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online, i.e., i = 1, 2, 3, . . ..

Calculating H(n, D) requires only O(n) space.
Constructing explicit path in DP table yielding this solution,
requires storing entire DP table ⇒ Θ(Dn) space.

First new result is reduction to O(n) space.

Second new result is how to maintain the speedup for online data;
O(1) or O(D) per update.
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Outline

• Review of the Monge Speedup

• Maintaining the Speedup in an
Online Setting

• Saving Space While Saving Time
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RMM (1) = 2

RMM (2) = 4
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RMM (4) = 4

RMM (5) = 6

RMM (6) = 6
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The Monge Speedup
• M is an m× n matrix

• RMM (i) is column index of (rightmost) min item on row i of M .

• M is Monotone if ∀i ≤ i′, RMM (i) ≤ RMM (i′).

• 2× 2 monotone matrices have form

2 4
5

7 1
2

2 3
34 5 2

• An m× n matrix M is Totally Monotone (TM)
if every 2× 2 submatrix is Monotone.

(submatrix: not necessarily contiguous in the original matrix)

7 1
32
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• Motivation:

Find all m row minima of an implicitly given m× n matrix M

• Naive Algorithm: O(mn)

• SMAWK Algorithm
[Aggarwal, Klawe, Moran, Shor, Wilber (1986)]

• If M is Totally Monotone,
all m row minima can be found in O(m + n) time.

• Usually m = Θ(n)
Θ(n) speedup: O(n2) down to O(n).

• SMAWK was culmination of decade(s) of work on similar problems;
speedups using convexity and concavity.
Has been used to speed up many DP problems, e.g., computational
geometry, bioinformatics, k-center on a line, etc.
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SMAWK and LARSCH Algorithms
• Motivation:

Find all m row minima of an implicitly given m× n matrix M

• Naive Algorithm: O(mn)

• SMAWK Algorithm
[Aggarwal, Klawe, Moran, Shor, Wilber (1986)]

• If M is Totally Monotone,
all m row minima can be found in O(m + n) time.

• Usually m = Θ(n)
Θ(n) speedup: O(n2) down to O(n).

• LARSCH Algorithm [Larmore, Schieber (1991)]
More complicated solution to same problem.
Allows dependencies of Mi,j on earlier row minima in matrix.
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The Monge Property

• Motivation: TM is often established via Monge property

• m× n matrix M is Monge if ∀i ≤ i′ and ∀j ≤ j′

Mi,j + Mi′,j′ ≤ Mi′,j + Mi,j′

• M is Monge ⇒ M is Totally Monotone

• Also, if ∀i, j, Mi,j + Mi+1,j+1 ≤ Mi+1,j + Mi,j+1,
⇒ M is Monge.

• ⇒ Only need to prove Monge property for
adjacent rows and columns.
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H(i, d) = min
0≤j<i

(
H(j, d−1)+w(d)(j, i)

)
Using The Monge Property

Suppose we are given DP (i.v. H(i, 0) known, i ≤ n, d ≤ D):

For j < i, set Mj,i = H(j, d− 1) + w(d)(j, i); else Mj,i = ∞

To calculate H(∗, d), simply find row-minima in M

Fact: If w(d)(j, i) are Monge ⇒ M is Monge

Then, for given d, SMAWK finds all H(∗, d) in O(n) time;
iterating, finds all H(i, d) in O(nD) time.
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H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
Examples of

i ≤ n, d ≤ D

• Length Limited Huffman Codes

w(d)(j, i) = S2j−i where Sk =
∑k

i=1 pi.

0 ≤ p1 ≤ p2 ≤ · · · ≤ pn

H(n− 1, D) is cost of min-cost D-limited code

• Wireless mobile paging p1 ≥ p2 ≥ · · · ≥ pn ≥ 0

w(d)(j, i) = i
(∑i

`=j+1 p`

)
H(n, D) is min expected bandwidth required to page all
items using ≤ D paging rounds
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• D-Medians on a Directed Line

w1 w2 w3 w4 wn−1 wn
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• D-Medians on a Directed Line

w1 w2 w3 w4 wn−1 wn

d1 d2 d3 dn−1

Identify D nodes as service centers.

Nodes can only be serviced by node to their left (or themselves)
so node 1 must be a service center.

Cost of servicing request wi, is wi times distance from node i
to nearest service center.

Problem is to find location of D service centers
that minimize total service cost.

Woeginger ’00
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• D-Medians on a Directed Line

w1 w2 w3 w4 wn−1 wn

d1 d2 d3 dn−1

Let H(i, d) be cost of
servicing nodes [1, i] using exactly d servers.

H(i, d) =


0 n = d

w
(d)
0,i d = 0, i ≥ 1

min
d−1≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
, 1 ≤ d < n

w
(d)
j,i =

∑i

l=j+1
wl(vl − vj+1), vk =

∑k−1

j=1
dj

Woeginger ’00



11-1

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
Examples of

i ≤ n, d ≤ D

• Length Limited Huffman Codes

w(d)(j, i) = S2j−i where Sk =
∑k

i=1 pi.

• Wireless mobile paging w(d)(j, i) = i
(∑i

`=j+1
p`

)
• D-Medians on a Directed Line w(d)(j, i) =

∑i

l=j+1
wl(vl − vj+1)



11-2

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
Examples of

i ≤ n, d ≤ D

• Length Limited Huffman Codes

w(d)(j, i) = S2j−i where Sk =
∑k

i=1 pi.

• Wireless mobile paging w(d)(j, i) = i
(∑i

`=j+1
p`

)
• D-Medians on a Directed Line w(d)(j, i) =

∑i

l=j+1
wl(vl − vj+1)

All these w(d)(j, i) = wj,i satisfy Monge property

wj,i + wj+1,i+1 ≤ wj,i+1 + wj+1,i

⇒ H(n, D) can be calculated in O(nD) time
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Online Setting

• Saving Space While Saving Time
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H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)Given a DP in the form

in which, for fixed d, the w(d) are Monge, e.g., D-limited Huffman
Encoding, D-Median on a line or Wireless Paging , the H(·, ·) table
can be filled in using only O(nD) time.

0 ≤ i ≤ n
0 ≤ d ≤ D

On the other hand, finding actual “solution path” of DP, correspond-
ing to min-cost tree, median locations or paging schedule, requires
backtracking through DP table. This implies storing entire table,
using Θ(nD) space.

Furthermore, calculation of H(·, d) only requires knowledge of
H(·, d − 1). So, if H(n, D) is final goal, we can fill in table iter-
atively, for d = 1, 2, . . . , D, using only O(n) space.
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Context:
H(i, d) = min

0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

D-Length-Limited Huffman Coding

w(d)(j, i) = S2j−i where Sk =
∑k

i=1
pi.

Larmore & Hirschberg (’90) O(nD) time, O(n) space.

Very clever special-purpose algorithm; culmination of a long
series of papers by various authors on this problem.

(*)

Larmore & Przytycka (’91) Derived (*) DP formulation

Easy O(nD) time (Monge) algorithm but not interesting since
it requires Θ(nD) space as well.

Would like to reduce space for (*) down to Θ(n)
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H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

Alternative Interpretation:

Consider a layered graph in which
edges only go down one level and to
the right.

w
(

(d− 1, j) → (d, i)
)

= w(d)(j, i)

H(i, d) = cost of min-cost path from (0, 0) to (d, i).

Given row H(·, d − 1), SMAWK calculates row H(·, d) in O(n)
time. By throwing away uneeded rows, can calculate H(·, D) in
O(nD) time and O(D) space.

On the other hand, finding optimal path to H(D,n) requires
keeping entire Θ(nD) space table to backtrack through
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H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

We will now see how to find path
using O(D + n) space.

Modification of idea due to

Hirschberg (’75)

Munro & Ramirez (’82)
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H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
0 ≤ i ≤ n
0 ≤ d ≤ D

We will now see how to find path
using O(D + n) space.

Modification of idea due to

Hirschberg (’75)

Munro & Ramirez (’82)

Let y be below and to the right of x.
Assume existence of an oracle
Mid(x, y) that returns a midpoint
(hop distance) on some min-cost x-y
path.

x

y
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Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y
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Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y

We now have a simple recursive pro-
cedure for building min-cost path

Buildpath(x,y)

If yd = xd+1

return (x → y)

else

z = Mid(x, y)

Buildpath(x,z)

Buildpath(z,y)

(0, 0)

(D, n)
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Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y

We now have a simple recursive pro-
cedure for building min-cost path
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Buildpath(z,y)

(0, 0)

(D, n)
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x

y
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(0, 0)
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Mid(x, y) returns a midpoint (hop distance)
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y
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cedure for building min-cost path

Buildpath(x,y)

If yd = xd+1

return (x → y)

else

z = Mid(x, y)

Buildpath(x,z)

Buildpath(z,y)

(0, 0)

(D, n)
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Mid(x, y) returns a midpoint (hop distance)
on some min-cost x-y path.

x

y

We now have a simple recursive pro-
cedure for building min-cost path

Buildpath(x,y)

If yd = xd+1

return (x → y)

else

z = Mid(x, y)

Buildpath(x,z)
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(0, 0)
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Buildpath(x,y)

If yd = xd+1

return (x → y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)
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Buildpath(x,y)

If yd = xd+1

return (x → y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: If Mid(x, y) uses O(D + n) space

⇒ Buildpath(0,F) uses O(D + n) space
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Buildpath(x,y)

If yd = xd+1

return (x → y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: If Mid(x, y) uses O(D + n) space

⇒ Buildpath(0,F) uses O(D + n) space

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time
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If yd = xd+1

return (x → y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time

Buildpath(x,y)
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If yd = xd+1

return (x → y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time

Proof: Rectangles at recursion level i are height ≤ D/2i

⇒ Total work at level i is ≤ nD/2i

⇒ Total work ≤ n

(
D

20
+

D

21
+

D

22
+

D

23
+ · · ·

)
≤ 2nD

Buildpath(x,y)
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D

20
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D

21
+

D

22
+

D
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+ · · ·
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≤ 2nD

Buildpath(x,y)
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D
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Buildpath(x,y)
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If yd = xd+1

return (x → y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time

Proof: Rectangles at recursion level i are height ≤ D/2i

⇒ Total work at level i is ≤ nD/2i

⇒ Total work ≤ n

(
D

20
+

D

21
+

D

22
+

D

23
+ · · ·

)
≤ 2nD

Buildpath(x,y)



19-6

If yd = xd+1

return (x → y)
else
z = Mid(x, y)
Buildpath(x,z)
Buildpath(z,y)

0 = (0, 0)

F = (D, n)

Lemma: Let Area(x, y) be area of x, y box
x

y

If Mid(x, y) uses O(Area(x, y)) time

⇒ Buildpath(0,F) uses O(Dn) time

Proof: Rectangles at recursion level i are height ≤ D/2i

⇒ Total work at level i is ≤ nD/2i

⇒ Total work ≤ n

(
D

20
+

D

21
+

D

22
+

D

23
+ · · ·

)
≤ 2nD

Buildpath(x,y)
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Just saw that if Mid(x, y) can be
implemented using O(D + n) space and
Area(x, y) time, then path can be built using
O(D + n) space and O(Dn) time.

x

y

There are two different methods in literature for implementing
Mid(x, y). They can both be used here, but we will use (b).

(a) Hirschberg (’75)

(b) Munro & Ramirez (’82)

For longest common subsequence problem.
Runs two modified Dijkstra’s that meet in “middle”
Every vertex had constant outdegree (≤ 3)
Used extensively in bioinformatics.

For graphs like our’s
Runs one modified Dijkstra
Uses Θ(Dn2) time (we can improve to Θ(Dn) with Monge)
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Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.
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Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.
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Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.
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Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time
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level d− 1.
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and Area(x, y) time
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level d− 1.
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and Area(x, y) time
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21-16

Implementing Mid(x, y) in O(D + n) space
and Area(x, y) time

x

y

x

y

d̄

For every z, let C(z) be min cost
path distance from x to z.
For zd ≥ d̄, let P (z) be a point on
level d̄ lying on some min-cost path.

If zd = d̄, P (z) = z.
If zd > d̄, then P (z) = P (pred(z))
where pred(z) is predecessor of z on
min cost path.

All of the C(z) and P (z) on level d
can be calculated in O(yd − xd) time
(Monge property) using only knowl-
edge of C(z′) and P (z′) where z′ on
level d− 1.
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Outline

••• Review of the Monge Speedup

• Maintaining the Speedup in an
Online Setting

• Saving Space While Saving Time
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H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

) 0 ≤ i ≤ n
0 ≤ d ≤ D
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H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

) 0 ≤ i ≤ n
0 ≤ d ≤ D

For any fixed d, the problem is to find the row minima of a
lower triangular matrix M =

{
aj,i

}
where

For j < i, Mj,i = H(j, d− 1) + w(d)(j, i); else Mj,i = ∞

∞i

j

n

n
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H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

) 0 ≤ i ≤ n
0 ≤ d ≤ D

For any fixed d, the problem is to find the row minima of a
lower triangular matrix M =

{
aj,i

}
where

For j < i, Mj,i = H(j, d− 1) + w(d)(j, i); else Mj,i = ∞

∞i

j
If n → (n + 1) must find
minimum of new row.

n

n
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H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

) 0 ≤ i ≤ n
0 ≤ d ≤ D

For any fixed d, the problem is to find the row minima of a
lower triangular matrix M =

{
aj,i

}
where

For j < i, Mj,i = H(j, d− 1) + w(d)(j, i); else Mj,i = ∞

∞i

j
If n → (n + 1) must find
minimum of new row.

n

n

n+1
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H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

) 0 ≤ i ≤ n
0 ≤ d ≤ D

For any fixed d, the problem is to find the row minima of a
lower triangular matrix M =

{
aj,i

}
where

For j < i, Mj,i = H(j, d− 1) + w(d)(j, i); else Mj,i = ∞

∞i

j
If n → (n + 1) must find
minimum of new row.

n

n

n+1

Context: Adding new point to
right of line in D-median prob-
lem requires updating median lo-
cations. This requires finding
“min” of new row on bottom of
Monge matrices.
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H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

) 0 ≤ i ≤ n
0 ≤ d ≤ D

For any fixed d, the problem is to find the row minima of a
lower triangular matrix M =

{
aj,i

}
where

For j < i, Mj,i = H(j, d− 1) + w(d)(j, i); else Mj,i = ∞

∞i

j
If n → (n + 1) must find
minimum of new row.

n

n

n+1

SMAWK/LARSCH require
batching queries. They do not
provide online processing (in
O(1) time per step).
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Suppose we are given an implicitly defined lower triangular
matrix A =

{
a(n, j)

}
in which we want to find row minima.

h(n) = min1≤j<n a(n, j)
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Suppose we are given an implicitly defined lower triangular
matrix A =

{
a(n, j)

}
in which we want to find row minima.

a(n, j)− a(n− 1, j) = cn + δjβn,

βn ≥ 0, and δ1 ≥ δ2 ≥ δ3 · · ·.

∀1 ≤ j < n,

We say that the a(n, j) satisfy the online Monge property , if

where cn, βn and δj are constants satisfying

h(n) = min1≤j<n a(n, j)
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Suppose we are given an implicitly defined lower triangular
matrix A =

{
a(n, j)

}
in which we want to find row minima.

a(n, j)− a(n− 1, j) = cn + δjβn,

βn ≥ 0, and δ1 ≥ δ2 ≥ δ3 · · ·.

∀1 ≤ j < n,

We say that the a(n, j) satisfy the online Monge property , if

where cn, βn and δj are constants satisfying

h(n) = min1≤j<n a(n, j)

Theorem: If ∀n, i , the value of a(n, i) can be computed in O(1)
time, provided that the values of h(j) for 1 ≤ j < n are known,



24-4

Suppose we are given an implicitly defined lower triangular
matrix A =

{
a(n, j)

}
in which we want to find row minima.

a(n, j)− a(n− 1, j) = cn + δjβn,

βn ≥ 0, and δ1 ≥ δ2 ≥ δ3 · · ·.

∀1 ≤ j < n,

We say that the a(n, j) satisfy the online Monge property , if

where cn, βn and δj are constants satisfying

h(n) = min1≤j<n a(n, j)

Theorem: If ∀n, i , the value of a(n, i) can be computed in O(1)
time, provided that the values of h(j) for 1 ≤ j < n are known,

⇒ The h(i) can be computed consecutively h(1), h(2), . . . using
O(1) amortized and O(log n) worst case time to calculate h(n).
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βn ≥ 0, δi ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:



25-2

βn ≥ 0, δi ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

Stronger than regular Monge property

a(n + 1, j) + a(n, j + 1)− a(n, j)− a(n + 1, j + 1)

= (δj − δj+1)βn+1 ≥ 0,

So Online Monge is special case of Monge



25-3

βn ≥ 0, δi ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

Stronger than regular Monge property

a(n + 1, j) + a(n, j + 1)− a(n, j)− a(n + 1, j + 1)

= (δj − δj+1)βn+1 ≥ 0,

If problem has this stronger property, Theorem says that
Monge speedup can be maintained in online problem variant.

So Online Monge is special case of Monge
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:



26-2

βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

Occurs Quite Naturally
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

Occurs Quite Naturally

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)



26-4

βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

Occurs Quite Naturally

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
Fix d ⇒ a(i, j) = H(j, d− 1) + w(d)(j, i)

⇒ a(i, j)−a(i−1, j) = w(d)(j, i)−w(d)(j, i−1)
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

Occurs Quite Naturally

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
Fix d ⇒ a(i, j) = H(j, d− 1) + w(d)(j, i)

⇒ a(i, j)−a(i−1, j) = w(d)(j, i)−w(d)(j, i−1)

D-Medians on a Directed Line: w(d)(j, i) =
∑i

l=j+1
wl(vl − vj+1)
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

Occurs Quite Naturally

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
Fix d ⇒ a(i, j) = H(j, d− 1) + w(d)(j, i)

⇒ a(i, j)−a(i−1, j) = w(d)(j, i)−w(d)(j, i−1)

D-Medians on a Directed Line: w(d)(j, i) =
∑i

l=j+1
wl(vl − vj+1)

a(i, j)− a(i− 1, j) = wivi + (−vj+1) wi
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

Occurs Quite Naturally

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
Fix d ⇒ a(i, j) = H(j, d− 1) + w(d)(j, i)

⇒ a(i, j)−a(i−1, j) = w(d)(j, i)−w(d)(j, i−1)

D-Medians on a Directed Line: w(d)(j, i) =
∑i

l=j+1
wl(vl − vj+1)

a(i, j)− a(i− 1, j) = wivi + (−vj+1) wi

ci δj βi
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

Occurs Quite Naturally

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
Fix d ⇒ a(i, j) = H(j, d− 1) + w(d)(j, i)

⇒ a(i, j)−a(i−1, j) = w(d)(j, i)−w(d)(j, i−1)

Wireless Mobile Paging w(d)(j, i) = i
(∑i

`=j+1
p`

)
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

Occurs Quite Naturally

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
Fix d ⇒ a(i, j) = H(j, d− 1) + w(d)(j, i)

⇒ a(i, j)−a(i−1, j) = w(d)(j, i)−w(d)(j, i−1)

Wireless Mobile Paging

a(i, j)− a(i− 1, j) = ipi +

i−1∑
t=j+1

pt

w(d)(j, i) = i
(∑i

`=j+1
p`

)
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

Occurs Quite Naturally

H(i, d) = min
0≤j<i

(
H(j, d− 1) + w(d)(j, i)

)
Fix d ⇒ a(i, j) = H(j, d− 1) + w(d)(j, i)

⇒ a(i, j)−a(i−1, j) = w(d)(j, i)−w(d)(j, i−1)

Wireless Mobile Paging

a(i, j)− a(i− 1, j) = ipi +

i−1∑
t=j+1

pt

ci δj βi

w(d)(j, i) = i
(∑i

`=j+1
p`

)
=

(
ipi +

j−1∑
t=1

pj

)
+

(
−

j∑
t=1

pt

)
1
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

h(n) = min1≤j<n a(n, j)
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

h(n) = min1≤j<n a(n, j)

∀ 1 ≤ j ≤ n ≤ N define lines and Lower Envelope

Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

h(n) = min1≤j<n a(n, j)

∀ 1 ≤ j ≤ n ≤ N define lines and Lower Envelope

Ln
j (x) = a(n, j) + δj · x

h(n) = min
1≤j≤n

Ln
j (0) = Ln(0).⇒

Ln(x) = min
1≤j≤n

Ln
j (x)
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

h(n) = min1≤j<n a(n, j)

∀ 1 ≤ j ≤ n ≤ N define lines and Lower Envelope

Ln
j (x) = a(n, j) + δj · x

h(n) = min
1≤j≤n

Ln
j (0) = Ln(0).⇒

Algorithm will maintain Ln(x) for x ∈ [0,∞]

Ln(x) = min
1≤j≤n

Ln
j (x)
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βn ≥ 0, δj ↓a(n, j)− a(n− 1, j) = cn + δjβn,

Online Monge:

h(n) = min1≤j<n a(n, j)

∀ 1 ≤ j ≤ n ≤ N define lines and Lower Envelope

Ln
j (x) = a(n, j) + δj · x

h(n) = min
1≤j≤n

Ln
j (0) = Ln(0).⇒

Algorithm will maintain Ln(x) for x ∈ [0,∞]

Ln(x) = min
1≤j≤n

Ln
j (x)

No line can appear on lower envelope more than once,
so algorithm only has to keep track of < n breakpoints.
These will not change “much” from step to step
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• The slopes of the segments forming the lower envelope of a
set of lines decreases as one sweeps from left to right. Since
δ1 > δ2 > · · · > δn, we have z1 < z2 < · · · < zt = n

• The only data structure used is an array, called the active-
indices array, Z = (z1, . . . , zt) for some t ≤ n.

• It stores, from left to right, the indices of the Ln
j that

appear on Ln in the range x ∈ [0,∞).

Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)
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• The slopes of the segments forming the lower envelope of a
set of lines decreases as one sweeps from left to right. Since
δ1 > δ2 > · · · > δn, we have z1 < z2 < · · · < zt = n

• The only data structure used is an array, called the active-
indices array, Z = (z1, . . . , zt) for some t ≤ n.

• It stores, from left to right, the indices of the Ln
j that

appear on Ln in the range x ∈ [0,∞).

Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)

L1

L2

L3

L4

L5
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• The slopes of the segments forming the lower envelope of a
set of lines decreases as one sweeps from left to right. Since
δ1 > δ2 > · · · > δn, we have z1 < z2 < · · · < zt = n

• The only data structure used is an array, called the active-
indices array, Z = (z1, . . . , zt) for some t ≤ n.

• It stores, from left to right, the indices of the Ln
j that

appear on Ln in the range x ∈ [0,∞).

Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)

L1

L2

L3

L4

L5
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• The slopes of the segments forming the lower envelope of a
set of lines decreases as one sweeps from left to right. Since
δ1 > δ2 > · · · > δn, we have z1 < z2 < · · · < zt = n

• The only data structure used is an array, called the active-
indices array, Z = (z1, . . . , zt) for some t ≤ n.

• It stores, from left to right, the indices of the Ln
j that

appear on Ln in the range x ∈ [0,∞).

Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)

L1

L2

L3

L4

L5

Z = (1, 2, 4, 5)
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To update lower envelope from n− 1 to n
Recall a(n, j)− a(n− 1, j) = cn + δjβn

Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)
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Ln
j (x) = [a(n, j)− δj βn] + δj (x + βn)

= [a(n− 1, j) + cn] + δj (x + βn)
= Ln−1

j (x + βn) + cn.

To update lower envelope from n− 1 to n
Recall a(n, j)− a(n− 1, j) = cn + δjβn

Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)

Then ∀ 1 ≤ j ≤ n− 1.
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Ln
j (x) = [a(n, j)− δj βn] + δj (x + βn)

= [a(n− 1, j) + cn] + δj (x + βn)
= Ln−1

j (x + βn) + cn.

To update lower envelope from n− 1 to n
Recall a(n, j)− a(n− 1, j) = cn + δjβn

Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)

Then ∀ 1 ≤ j ≤ n− 1.

So lower envelope for n is
(a) lower envelope for n− 1 shifted vertically and to right.
(b) with new line Ln

n added
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Ln
j (x) = [a(n, j)− δj βn] + δj (x + βn)

= [a(n− 1, j) + cn] + δj (x + βn)
= Ln−1

j (x + βn) + cn.

To update lower envelope from n− 1 to n
Recall a(n, j)− a(n− 1, j) = cn + δjβn

Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)

Then ∀ 1 ≤ j ≤ n− 1.

So lower envelope for n is
(a) lower envelope for n− 1 shifted vertically and to right.
(b) with new line Ln

n added
Note: Because δj ↓, line Ln

n must be on lower envelope,
and be rightmost segment on lower envelope
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Lower env for lines
Ln−1

j (x) : 1 ≤ j < n

h(n−1) = min
1≤j≤n−1

Ln−1
j (0)
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Lower env for lines
Ln−1

j (x) : 1 ≤ j < n

h(n−1) = min
1≤j≤n−1

Ln−1
j (0)

Lower env for lines
Ln

j (x) = Ln−1
j (x+βn)+cn

1 ≤ j < n
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Lower env for lines
Ln−1

j (x) : 1 ≤ j < n

h(n−1) = min
1≤j≤n−1

Ln−1
j (0)

Lower env for lines
Ln

j (x) = Ln−1
j (x+βn)+cn

1 ≤ j < n

Note: lines shift up
axis shifts to right
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Lower env for lines
Ln−1

j (x) : 1 ≤ j < n

h(n−1) = min
1≤j≤n−1

Ln−1
j (0)

Lower env for lines
Ln

j (x) = Ln−1
j (x+βn)+cn

1 ≤ j < n

Note: lines shift up
axis shifts to right

Lower env for lines

Ln
j (x) : 1 ≤ j ≤ n

h(n) = min
1≤j≤n

Ln
j (0)
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While moving from

n = 7 to n = 8
the indices of the active
(lower envelope) lines
change from

{1, 2, 4, 5, 7}
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While moving from

n = 7 to n = 8
the indices of the active
(lower envelope) lines
change from

{1, 2, 4, 5, 7} to

{4, 5, 7}
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While moving from

n = 7 to n = 8
the indices of the active
(lower envelope) lines
change from

{1, 2, 4, 5, 7} to

{4, 5, 7} to

{4, 5, 8}
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While moving from

n = 7 to n = 8
the indices of the active
(lower envelope) lines
change from

{1, 2, 4, 5, 7} to

{4, 5, 7} to

{4, 5, 8}

We walk from left
to chop off {1, 2}
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While moving from

n = 7 to n = 8
the indices of the active
(lower envelope) lines
change from

{1, 2, 4, 5, 7} to

{4, 5, 7} to

{4, 5, 8}

We walk from left
to chop off {1, 2}

And then add 8
from right, chop-
ping off 7
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Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)

Lower envelope for n is
(a) lower envelope for n− 1 shifted vertically and to right.

Note: Because δj ↓, line Ln
n must be on lower envelope,

and be rightmost segment on lower envelope

(b) with new line Ln
n added
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Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)

Lower envelope for n is
(a) lower envelope for n− 1 shifted vertically and to right.

Note: Because δj ↓, line Ln
n must be on lower envelope,

and be rightmost segment on lower envelope

(b) with new line Ln
n added

Scan from left, chopping off line segments.
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Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)

Lower envelope for n is
(a) lower envelope for n− 1 shifted vertically and to right.

Note: Because δj ↓, line Ln
n must be on lower envelope,

and be rightmost segment on lower envelope

(b) with new line Ln
n added

Scan from left, chopping off line segments.

Scan from right to find line segments chopped off by Ln
n
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Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)

Lower envelope for n is
(a) lower envelope for n− 1 shifted vertically and to right.

Note: Because δj ↓, line Ln
n must be on lower envelope,

and be rightmost segment on lower envelope

(b) with new line Ln
n added

Scan from left, chopping off line segments.

Scan from right to find line segments chopped off by Ln
n

Total amount of work per step is O(1) + # indices cut. Once a
line (index) disappears from lower envelope it never reappears.
Amortizing over all lines gives O(1) cost per update.
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Ln
j (x) = a(n, j) + δj · x Ln(x) = min

1≤j≤n
Ln

j (x)

Lower envelope for n is
(a) lower envelope for n− 1 shifted vertically and to right.

Note: Because δj ↓, line Ln
n must be on lower envelope,

and be rightmost segment on lower envelope

(b) with new line Ln
n added

Scan from left, chopping off line segments.

Scan from right to find line segments chopped off by Ln
n

Total amount of work per step is O(1) + # indices cut. Once a
line (index) disappears from lower envelope it never reappears.
Amortizing over all lines gives O(1) cost per update.

Can also use binary search to find “cut off points” in O(log n)
worst case time
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∞i

j

n

n

We just showed that for very special
matrices A = {ai,j} the row minima
can be found online, one row at a
time, in O(1) amortized and O(log n)
worst-case time per step. The re-
quired condition was a very strong
specialization of the Monge property.
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∞i

j

n

n

n+1

We just showed that for very special
matrices A = {ai,j} the row minima
can be found online, one row at a
time, in O(1) amortized and O(log n)
worst-case time per step. The re-
quired condition was a very strong
specialization of the Monge property.
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∞i

j

n

n

n+1

We just showed that for very special
matrices A = {ai,j} the row minima
can be found online, one row at a
time, in O(1) amortized and O(log n)
worst-case time per step. The re-
quired condition was a very strong
specialization of the Monge property.

Open Question
Are there weaker conditions that will permit O(1) amor-
tized updates?
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∞i

j

n

n

n+1

We just showed that for very special
matrices A = {ai,j} the row minima
can be found online, one row at a
time, in O(1) amortized and O(log n)
worst-case time per step. The re-
quired condition was a very strong
specialization of the Monge property.

Open Question
Are there weaker conditions that will permit O(1) amor-
tized updates?

Can show that it’s not possible for general Monge matrix
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Outline

• Review of the Monge Speedup

• Maintaining the Speedup in an
Online Setting

• Saving Space While Saving Time

• Thank You
Questions?
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• Two-Sided Online K-Median on a Line

w1 w2 w3 w4 wn−1 wn

d1 d2 d3 dn−1

Identify k nodes as service centers. Cost of servicing request
wi, is wi times distance from node i to nearest service center.
Problem is to find location of k service centers that minimize
total service cost.

Open Question
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• Two-Sided Online K-Median on a Line

w1 w2 w3 w4 wn−1 wn

d1 d2 d3 dn−1

Identify k nodes as service centers. Cost of servicing request
wi, is wi times distance from node i to nearest service center.
Problem is to find location of k service centers that minimize
total service cost.
• Naive DP: O(kn2)

• Using Monge property: O(kn)

• Online, adding new element to right: Amortized O(k)

Open Question
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• Two-Sided Online K-Median on a Line

w1 w2 w3 w4 wn−1 wn

d1 d2 d3 dn−1

Identify k nodes as service centers. Cost of servicing request
wi, is wi times distance from node i to nearest service center.
Problem is to find location of k service centers that minimize
total service cost.
• Naive DP: O(kn2)

• Using Monge property: O(kn)

• Online, adding new element to right: Amortized O(k)

Online Problem: Adding new elements to right and left.
Best known is O(kn). Just as bad as reconstructing from scratch.
Is there a better way?

Open Question


