrightarrow \Theta(n)$ TM instances

ullet D^d decomposition

• L^m and R^m decompositions

QI instance $\longrightarrow \Theta(n)$ TM instances

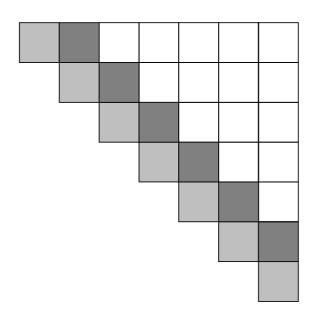
- ullet D^d decomposition
- L^m and R^m decompositions

QI instance $\longrightarrow \Theta(n)$ TM instances

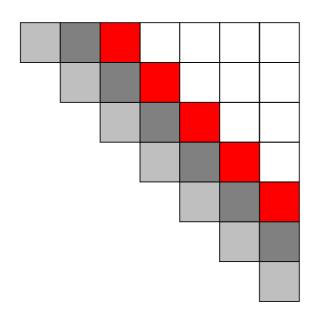
- ullet D^d decomposition
- L^m and R^m decompositions
 - L^m : Each row \longrightarrow TM instance
 - R^m : Each column \longrightarrow TM instance

- ullet D^d decomposition

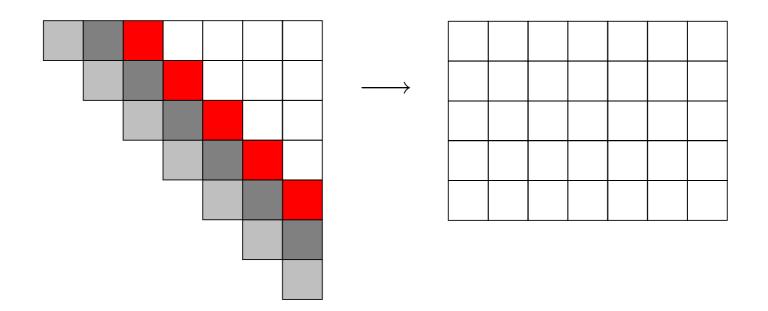
- ullet D^d decomposition



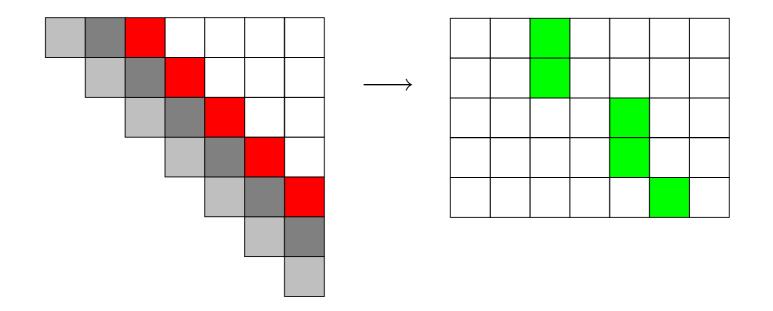
- ullet D^d decomposition



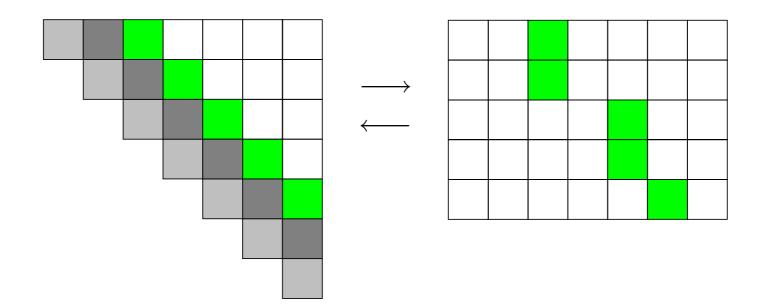
- $m{D}^d$ decomposition



- ullet D^d decomposition

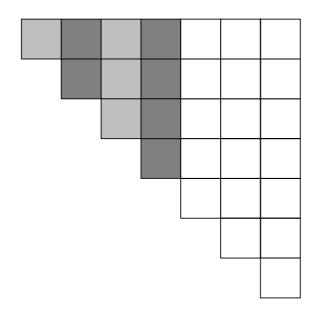


- $m{D}^d$ decomposition

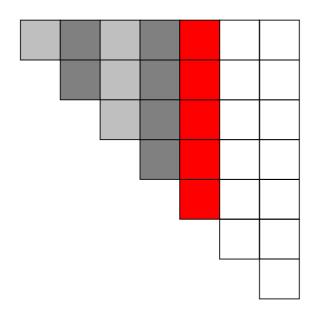


- L^m and R^m decompositions
 - L^m : Each row \longrightarrow TM instance
 - R^m : Each column \longrightarrow TM instance

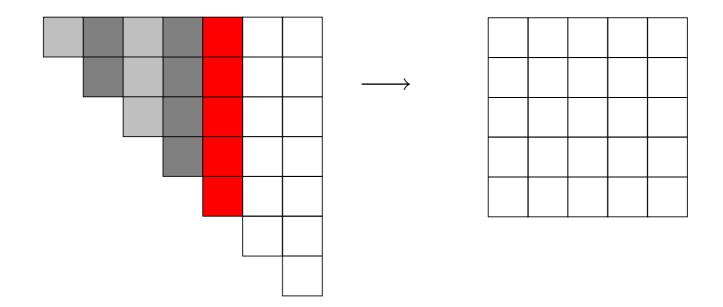
- L^m and R^m decompositions
 - L^m : Each row \longrightarrow TM instance
 - R^m : Each column \longrightarrow TM instance



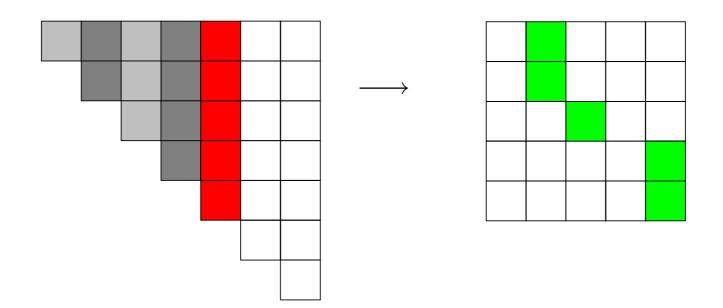
- L^m and R^m decompositions
 - L^m : Each row \longrightarrow TM instance
 - R^m : Each column \longrightarrow TM instance



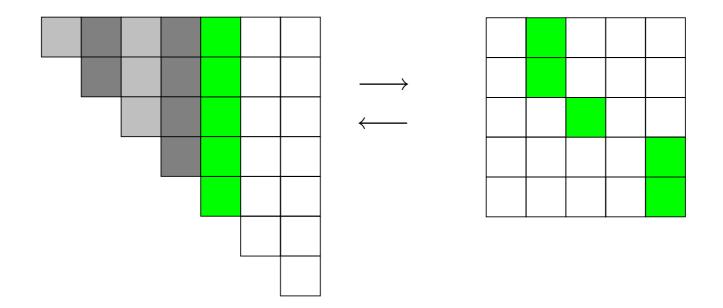
- L^m and R^m decompositions
 - L^m : Each row \longrightarrow TM instance
 - R^m : Each column \longrightarrow TM instance



- L^m and R^m decompositions
 - L^m : Each row \longrightarrow TM instance
 - R^m : Each column \longrightarrow TM instance



- L^m and R^m decompositions
 - L^m : Each row \longrightarrow TM instance
 - R^m : Each column \longrightarrow TM instance



Definition

Definition

• For diagonal d, $(1 \le d < n)$

$$B_{i,i+d} = w(i, i+d) + \min_{i < j \le i+d} \{B_{i,j-1} + B_{j,i+d}\}$$

Definition

• For diagonal d, $(1 \le d < n)$

$$B_{i,i+d} = w(i, i+d) + \min_{i < j \le i+d} \{B_{i,j-1} + B_{j,i+d}\}$$

$$D_{i,j}^d = \begin{cases} w(i,i+d) + \{B_{i,j-1} + B_{j,i+d}\} & \text{if } 0 \le i < j \le i+d \le n \\ \infty & \text{otherwise} \end{cases}$$

Definition

• For diagonal d, $(1 \le d < n)$

$$B_{i,i+d} = w(i, i+d) + \min_{i < j \le i+d} \{B_{i,j-1} + B_{j,i+d}\}$$

• Define $(n-d+1) \times (n+1)$ matrix D^d

$$D_{i,j}^d = \begin{cases} w(i,i+d) + \{B_{i,j-1} + B_{j,i+d}\} & \text{if } 0 \le i < j \le i+d \le n \\ \infty & \text{otherwise} \end{cases}$$

• Then, $B_{i,i+d} = \min_{0 \le j \le n} D_{i,j}^d = \text{minimum of row } i \text{ of } D^d$

Definition

• For diagonal d, $(1 \le d < n)$

$$B_{i,i+d} = w(i, i+d) + \min_{i < j \le i+d} \{B_{i,j-1} + B_{j,i+d}\}$$

• Define $(n-d+1)\times (n+1)$ matrix D^d

$$D_{i,j}^d = \begin{cases} w(i,i+d) + \{B_{i,j-1} + B_{j,i+d}\} & \text{if } 0 \le i < j \le i+d \le n \\ \infty & \text{otherwise} \end{cases}$$

• Then, $B_{i,i+d} = \min_{0 \le j \le n} D_{i,j}^d = \text{minimum of row } i \text{ of } D^d$

Lemma

 D^d is Monge, for each $1 \leq d < n$.

Definition

• For diagonal d, $(1 \le d < n)$

$$B_{i,i+d} = w(i, i+d) + \min_{i < j \le i+d} \{B_{i,j-1} + B_{j,i+d}\}$$

• Define $(n-d+1) \times (n+1)$ matrix D^d

$$D_{i,j}^d = \begin{cases} w(i,i+d) + \{B_{i,j-1} + B_{j,i+d}\} & \text{if } 0 \le i < j \le i+d \le n \\ \infty & \text{otherwise} \end{cases}$$

• Then, $B_{i,i+d} = \min_{0 \le j \le n} D_{i,j}^d = \text{minimum of row } i \text{ of } D^d$

Lemma

 D^d is Monge, for each $1 \le d < n$.

- ▶ For fixed d, SMAWK can be used to find all the $B_{i,i+d}$ in O(n) time.
 - $ightharpoonup
 ightharpoonup O(n^2)$ time for all D^d .

\mathbb{R}^m Decomposition

Definition

R^m Decomposition

Definition

• For column m, $(1 \le m \le n)$

$$B_{i,m} = w(i,m) + \min_{i < j \le m} \{B_{i,j-1} + B_{j,m}\}\$$

R^m Decomposition

Definition

• For column m, $(1 \le m \le n)$

$$B_{i,m} = w(i,m) + \min_{i < j \le m} \{B_{i,j-1} + B_{j,m}\}\$$

• Define $(m+1) \times (m+1)$ matrix R^m

$$R_{i,j}^m = \begin{cases} w(i,m) + \{B_{i,j-1} + B_{j,m}\} & \text{if } 0 \le i < j \le m \\ \infty & \text{otherwise} \end{cases}$$

R^m Decomposition

Definition

• For column m, $(1 \le m \le n)$ $B_{i,m} = w(i,m) + \min_{i < j < m} \{B_{i,j-1} + B_{j,m}\}$

• Define $(m+1) \times (m+1)$ matrix R^m

$$R_{i,j}^m = \begin{cases} w(i,m) + \{B_{i,j-1} + B_{j,m}\} & \text{if } 0 \le i < j \le m \\ \infty & \text{otherwise} \end{cases}$$

• Then, $B_{i,m} = \min_{0 < j \le m} R_{i,j}^m$

R^m Decomposition

Definition

• For column m, $(1 \le m \le n)$

$$B_{i,m} = w(i,m) + \min_{i < j \le m} \{B_{i,j-1} + B_{j,m}\}\$$

• Define $(m+1) \times (m+1)$ matrix R^m

$$R_{i,j}^m = \begin{cases} w(i,m) + \{B_{i,j-1} + B_{j,m}\} & \text{if } 0 \le i < j \le m \\ \infty & \text{otherwise} \end{cases}$$

• Then, $B_{i,m} = \min_{0 < j \le m} R_{i,j}^m$

Lemma

 R^m is Monge, for each $1 \leq m \leq n$.

ullet D^d decomposition

- ullet D^d decomposition
 - $D_{i,j}^d = w(i,i+d) + \{B_{i,j-1} + B_{j,i+d}\}$ $(0 \le i < j \le i+d \le n)$
 - SMAWK algorithm

- ullet D^d decomposition
 - $D_{i,j}^d = w(i,i+d) + \{B_{i,j-1} + B_{j,i+d}\}$ $(0 \le i < j \le i+d \le n)$
 - SMAWK algorithm
- L^m and R^m decomposition

- ullet D^d decomposition
 - $D_{i,j}^d = w(i,i+d) + \{B_{i,j-1} + B_{j,i+d}\}$ $(0 \le i < j \le i+d \le n)$
 - SMAWK algorithm
- L^m and R^m decomposition

 - Can not use SMAWK algorithm:

 $B_{j,m}$ is row minimum of row j of R^m and is therefore not known.

- ullet D^d decomposition
 - $D_{i,j}^d = w(i,i+d) + \{B_{i,j-1} + B_{j,i+d}\}$ $(0 \le i < j \le i+d \le n)$
 - SMAWK algorithm
- L^m and R^m decomposition
 - $P_{i,j}^m = w(i,m) + \{B_{i,j-1} + P_{j,m}\}$ $(0 \le i < j \le m)$
 - Can not use SMAWK algorithm:
 - $B_{j,m}$ is row minimum of row j of R^m and is therefore not known.
 - LARSCH algorithm [Larmore, Schieber (1990)] permits calculating row minima of TM matrices in O(n) time, even with this dependency.

- ullet D^d decomposition
 - $D_{i,j}^d = w(i,i+d) + \{B_{i,j-1} + B_{j,i+d}\}$ $(0 \le i < j \le i+d \le n)$
 - SMAWK algorithm
- L^m and R^m decomposition

 - Can not use SMAWK algorithm:
 - $B_{j,m}$ is row minimum of row j of R^m and is therefore not known.
 - LARSCH algorithm [Larmore, Schieber (1990)] permits calculating row minima of TM matrices in O(n) time, even with this dependency.
 - O(n) time for each column $\Rightarrow O(n^2)$ in total.

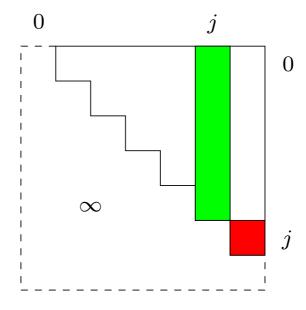
Finding row minima in totally monotone matrices with limited dependency.

Finding row minima in totally monotone matrices with limited dependency.

Entries of column j can depend on the row minima of rows i where $M_{i,j} = \infty$.

Green: the column j.

Red: rows that column j

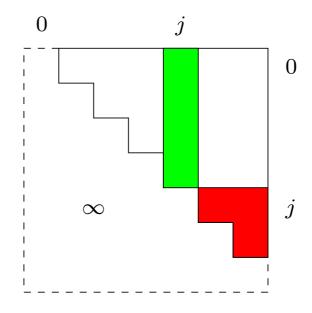


Finding row minima in totally monotone matrices with limited dependency.

Entries of column j can depend on the row minima of rows i where $M_{i,j} = \infty$.

Green: the column j.

Red: rows that column j

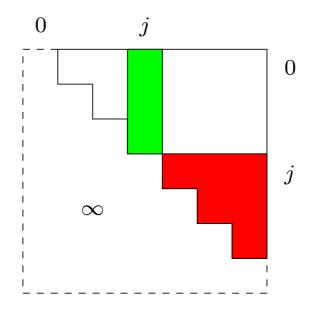


Finding row minima in totally monotone matrices with limited dependency.

Entries of column j can depend on the row minima of rows i where $M_{i,j} = \infty$.

Green: the column j.

Red: rows that column j

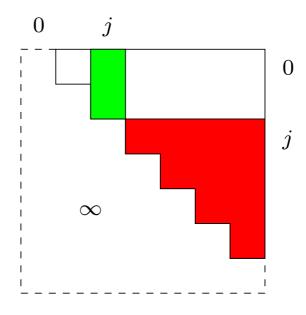


Finding row minima in totally monotone matrices with limited dependency.

Entries of column j can depend on the row minima of rows i where $M_{i,j} = \infty$.

Green: the column j.

Red: rows that column j



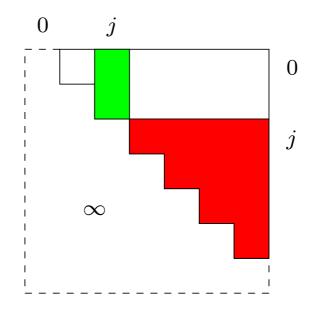
Finding row minima in totally monotone matrices with limited dependency.

Entries of column j can depend on the row minima of rows i where $M_{i,j} = \infty$.

Green: the column j.

Red: rows that column j

can depend on.



 R^m satisfies the condition of LARSCH.

Outline

- Background
 - Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
 - SMAWK Algorithm for finding
 Row Minima of Totally Monotone (TM) Matrices
- The D^d Decomposition

 A transformation from QI to TM such that

 SMAWK solves KY problem as quickly as KY.
- The L^m and R^m Decompositions
 Another transformation from QI to TM that
 (1) implies KY speedup and (2) enables online solution.

Definition: Two-sided online problem

- Definition: Two-sided online problem
 - Current step: Optimal BST for Key_l, \ldots, Key_r

- Definition: Two-sided online problem
 - Current step: Optimal BST for Key_1, \ldots, Key_r
 - Next step: Add either Key_{l-1} or Key_{r+1} .

- Definition: Two-sided online problem
 - Current step: Optimal BST for Key_l, \ldots, Key_r
 - Next step: Add either Key_{l-1} or Key_{r+1} .
- An example

- Definition: Two-sided online problem
 - Current step: Optimal BST for Key_l, \ldots, Key_r
 - Next step: Add either Key_{l-1} or Key_{r+1} .
- An example

$$\mathsf{Input} = (\mathsf{Key}_l, \dots, \mathsf{Key}_r)$$

	1	2	3	4	5	6
1						
2		0	75	141	250	
3			0	43	119	
4				0	44	
5					0	
6						

- Definition: Two-sided online problem
 - Current step: Optimal BST for Key_1, \ldots, Key_r
 - Next step: Add either Key_{l-1} or Key_{r+1} .
- An example

$$\mathsf{Input} = (\mathsf{Key}_l, \dots, \mathsf{Key}_r, \mathsf{Key}_{r+1})$$

	1	2	3	4	5	6
1						
2		0	75	141	250	357
3			0	43	119	204
4				0	44	121
5					0	52
6						0

- Definition: Two-sided online problem
 - Current step: Optimal BST for Key_l, \ldots, Key_r
 - Next step: Add either Key_{l-1} or Key_{r+1} .
- An example

$$\mathsf{Input} = (\mathsf{Key}_{l-1}, \mathsf{Key}_{l}, \dots, \mathsf{Key}_{r}, \mathsf{Key}_{r+1})$$

	1	2	3	4	5	6
1	0	146	260	349	491	624
2		0	75	141	250	357
3			0	43	119	204
4				0	44	121
5					0	52
6						0

Online Algorithm

	1	2	3	4	5	6
1	0	146	260	349	491	624
2		0	75	141	250	357
3			0	43	119	204
4				0	44	121
5					0	52
6						0

• Using L^m and R^m decomposition

Online Algorithm

	1	2	3	4	5	6
1	0	146	260	349	491	624
2		0	75	141	250	357
3			0	43	119	204
4				0	44	121
5					0	52
6						0

- Using L^m and R^m decomposition
 - O(n) time worst case per step.

Outline

- Background
 - Kunth-Yao (KY) Quadrangle Inequality (QI) Speedup
 - SMAWK Algorithm for finding
 Row Minima of Totally Monotone (TM) Matrices
- The D^d Decomposition
 A transformation from QI to TM such that
 SMAWK solves KY problem as quickly as KY.
- The L^m and R^m Decompositions Another transformation from QI to TM that (1) implies KY speedup and (2) enables online solution.

Questions?