Shannon Coding for the Discrete Noiseless Channel and Related Problems

Man DU Mordecai GOLIN

Qin ZHANG

HKUST

Barcelona Sept 16, 2009

Overview

- Shannon Coding was introduced by Shannon as a proof technique in his noiseless coding theorem
- Shannon-Fano coding is what's primarily used for algorithm design
- This talk's punchline: Shannon Coding can be algorithmically useful

Outline

Huffman Coding and Generalizations

Previous Work & Background

New Work

A "Counterexample"

Open Problems

Prefix-free coding

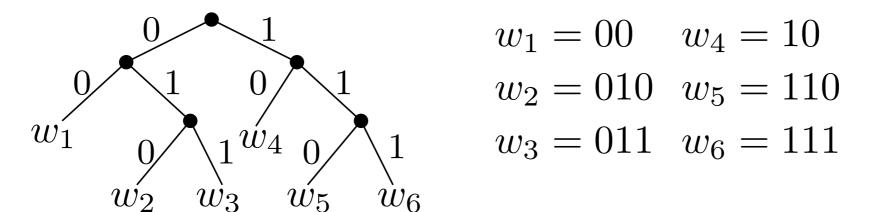
Let $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_r\}$ be an encoding alphabet. Word $w \in \Sigma^*$ is a prefix of word $w' \in \Sigma^*$ if w' = wu where $u \in \Sigma^*$ is a non-empty word. A Code over Σ is a collection of words $C = \{w_1, \dots, w_n\}$.

Prefix-free coding

- Let $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_r\}$ be an encoding alphabet. Word $w \in \Sigma^*$ is a prefix of word $w' \in \Sigma^*$ if w' = wu where $u \in \Sigma^*$ is a non-empty word. A Code over Σ is a collection of words $C = \{w_1, \dots, w_n\}$.
- Code C is *prefix-free* if for all $i \neq j$ w_i is not a prefix of w_j . $\{0, 10, 11\} \text{ is prefix-free.} \quad \{0, 00, 11\} \text{ isn't.}$

Prefix-free coding

- Let $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_r\}$ be an encoding alphabet. Word $w \in \Sigma^*$ is a prefix of word $w' \in \Sigma^*$ if w' = wu where $u \in \Sigma^*$ is a non-empty word. A Code over Σ is a collection of words $C = \{w_1, \dots, w_n\}$.
- Code C is *prefix-free* if for all $i \neq j$ w_i is not a prefix of w_j . $\{0, 10, 11\} \text{ is prefix-free.} \quad \{0, 00, 11\} \text{ isn't.}$
- A prefix-free code can be modelled as (leaves of) a tree



Let cost(w) be the *length* or number of characters in w. Let $P = \{p_1, p_2, \ldots, p_n\}$ be a fixed discrete probability distribution (P.D.).

Define $cost(C) = \sum_{i=1}^{n} cost(w_i)p_i$

Let cost(w) be the *length* or number of characters in w. Let $P = \{p_1, p_2, \ldots, p_n\}$ be a fixed discrete probability distribution (P.D.).

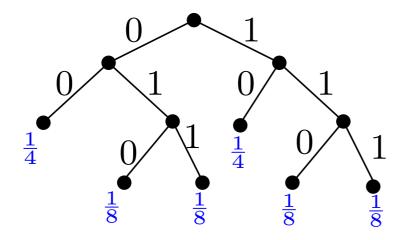
Define
$$cost(C) = \sum_{i=1}^{n} cost(w_i)p_i$$

The prefix coding problem, sometimes known as the Huffman encoding problem is to find a prefix-free code over Σ of minimum cost.

Let cost(w) be the *length* or number of characters in w. Let $P = \{p_1, p_2, \ldots, p_n\}$ be a fixed discrete probability distribution (P.D.).

Define
$$cost(C) = \sum_{i=1}^{n} cost(w_i)p_i$$

The prefix coding problem, sometimes known as the Huffman encoding problem is to find a prefix-free code over Σ of minimum cost.

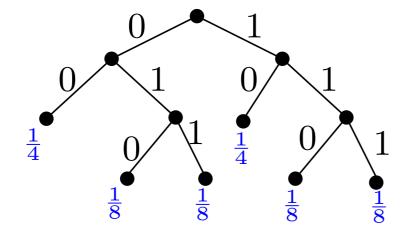


Equivalent to finding tree with minimum external path-length

Let cost(w) be the *length* or number of characters in w. Let $P = \{p_1, p_2, \ldots, p_n\}$ be a fixed discrete probability distribution (P.D.).

Define
$$cost(C) = \sum_{i=1}^{n} cost(w_i)p_i$$

The prefix coding problem, sometimes known as the Huffman encoding problem is to find a prefix-free code over Σ of minimum cost.



Equivalent to finding tree with minimum external path-length

$$2 \times \left[\frac{1}{4} + \frac{1}{4}\right] + 3 \times \left[\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right]$$

Useful for Data transmission/storage.

Modelling search problems

Very well studied

What's known

Sub-optimal codes

Shannon coding: (from noiseless coding theorem) There exists a prefix-free code with word lengths $\ell_i = \lceil -\log_r p_i \rceil, i = 1, 2, \dots, n.$

Shannon-Fano coding: probability splitting
Try to put $\sim \frac{1}{r}$ of the probability in each node.

What's known

Sub-optimal codes

Shannon coding: (from noiseless coding theorem) There exists a prefix-free code with word lengths $\ell_i = \lceil -\log_r p_i \rceil, i = 1, 2, \dots, n.$

Shannon-Fano coding: probability splitting Try to put $\sim \frac{1}{r}$ of the probability in each node.

Both methods have cost within 1 of optimal

What's known

Sub-optimal codes

Shannon coding: (from noiseless coding theorem) There exists a prefix-free code with word lengths $\ell_i = \lceil -\log_r p_i \rceil, i = 1, 2, \dots, n.$

Shannon-Fano coding: probability splitting Try to put $\sim \frac{1}{r}$ of the probability in each node.

Both methods have cost within 1 of optimal

Optimal codes

Huffman 1952: a well-know $O(rn \log n)$ -time greedy-algorithm (O(rn)-time if the p_i are sorted in non-decreasing order)

What's not as well known

- The fact that the greedy Huffman algorithm "works" is quite amazing
- Almost any possible modification or generalization to the original problem causes greedy to fail
- For some simple modifications, we don't even have polynomial time algorithms.

Generalizations: Min cost prefix coding

Unequal-cost coding

Allow letters to have different costs, say, $c(\sigma_j) = c_j$.

Discrete Noiseless Channels (in Shannon's original paper)

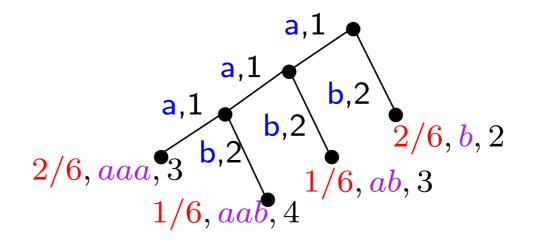
This can be viewed as a strongly connected aperiodic directed graph with k vertices (states).

- 1. Each edge leaving a vertex is labelled by an encoding letter $\sigma \in \Sigma$, with at most one σ -edge leaving each vertex.
- 2. An edge labelled by σ leaving vertex i has cost $c_{i,\sigma}$.
- Language restrictions

Require all codewords to be contained in some given Language L

With Unequal-cost letters

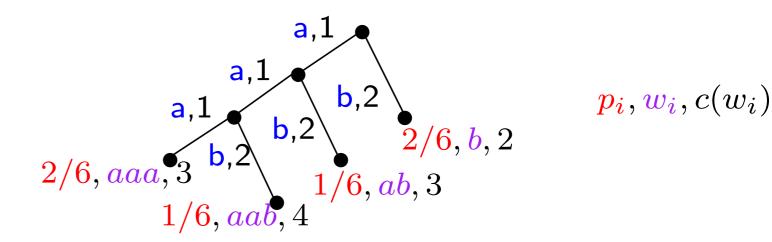
$$c_1 = 1$$
; $c_2 = 2$.



 $p_i, w_i, c(w_i)$

With Unequal-cost letters

$$c_1 = 1$$
; $c_2 = 2$.

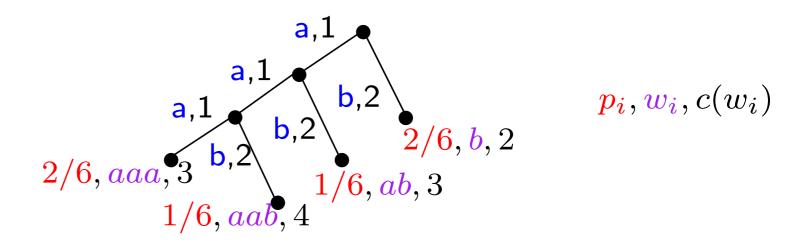


Corresponds to different letter transmission/storage costs, e.g., the Telegraph Channel.

Also, to different costs for evaluating test outcomes in, e.g., group testing.

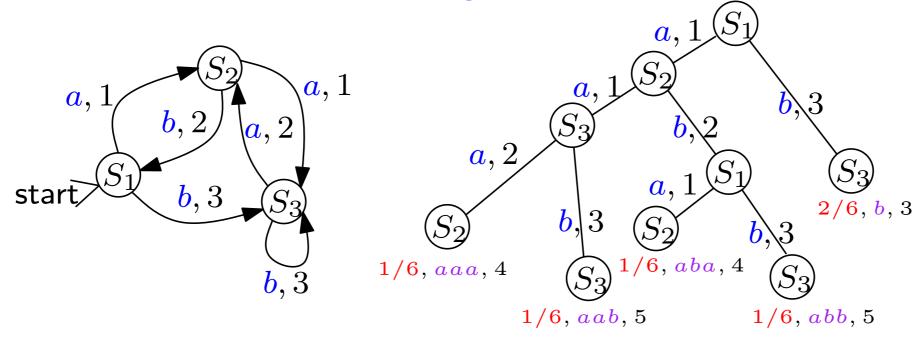
With Unequal-cost letters

$$c_1 = 1$$
; $c_2 = 2$.

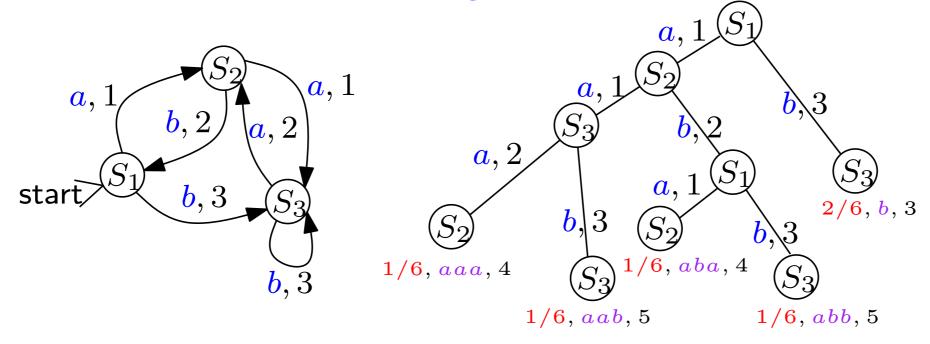


- Corresponds to different letter transmission/storage costs, e.g., the Telegraph Channel.
 Also, to different costs for evaluating test outcomes in, e.g., group testing.
- \blacksquare Size of encoding alphabet, Σ , could be countably infinite!

In a Discrete Noiseless Channel

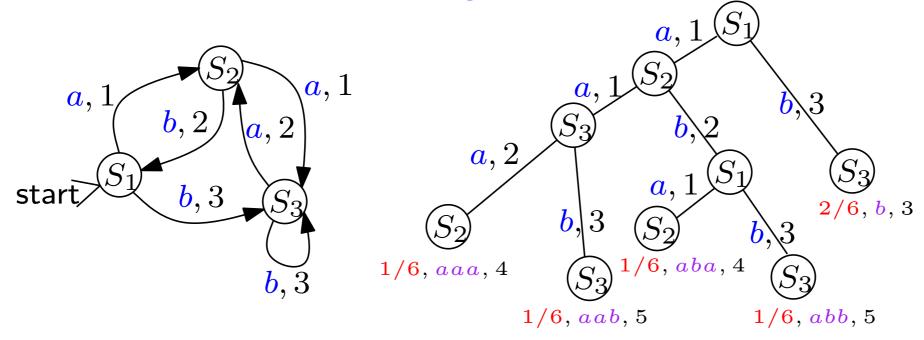


In a Discrete Noiseless Channel



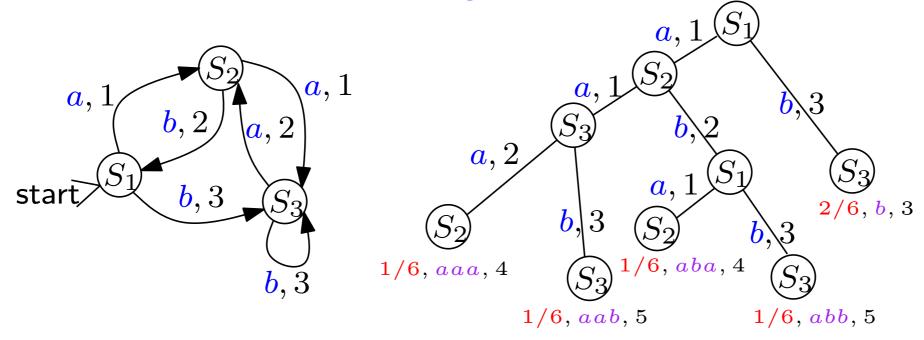
 $lue{}$ Cost of letter depends upon current state. In Shannon's original paper, k=# states and $|\Sigma|$ are both finite

In a Discrete Noiseless Channel



- Cost of letter depends upon current state. In Shannon's original paper, k=# states and $|\Sigma|$ are both finite
- A codeword has both start and end states. In coded message, new codeword must start from final state of preceeding one.

In a Discrete Noiseless Channel



- Cost of letter depends upon current state. In Shannon's original paper, k=# states and $|\Sigma|$ are both finite
- A codeword has both start and end states. In coded message, new codeword must start from final state of preceeding one.
- $\blacksquare \Rightarrow \mathsf{Need}\ k$ code trees; each one rooted with different state

With Language Restrictions

With Language Restrictions

Find min-cost prefix code in which all words belong to given language \mathcal{L} .

With Language Restrictions

Find min-cost prefix code in which all words belong to given language \mathcal{L} .

■ Example: $\mathcal{L} = 0^*1$, all binary words ending in '1'. Used in constructing self-synchronizing codes.

With Language Restrictions

Find min-cost prefix code in which all words belong to given language \mathcal{L} .

■ Example: $\mathcal{L} = 0^*1$, all binary words ending in '1'. Used in constructing self-synchronizing codes.

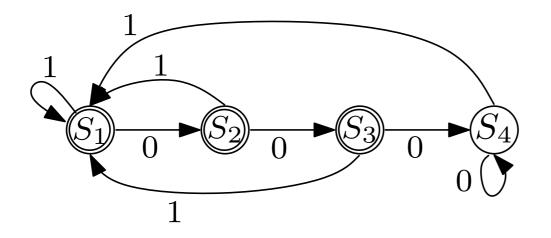
One of the problems that motivated this research. Let \mathcal{L} be the set of all binary words that do *not* contain a given pattern, e.g., 010.

No previous good way of finding min cost prefix code with such restrictions.

With Regular Language Restrictions

- With Regular Language Restrictions
- \blacksquare In this case, there is a DFA \mathcal{M} accepting Language \mathcal{L} .

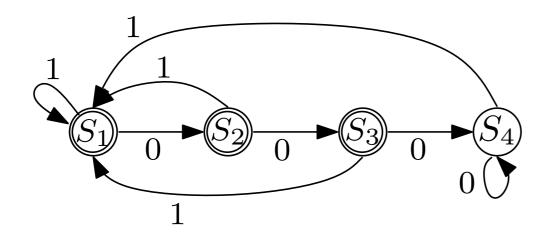
- With Regular Language Restrictions
- \blacksquare In this case, there is a DFA \mathcal{M} accepting Language \mathcal{L} .



$$\mathcal{L} = ((0+1)^*000)^C$$

= binary strings not ending in 000

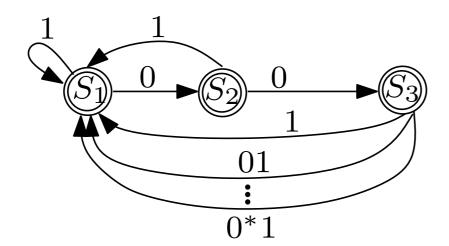
- With Regular Language Restrictions
- \blacksquare In this case, there is a DFA \mathcal{M} accepting Language \mathcal{L} .



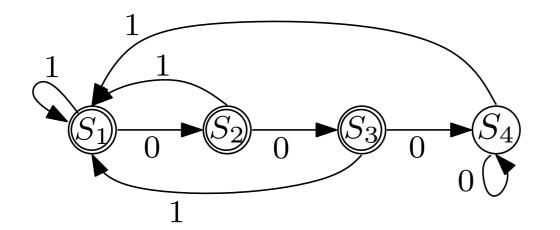
$$\mathcal{L} = ((0+1)^*000)^C$$

= binary strings not ending in 000

 $lue{}$ Erasing the nonaccepting states, \mathcal{M} can be drawn with a finite # of states but a countably infinite encoding alphabet.



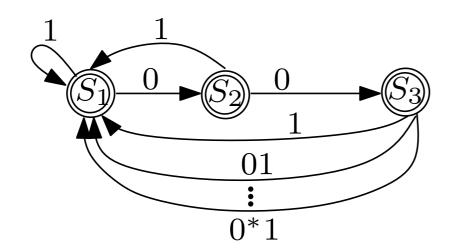
- With Regular Language Restrictions
- \blacksquare In this case, there is a DFA \mathcal{M} accepting Language \mathcal{L} .



$$\mathcal{L} = ((0+1)^*000)^C$$

= binary strings not ending in 000

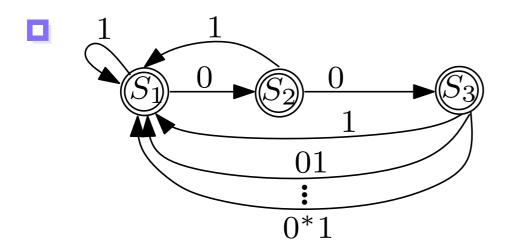
 $lue{}$ Erasing the nonaccepting states, \mathcal{M} can be drawn with a finite # of states but a countably infinite encoding alphabet.



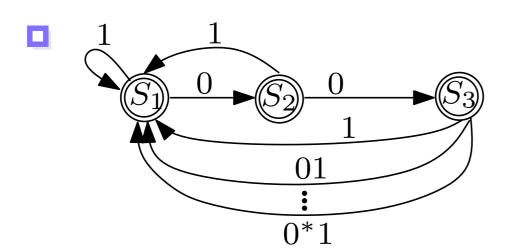
Note: graph doesn't need to strongly connected. It might even have sinks!

With Regular Language Restrictions

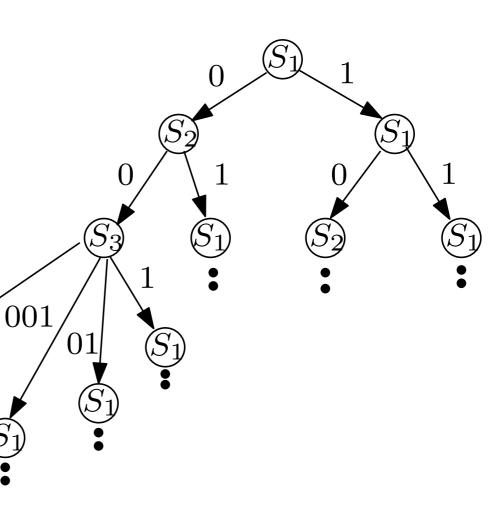
With Regular Language Restrictions



With Regular Language Restrictions



Can still be rewritten as a min-cost tree problem



Outline

Huffman Coding and Generalizations

Previous Work & Background

New Work

A "Counterexample"

Open Problems

Letters in Σ have different costs $c_1 \leq c_2 \leq c_3 \leq \cdots \leq c_r$. Models different transmission/storage costs

- Letters in Σ have different costs $c_1 \leq c_2 \leq c_3 \leq \cdots \leq c_r$. Models different transmission/storage costs
- Blachman (1954), Marcus (1957), Gilbert (1995) Heuristics Karp (1961) Integer Linear Programming Solution G., Rote (1998) $O(n^{c_r+2})$ DP solution Bradford, et. al. (2002), Dumitrescu(2006) $O(n^{c_r})$ G., Kenyon, Young (2002) A PTAS

- Letters in Σ have different costs $c_1 \leq c_2 \leq c_3 \leq \cdots \leq c_r$. Models different transmission/storage costs
- Blachman (1954), Marcus (1957), Gilbert (1995) Heuristics Karp (1961) Integer Linear Programming Solution G., Rote (1998) $O(n^{c_r+2})$ DP solution Bradford, et. al. (2002), Dumitrescu(2006) $O(n^{c_r})$ G., Kenyon, Young (2002) A PTAS
- Big Open Question Still don't know if it's NP-Hard, in P or something between.

- Letters in Σ have different costs $c_1 \leq c_2 \leq c_3 \leq \cdots \leq c_r$. Models different transmission/storage costs
- Blachman (1954), Marcus (1957), Gilbert (1995) Heuristics Karp (1961) Integer Linear Programming Solution G., Rote (1998) $O(n^{c_r+2})$ DP solution Bradford, et. al. (2002), Dumitrescu(2006) $O(n^{c_r})$ G., Kenyon, Young (2002) A PTAS
- \blacksquare Big Open Question Still don't know if it's NP-Hard, in P or something between.
- Most Practical Solutions are arithmetic error approximations

Efficient algorithms $(O(n \log n) \text{ or } O(n))$ that create codes which are within an additive error of optimal.

$$COST \le OPT + K$$

Efficient algorithms $(O(n \log n))$ or O(n) that create codes which are within an additive error of optimal.

$$COST \le OPT + K$$

- Krause (1962)
 - Csiszar (1969)
 - Cott (1977)
 - Altenkamp and Mehlhorn (1980)
 - Mehlhorn (1980)
 - G. and Li (2007)

Efficient algorithms $(O(n \log n))$ or O(n) that create codes which are within an additive error of optimal.

$$COST \le OPT + K$$

- Krause (1962)
 - Csiszar (1969)
 - Cott (1977)
 - Altenkamp and Mehlhorn (1980)
 - Mehlhorn (1980)
 - G. and Li (2007)
- K is a function of letter costs c_1, c_2, c_3, \ldots $K(c_1, c_2, c_3, \ldots)$ are incomparable between different algorithms K is often function of longest letter length c_r , problem when $r=\infty$.

Efficient algorithms $(O(n \log n))$ or O(n) that create codes which are within an additive error of optimal.

$$COST \le OPT + K$$

- Krause (1962)
 - Csiszar (1969)
 - Cott (1977)
 - Altenkamp and Mehlhorn (1980)
 - Mehlhorn (1980)
 - G. and Li (2007)
- K is a function of letter costs c_1, c_2, c_3, \ldots $K(c_1, c_2, c_3, \ldots)$ are incomparable between different algorithms

All algorithms above are Shannon-Fano type codes; differ in how they define "approximate" split

The Discrete Noiseless Channel: Only previous result seems to be Csiszar (1969) who gives additive approximation to optimal code, again using a generalization of Shannon-Fano splitting.

- The Discrete Noiseless Channel: Only previous result seems to be Csiszar (1969) who gives additive approximation to optimal code, again using a generalization of Shannon-Fano splitting.
- Language Constraints
 - "1"-ended codes: Capocelli, et.al., (1994) Berger, Yeung(1990) Exponential Search Chan, G. (2000) $O(n^3)$ DP algorithm
 - Sound of Silence Binary Codes with at most k zeros Dolev, et. al. (1999) $n^{O(k)}$ DP algorithm
 - General Regular Language Constraint Folk theorem: If \exists a DFA with m states accepting \mathcal{L} , optimal code can be built in $n^{O(m)}$ time. $(O(m) \leq 3m.)$

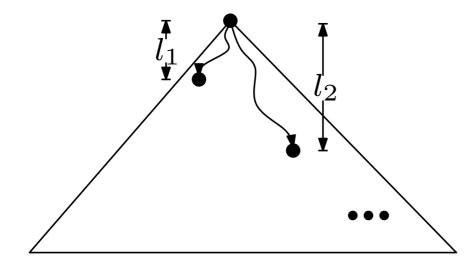
- The Discrete Noiseless Channel: Only previous result seems to be Csiszar (1969) who gives additive approximation to optimal code, again using a generalization of Shannon-Fano splitting.
- Language Constraints
 - "1"-ended codes: Capocelli, et.al., (1994) Berger, Yeung(1990) Exponential Search Chan, G. (2000) $O(n^3)$ DP algorithm
 - Sound of Silence Binary Codes with at most k zeros Dolev, et. al. (1999) $n^{O(k)}$ DP algorithm
 - General Regular Language Constraint Folk theorem: If \exists a DFA with m states accepting \mathcal{L} , optimal code can be built in $n^{O(m)}$ time. $(O(m) \leq 3m.)$
 - No good efficient algorithm known

Pre-Huffman there were two Sub-optimal constructions for basic case

- Pre-Huffman there were two Sub-optimal constructions for basic case
 - Shannon coding: (from noiseless coding theorem) There exists a prefix-free code with word lengths $\ell_i = \lceil -\log_r p_i \rceil, i = 1, 2, \dots, n.$
 - Shannon-Fano coding: probability splitting

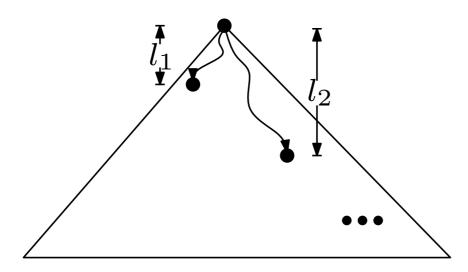
 Try to put $\sim \frac{1}{r}$ of the probability in each node.

Shannon Coding



$$l_i = \lceil -\log_r p_i \rceil$$

Shannon Coding



$$l_i = \lceil -\log_r p_i \rceil$$

Given depths l_i , can build tree via top-down "linear" scan. When moving down a level, expand *all* non-used leaves to be parents.

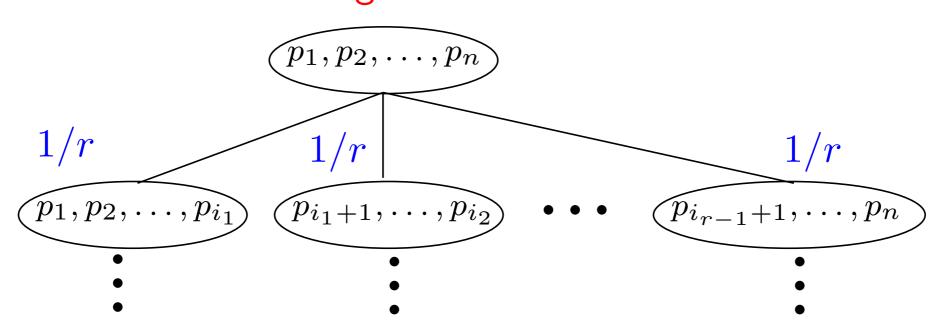
Shannon Coding



$$l_i = \lceil -\log_r p_i \rceil$$

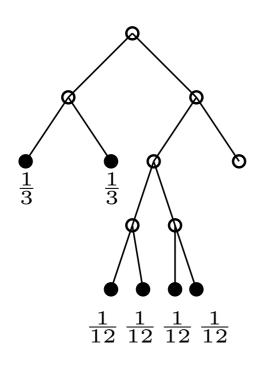
Given depths l_i , can build tree via top-down "linear" scan. When moving down a level, expand *all* non-used leaves to be parents.

Shannon-Fano Coding



Example: $p_1 = p_2 = \frac{1}{3}$, $p_3 = p_4 = p_5 = p_6 = \frac{1}{12}$

Example: $p_1 = p_2 = \frac{1}{3}$, $p_3 = p_4 = p_5 = p_6 = \frac{1}{12}$



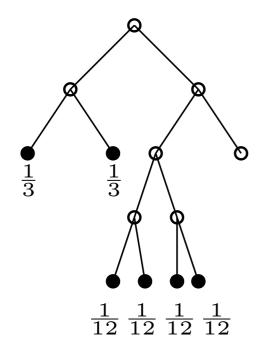
Shannon coding

$$l_1 = l_2 = 2 = \left\lceil -\log_2 \frac{1}{3} \right\rceil$$

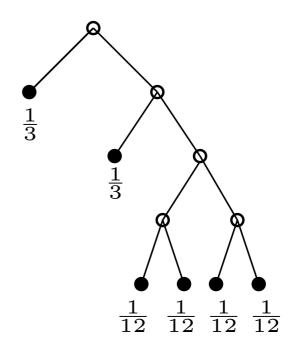
$$l_3 = l_4 = l_5 = l_6 = 4 = \left[-\log_2 \frac{1}{12} \right]$$

Has empty "slots" can be improved

Example: $p_1 = p_2 = \frac{1}{3}$, $p_3 = p_4 = p_5 = p_6 = \frac{1}{12}$



Shannon coding



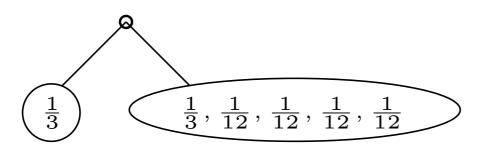
Shannon-Fano coding

Example: $p_1 = p_2 = \frac{1}{3}$, $p_3 = p_4 = p_5 = p_6 = \frac{1}{12}$

Shannon-Fano: First, sort items and insert at root.

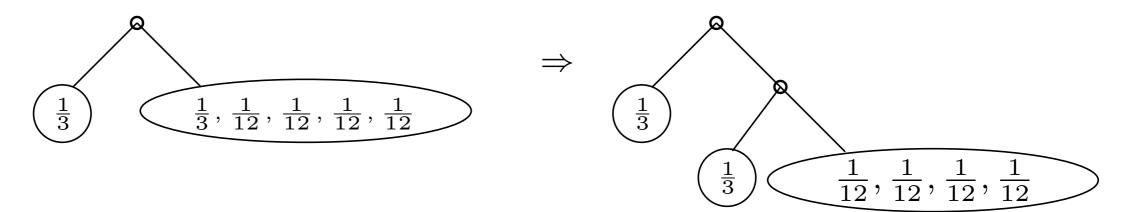
Example: $p_1 = p_2 = \frac{1}{3}$, $p_3 = p_4 = p_5 = p_6 = \frac{1}{12}$

Shannon-Fano: First, sort items and insert at root.



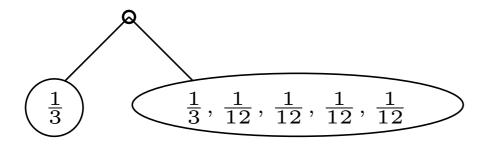
Example: $p_1 = p_2 = \frac{1}{3}$, $p_3 = p_4 = p_5 = p_6 = \frac{1}{12}$

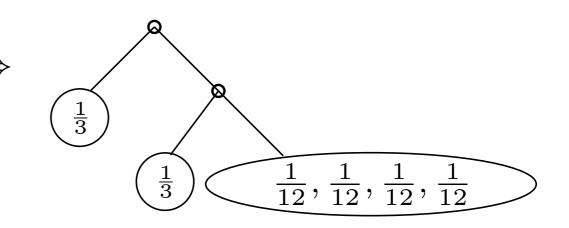
Shannon-Fano: First, sort items and insert at root.

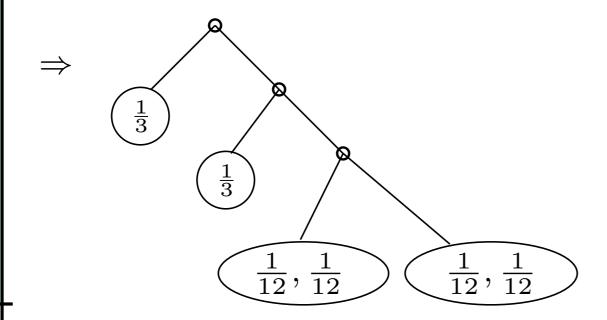


Example: $p_1 = p_2 = \frac{1}{3}$, $p_3 = p_4 = p_5 = p_6 = \frac{1}{12}$

Shannon-Fano: First, sort items and insert at root.

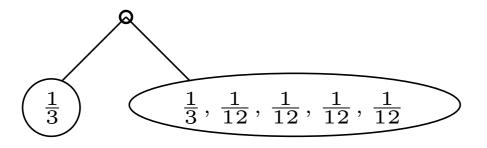


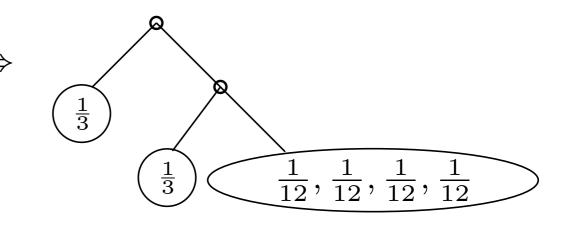


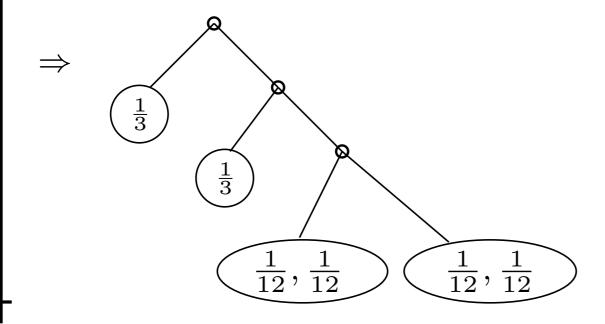


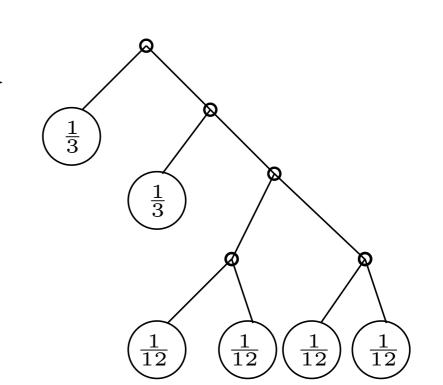
Example: $p_1 = p_2 = \frac{1}{3}$, $p_3 = p_4 = p_5 = p_6 = \frac{1}{12}$

Shannon-Fano: First, sort items and insert at root.

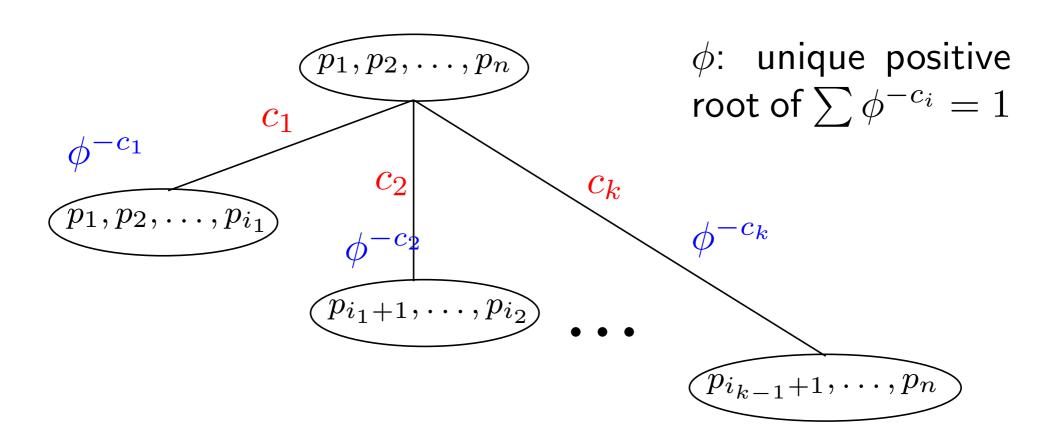




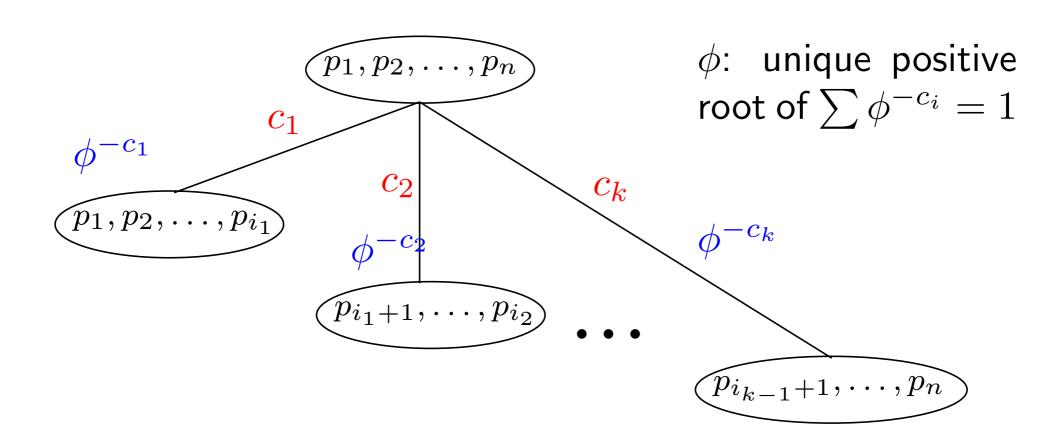




Shannon Fano coding for unequal cost codes

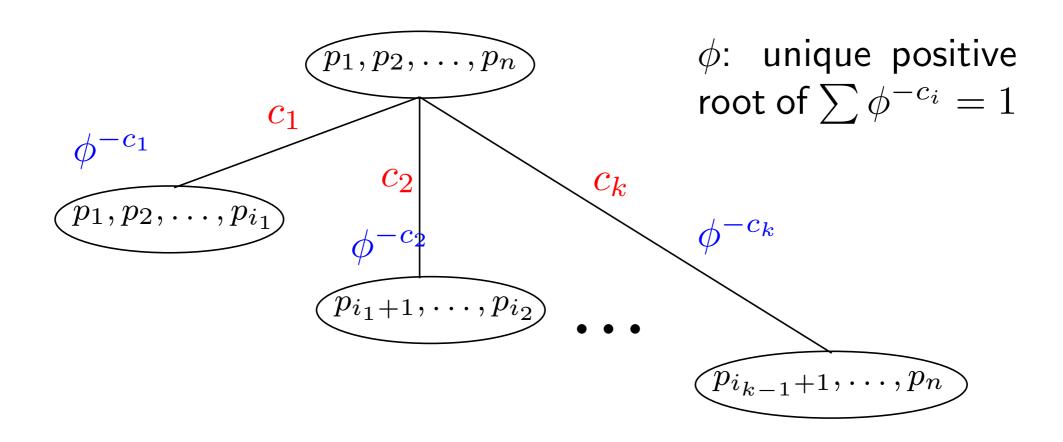


Shannon Fano coding for unequal cost codes



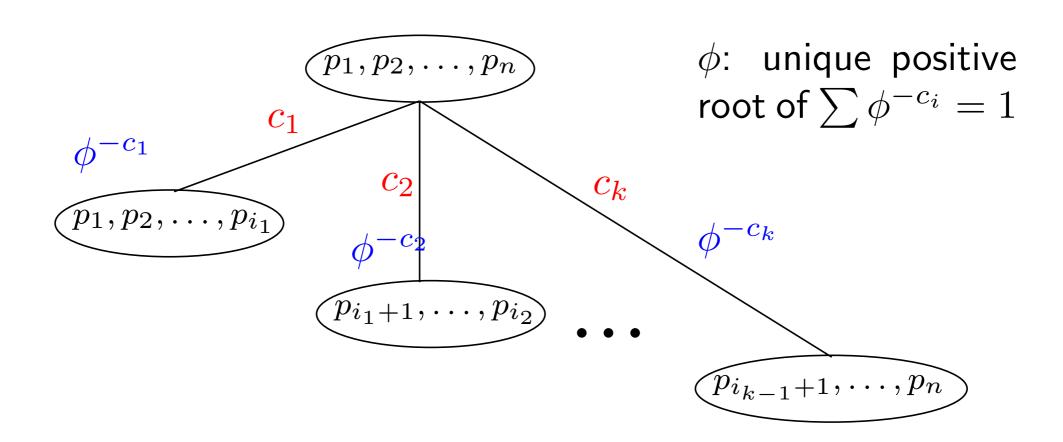
 $^{\square}$ Split probabilities so "approximately" ϕ^{-c_i} of the probability in a node is put into its i^{th} child.

Shannon Fano coding for unequal cost codes



- $^{\square}$ Split probabilities so "approximately" ϕ^{-c_i} of the probability in a node is put into its i^{th} child.
- \blacksquare Note: This "can" work for infinite alphabets, as long as ϕ exists.

Shannon Fano coding for unequal cost codes



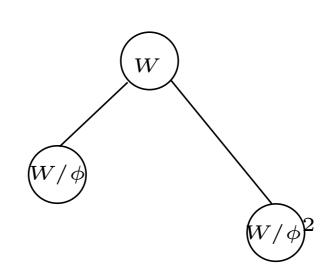
- $^{\square}$ Split probabilities so "approximately" ϕ^{-c_i} of the probability in a node is put into its i^{th} child.
- All previous algorithms were Shannon-Fano like. They differed in how they implemented "approximate split".

- Shannon-Fano coding for unequal cost codes
 - ϕ : unique positive root of $\sum \phi^{-c_i} = 1$
- $^{\square}$ Split probabilities so "approximately" ϕ^{-c_i} of the probability in a node is put into its i^{th} child.

- Shannon-Fano coding for unequal cost codes
 - ϕ : unique positive root of $\sum \phi^{-c_i} = 1$
- $^{\square}$ Split probabilities so "approximately" ϕ^{-c_i} of the probability in a node is put into its i^{th} child.
- lacksquare Example: Telegraph Channel: $c_1=1$, $c_2=2$

$$\phi^{-1} = \frac{\sqrt{5}-1}{2}$$

Put $\sim \phi^{-1}$ of the root's weight in the left subtree and $\sim \phi^{-2}$ of the weight in the right

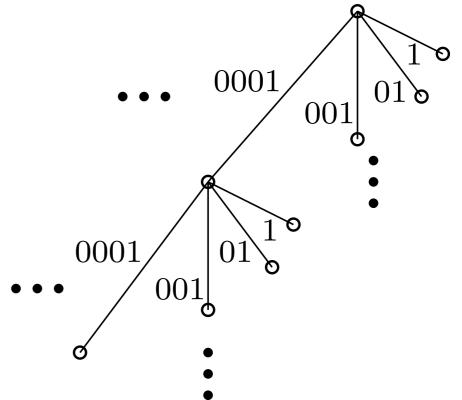


- Shannon-Fano coding for unequal cost codes
 - ϕ : unique positive root of $\sum \phi^{-c_i} = 1$
- $^{\square}$ Split probabilities so "approximately" ϕ^{-c_i} of the probability in a node is put into its i^{th} child.

- Shannon-Fano coding for unequal cost codes
 - ϕ : unique positive root of $\sum \phi^{-c_i} = 1$
- Split probabilities so "approximately" ϕ^{-c_i} of the probability in a node is put into its i^{th} child.
- Example: 1-ended coding. $\forall i > 0, c_i = i$. i'th encoding letter denotes string $0^{i-1}1$.

$$\sum \phi^{-c_i} = 1 \text{ gives } \phi^{-1} = \frac{1}{2}$$

Put $\sim 2^{-i}$ of a node's weight into its i'th subtree



Previous Work. Well Known Lower Bound

Given coding letter lengths $\mathcal{C}=\{c_1,c_2,c_3,\ldots\}$, $gcd(c_i)=1$, let ϕ be the unique positive root of $g(z)=1-\sum_j\phi^{-c_j}$

Previous Work. Well Known Lower Bound

Given coding letter lengths $\mathcal{C}=\{c_1,c_2,c_3,\ldots\}$, $gcd(c_i)=1$, let ϕ be the unique positive root of $g(z)=1-\sum_j\phi^{-c_j}$

Note: ϕ sometimes called the "capacity"

Previous Work. Well Known Lower Bound

Given coding letter lengths $\mathcal{C}=\{c_1,c_2,c_3,\ldots\}$, $gcd(c_i)=1$, let ϕ be the unique positive root of $g(z)=1-\sum_j\phi^{-c_j}$

Note: ϕ sometimes called the "capacity"

• For given P.D. set $H_{\phi} = -\sum p_i \log_{\phi} p_i$.

Previous Work. Well Known Lower Bound

Given coding letter lengths $\mathcal{C}=\{c_1,c_2,c_3,\ldots\}$, $gcd(c_i)=1$, let ϕ be the unique positive root of $g(z)=1-\sum_j\phi^{-c_j}$

Note: ϕ sometimes called the "capacity"

For given P.D. set $H_{\phi} = -\sum p_i \log_{\phi} p_i$.

Note: If $c_1 = c_2 = 1$ then $\phi = 2$ and H_{ϕ} is standard entropy

Previous Work. Well Known Lower Bound

Given coding letter lengths $\mathcal{C}=\{c_1,c_2,c_3,\ldots\}$, $gcd(c_i)=1$, let ϕ be the unique positive root of $g(z)=1-\sum_j\phi^{-c_j}$

Note: ϕ sometimes called the "capacity"

For given P.D. set $H_{\phi} = -\sum p_i \log_{\phi} p_i$.

Note: If $c_1 = c_2 = 1$ then $\phi = 2$ and H_{ϕ} is standard entropy

Theorem:

Let OPT be cost of min-cost code for given P.D. and letter costs. Then

$$H_{\phi} \leq OPT$$

Previous Work. Well Known Lower Bound

Given coding letter lengths $\mathcal{C}=\{c_1,c_2,c_3,\ldots\}$, $gcd(c_i)=1$, let ϕ be the unique positive root of $g(z)=1-\sum_j\phi^{-c_j}$

Note: ϕ sometimes called the "capacity"

For given P.D. set $H_{\phi} = -\sum p_i \log_{\phi} p_i$.

Note: If $c_1 = c_2 = 1$ then $\phi = 2$ and H_{ϕ} is standard entropy

Theorem:

Let OPT be cost of min-cost code for given P.D. and letter costs. Then

$$H_{\phi} \leq OPT$$

Note: If $c_1 = c_2 = 1$ then $\phi = 2$ and this is classic "Shannon Information Theoretic Lower Bound"

Outline

Huffman Coding and Generalizations

Previous Work & Background

New Work

A "Counterexample"

Open Problems

Shannon coding only seems to have been used in the proof of the *noiseless coding theorem*. It never seems to have actually been used as an algorithmic tool.

- Shannon coding only seems to have been used in the proof of the *noiseless coding theorem*. It never seems to have actually been used as an algorithmic tool.
- All of the (additive-error) approximation algoritms for unequal cost coding and Csiszar's (1969) approximation algorithm for coding in a Discrete Noiseless Channel, were variations of Shannon-Fano coding

- Shannon coding only seems to have been used in the proof of the *noiseless coding theorem*. It never seems to have actually been used as an algorithmic tool.
- All of the (additive-error) approximation algoritms for unequal cost coding and Csiszar's (1969) approximation algorithm for coding in a Discrete Noiseless Channel, were variations of Shannon-Fano coding
- The main idea behind our new results is that Shannon-Fano splitting is not necessary; Shannon-coding suffices

- Shannon coding only seems to have been used in the proof of the *noiseless coding theorem*. It never seems to have actually been used as an algorithmic tool.
- All of the (additive-error) approximation algoritms for unequal cost coding and Csiszar's (1969) approximation algorithm for coding in a Discrete Noiseless Channel, were variations of Shannon-Fano coding
- The main idea behind our new results is that Shannon-Fano splitting is not necessary; Shannon-coding suffices
- Yields efficient additive-error approximation algorithms for unequal cost coding and the Discrete Noiseless Channel, as well as for regular language constraints.

Given coding letter lengths C, let ϕ be capacity. Then $\exists K>0$, depending only upon C, such that if

1.
$$P = \{p_1, p_2, \dots, p_n\}$$
 is any P.D., and

2. $\ell_1, \ell_2, \ldots, \ell_n$ any set of integers such that $\forall i, \ \ell_i \geq K + \lceil -\log_{\phi} p_i \rceil,$

then there exists a prefix free code for which the ℓ_i are the word lengths.

 \square Given coding letter lengths \mathcal{C} , let ϕ be capacity. Then $\exists K>0$, depending only upon \mathcal{C} , such that if

1.
$$P = \{p_1, p_2, \dots, p_n\}$$
 is any P.D., and

2. $\ell_1, \ell_2, \ldots, \ell_n$ any set of integers such that $\forall i, \ \ell_i \geq K + \lceil -\log_\phi p_i \rceil,$

then there exists a prefix free code for which the ℓ_i are the word lengths.

Given coding letter lengths C, let ϕ be capacity. Then $\exists K > 0$, depending only upon C, such that if

1.
$$P = \{p_1, p_2, \dots, p_n\}$$
 is any P.D., and

2. $\ell_1, \ell_2, \ldots, \ell_n$ any set of integers such that $\forall i, \ \ell_i \geq K + \lceil -\log_{\phi} p_i \rceil,$

then there exists a prefix free code for which the ℓ_i are the word lengths.

This gives an additive approximation of same type as Shannon-Fano splitting without the splitting (same time complexity but many fewer operations on reals).

Given coding letter lengths C, let ϕ be capacity. Then $\exists K>0$, depending only upon C, such that if

1.
$$P = \{p_1, p_2, \dots, p_n\}$$
 is any P.D., and

2. $\ell_1, \ell_2, \ldots, \ell_n$ any set of integers such that $\forall i, \ \ell_i \geq K + \lceil -\log_\phi p_i \rceil,$

then there exists a prefix free code for which the ℓ_i are the word lengths.

Same result holds for DNC and regular language restrictions. ϕ is a function of the DNC or \mathcal{L} -accepting automaton graph

Proof of the Theorem

We first prove the following lemma.

Given ${\mathcal C}$ and corresponding ϕ then

 $\exists \beta > 0$ depending only upon $\mathcal C$ such that if

$$\sum_{i=1}^{n} \phi^{-\ell_i} \le \beta,$$

then there exists a prefix-free code with word lengths $\ell_1, \ell_2, \dots, \ell_n$.

Proof of the Theorem

We first prove the following lemma.

Given ${\mathcal C}$ and corresponding ϕ then

 $\exists \beta > 0$ depending only upon $\mathcal C$ such that if

$$\sum_{i=1}^{n} \phi^{-\ell_i} \le \beta,$$

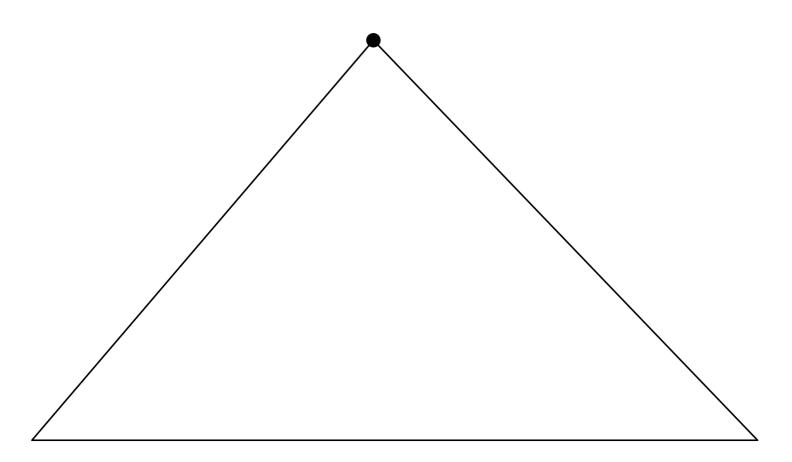
then there exists a prefix-free code with word lengths $\ell_1, \ell_2, \dots, \ell_n$.

Note: if $c_1 = c_2 = 1$ then $\phi = 2$. Let $\beta = 1$ and condition becomes $\sum_{i=1}^{n} 2^{-\ell_i} \leq 1$.

Lemma then becomes one direction of Kraft Inequality.

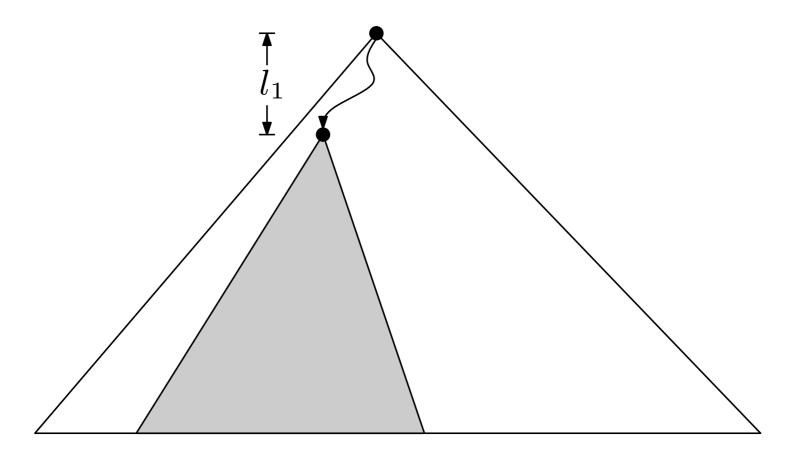
Let L(n) be the number of nodes on level n of the infinite tree corresponding to $\mathcal C$

Can show $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$.



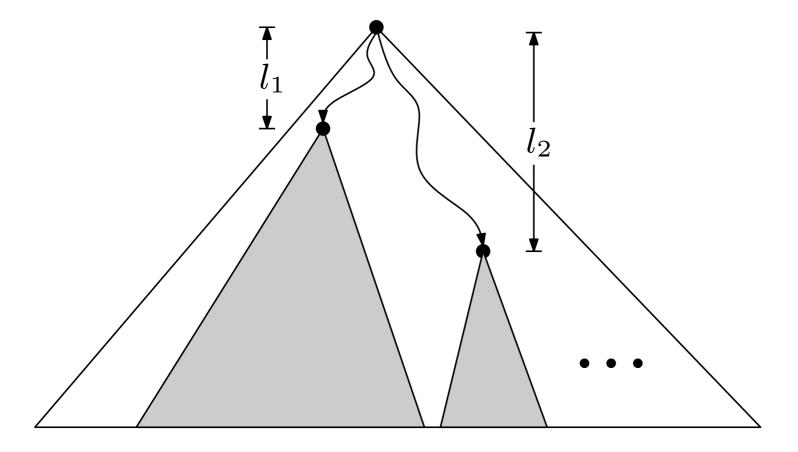
Let L(n) be the number of nodes on level n of the infinite tree corresponding to $\mathcal C$

Can show $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$.



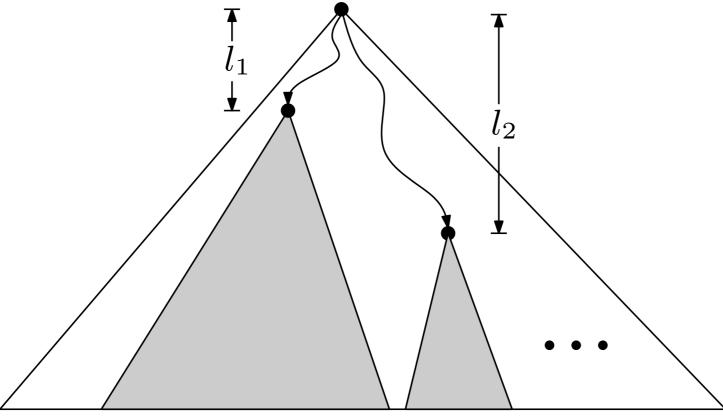
Let L(n) be the number of nodes on level n of the infinite tree corresponding to $\mathcal C$

Can show $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$.



Let L(n) be the number of nodes on level n of the infinite tree corresponding to $\mathcal C$

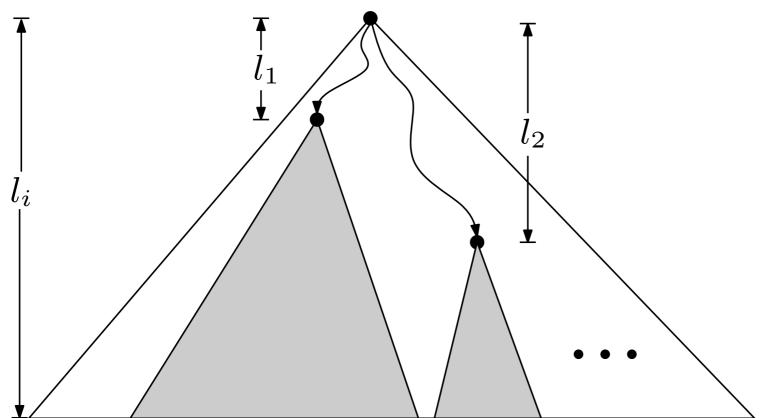
Can show $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$.



Grey regions are parts of infinite tree that are erased when node k on ℓ_k becomes leaf.

Let L(n) be the number of nodes on level n of the infinite tree corresponding to $\mathcal C$

Can show $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$.

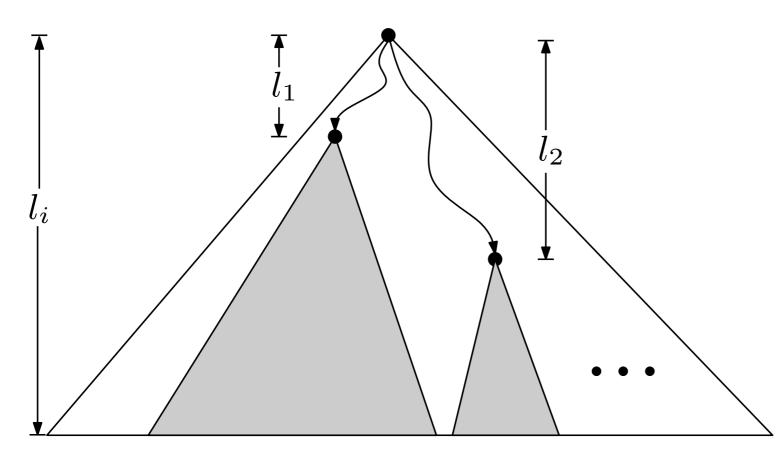


Grey regions are parts of infinite tree that are erased when node k on ℓ_k becomes leaf.

Node on ℓ_k has $L(\ell_i - \ell_k)$ descendents on ℓ_i

Let L(n) be the number of nodes on level n of the infinite tree corresponding to $\mathcal C$

Can show $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$.



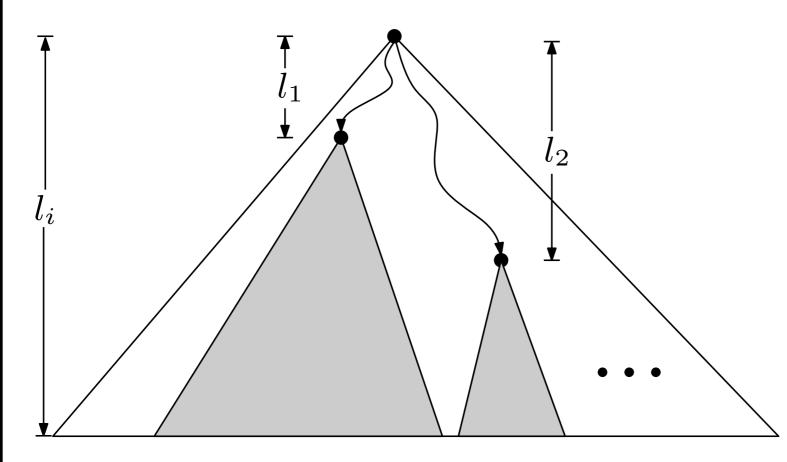
Grey regions are parts of infinite tree that are erased when node k on ℓ_k becomes leaf.

Node on ℓ_k has $L(\ell_i - \ell_k)$ descendents on ℓ_i

Node on ℓ_i can become leaf iff grey regions do not cover all nodes on level ℓ_i

Let L(n) be the number of nodes on level n of the infinite tree corresponding to $\mathcal C$

Can show $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$.



Grey regions are parts of infinite tree that are erased when node k on ℓ_k becomes leaf.

Node on ℓ_k has $L(\ell_i - \ell_k)$ descendents on ℓ_i

Node on ℓ_i can become leaf iff grey regions do not cover all nodes on level ℓ_i

$$\sum_{k=1}^{i-1} L(\ell - \ell_k) < L(\ell_i)$$

Just need to show that $0 < L(\ell_i) - \sum_{k=1}^{i-1} L(\ell - \ell_k)$.

Instinction Just need to show that $0 < L(\ell_i) - \sum_{k=1}^{i-1} L(\ell - \ell_k)$.

$$L(\ell_{i}) - \sum_{k=1}^{i-1} L(\ell - \ell_{k}) \geq t_{1} \phi^{\ell} - t_{2} \sum_{k=1}^{i-1} \phi^{\ell - \ell_{k}}$$

$$\geq \phi^{\ell} \left(t_{1} - t_{2} \sum_{k=1}^{i-1} \phi^{-\ell_{k}} \right)$$

$$\geq \phi^{\ell} (t_{1} - t_{2} \beta)$$

Instinction Just need to show that $0 < L(\ell_i) - \sum_{k=1}^{i-1} L(\ell - \ell_k)$.

$$L(\ell_{i}) - \sum_{k=1}^{i-1} L(\ell - \ell_{k}) \geq t_{1} \phi^{\ell} - t_{2} \sum_{k=1}^{i-1} \phi^{\ell - \ell_{k}}$$

$$\geq \phi^{\ell} \left(t_{1} - t_{2} \sum_{k=1}^{i-1} \phi^{-\ell_{k}} \right)$$

$$\geq \phi^{\ell} (t_{1} - t_{2} \beta)$$

 \Box Choose $\beta < \frac{t_1}{t_2}$

Just need to show that $0 < L(\ell_i) - \sum_{k=1}^{i-1} L(\ell - \ell_k)$.

$$L(\ell_{i}) - \sum_{k=1}^{i-1} L(\ell - \ell_{k}) \geq t_{1} \phi^{\ell} - t_{2} \sum_{k=1}^{i-1} \phi^{\ell - \ell_{k}}$$

$$\geq \phi^{\ell} \left(t_{1} - t_{2} \sum_{k=1}^{i-1} \phi^{-\ell_{k}} \right)$$

$$\geq \phi^{\ell} (t_{1} - t_{2} \beta)$$

 $\square \text{ Choose } \beta < \frac{t_1}{t_2} > 0$

Proof of the Main Theorem

Set $K = -\log_{\phi} \beta$. (Recall $l_i \geq K + \lceil -\log_{\phi} p_i \rceil$) Then

$$\sum_{i=1}^{n} \phi^{-\ell_i} \leq \sum_{i=1}^{n} \phi^{-K-\lceil -\log_{\phi} p_i \rceil}$$

$$\leq \beta \sum_{i=1}^{n} \phi^{\log_{\phi} p_i} = \beta \sum_{i=1}^{n} p_i = \beta$$

Proof of the Main Theorem

Set $K = -\log_{\phi} \beta$. (Recall $l_i \geq K + \lceil -\log_{\phi} p_i \rceil$) Then

$$\sum_{i=1}^{n} \phi^{-\ell_i} \leq \sum_{i=1}^{n} \phi^{-K-\lceil -\log_{\phi} p_i \rceil}$$

$$\leq \beta \sum_{i=1}^{n} \phi^{\log_{\phi} p_i} = \beta \sum_{i=1}^{n} p_i = \beta$$

From previous lemma, a prefix free code with those word lengths $\ell_1, \ell_2, \dots, \ell_n$ exists, and we are done

$$\Rightarrow \phi = \frac{\sqrt{5}+1}{2} \text{, } K = 1$$

$$\Rightarrow \phi = \frac{\sqrt{5}+1}{2}$$
, $K=1$

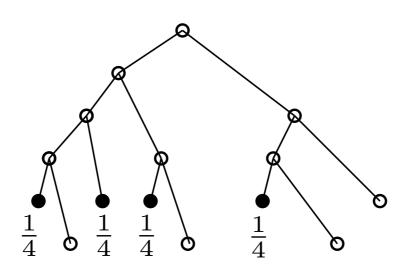
• Consider $p_1 = p_2 = p_3 = p_4 = \frac{1}{4}$

$$\Rightarrow \phi = \frac{\sqrt{5}+1}{2} \text{, } K = 1$$

Consider $p_1=p_2=p_3=p_4=\frac{1}{4}$ Note that $\left[-\log_\phi p_i\right]=3$.

$$\Rightarrow \phi = \frac{\sqrt{5}+1}{2} \text{, } K = 1$$

- Consider $p_1=p_2=p_3=p_4=\frac{1}{4}$ Note that $\left\lceil -\log_\phi p_i \right\rceil=3$.
- No tree with $l_i=3$ exists. But, a tree with $l_i=\lceil -\log_\phi p_i \rceil+1=4$ does!



The Algorithm

lacksquare A valid K could be found by working through the proof of Theorem. Technically, O(1) but, practically, this would require some complicated operations on reals.

The Algorithm

- lacksquare A valid K could be found by working through the proof of Theorem. Technically, O(1) but, practically, this would require some complicated operations on reals.
- $lue{}$ Alternatively, perform doubling search for K, the smallest K for which theorem is valid.

Set
$$\overline{K}=1,2,2^2,2^3\dots$$

Test if $\ell_i=\overline{K}+\lceil -\log_\phi p_i \rceil$ has valid code (can be done efficiently) until \overline{K} is good but $\overline{K}/2$ is not.

The Algorithm

- lacksquare A valid K could be found by working through the proof of Theorem. Technically, O(1) but, practically, this would require some complicated operations on reals.
- lacktriangleright Alternatively, perform doubling search for K, the smallest K for which theorem is valid.

Set
$$\overline{K}=1,2,2^2,2^3\dots$$

Test if $\ell_i=\overline{K}+\lceil -\log_\phi p_i \rceil$ has valid code (can be done efficiently) until \overline{K} is good but $\overline{K}/2$ is not.

Note that $\overline{K}/2 < K \leq \overline{K}$

The Algorithm

- lacksquare A valid K could be found by working through the proof of Theorem. Technically, O(1) but, practically, this would require some complicated operations on reals.
- $lue{}$ Alternatively, perform doubling search for K, the smallest K for which theorem is valid.

Set
$$\overline{K}=1,2,2^2,2^3\dots$$

Test if $\ell_i=\overline{K}+\lceil -\log_\phi p_i \rceil$ has valid code (can be done efficiently) until \overline{K} is good but $\overline{K}/2$ is not.

Note that
$$\overline{K}/2 < K \leq \overline{K}$$

Now set $a = \overline{K}/2, b = \overline{K}$, and binary search for K in [a,b].

The Algorithm

- lacksquare A valid K could be found by working through the proof of Theorem. Technically, O(1) but, practically, this would require some complicated operations on reals.
- $lue{}$ Alternatively, perform doubling search for K, the smallest K for which theorem is valid.

Set
$$\overline{K}=1,2,2^2,2^3\dots$$

Test if $\ell_i=\overline{K}+\lceil -\log_\phi p_i \rceil$ has valid code (can be done efficiently) until \overline{K} is good but $\overline{K}/2$ is not.

Note that
$$\overline{K}/2 < K \leq \overline{K}$$

Now set $a = \overline{K}/2, b = \overline{K}$, and binary search for K in [a,b].

Subtle point: Search will find $K' \leq K$ for which code exists.

The Algorithm

- lacksquare A valid K could be found by working through the proof of Theorem. Technically, O(1) but, practically, this would require some complicated operations on reals.
- $lue{}$ Alternatively, perform doubling search for K, the smallest K for which theorem is valid.

Set
$$\overline{K}=1,2,2^2,2^3\dots$$

Test if $\ell_i=\overline{K}+\lceil -\log_\phi p_i \rceil$ has valid code (can be done efficiently) until \overline{K} is good but $\overline{K}/2$ is not.

Note that $\overline{K}/2 < K \leq \overline{K}$

Now set $a=\overline{K}/2, b=\overline{K}$, and binary search for K in [a,b]. Subtle point: Search will find $K' \leq K$ for which code exists.

■ Time complexity $O(n \cdot \log K)$.

- Proof assumed two things.
 - (i) Root of $\sum \phi^{-c_i} = 1$ exists
 - (ii) $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$

L(n) is number of nodes on level n of infinite tree

- Proof assumed two things.
 - (i) Root of $\sum \phi^{-c_i} = 1$ exists
 - (ii) $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$

L(n) is number of nodes on level n of infinite tree

□ This is always true for finite encoding alphabet

- Proof assumed two things.
 - (i) Root of $\sum \phi^{-c_i} = 1$ exists
 - (ii) $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$

L(n) is number of nodes on level n of infinite tree

- This is always true for finite encoding alphabet
- Not necessarily true for infinite encoding alphabets Will see simple example in next section

- Proof assumed two things.
 - (i) Root of $\sum \phi^{-c_i} = 1$ exists
 - (ii) $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$

L(n) is number of nodes on level n of infinite tree

- This is always true for finite encoding alphabet
- Not necessarily true for infinite encoding alphabets Will see simple example in next section
- But, if (i) and (ii) are true for an infinite alphabet \Rightarrow Theorem/algorithm hold

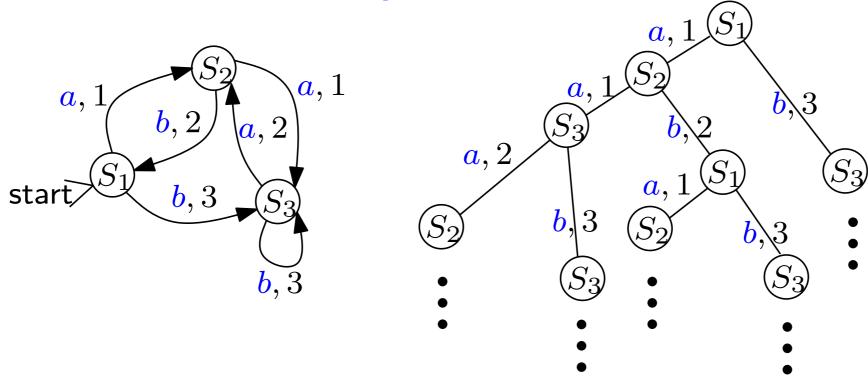
- Proof assumed two things.
 - (i) Root of $\sum \phi^{-c_i} = 1$ exists
 - (ii) $\exists t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$

L(n) is number of nodes on level n of infinite tree

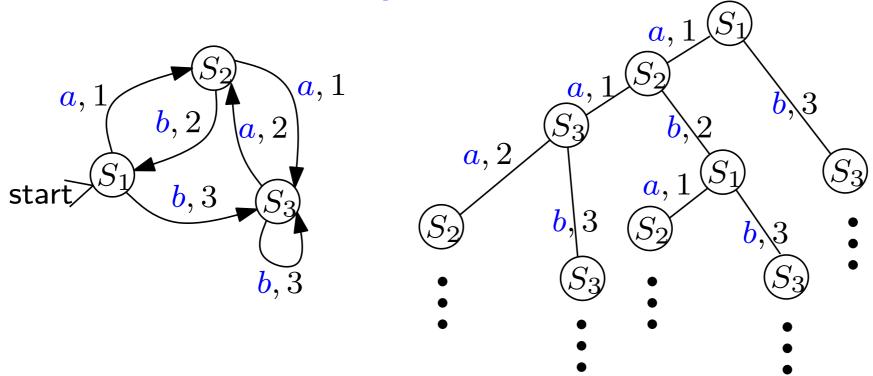
- This is always true for finite encoding alphabet
- Not necessarily true for infinite encoding alphabets Will see simple example in next section
- But, if (i) and (ii) are true for an infinite alphabet \Rightarrow Theorem/algorithm hold
- **Example**: '1'-Ended codes. $c_i = i$.

 $\Rightarrow \phi = \frac{1}{2}$ and (ii) is true \Rightarrow Theorem/algorithm hold

Discrete Noiseless Channels



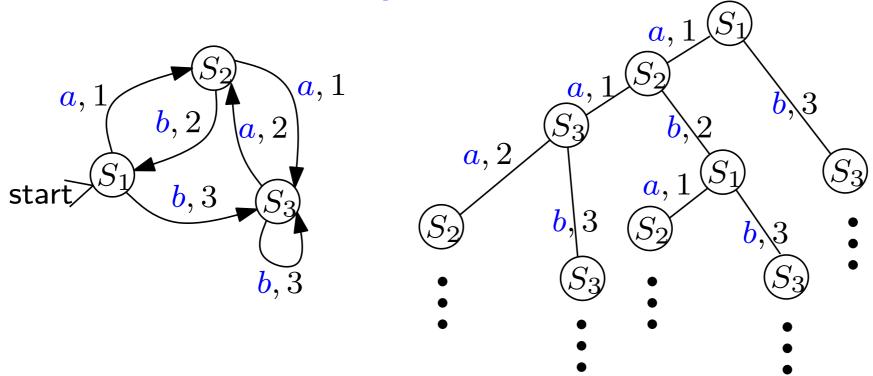
Discrete Noiseless Channels



Let L(n) be number of nodes on level n of infinite tree Fact that graph is biconnected and "aperiodic" implies that

$$\exists, \phi, t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$$

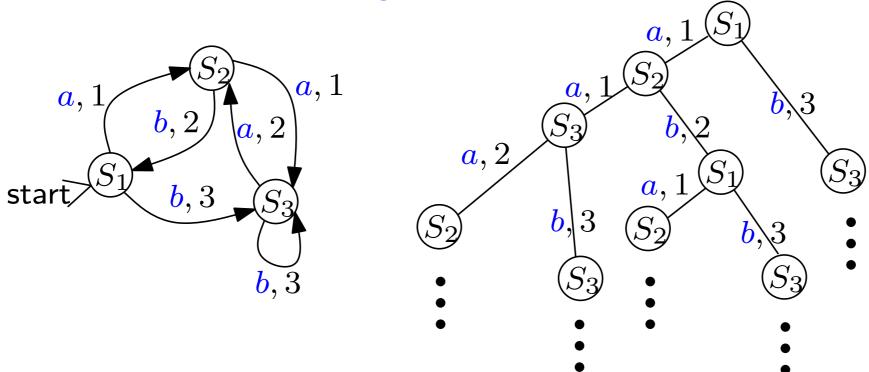
Discrete Noiseless Channels



Let L(n) be number of nodes on level n of infinite tree Fact that graph is biconnected and "aperiodic" implies that $\exists, \phi, t_1, t_2 \text{ s.t.}, \ t_1 \phi^n \leq L(n) \leq t_2 \phi^n$

Algorithm will still work for $\ell_i \geq K + \lceil -\log_{\phi} p_i \rceil$,

Discrete Noiseless Channels



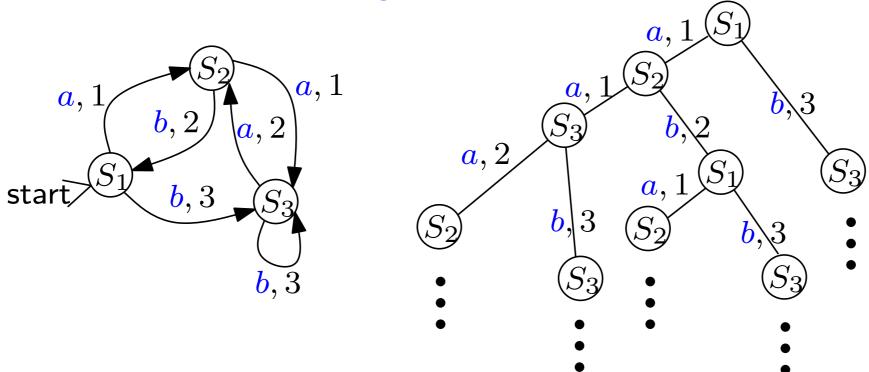
Let L(n) be number of nodes on level n of infinite tree Fact that graph is biconnected and "aperiodic" implies that

$$\exists, \phi, t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$$

Algorithm will still work for $\ell_i \geq K + \lceil -\log_{\phi} p_i \rceil$,

Note: Algorithm must construct k different coding trees. One for each state (tree root).

Discrete Noiseless Channels



Let L(n) be number of nodes on level n of infinite tree

Fact that graph is biconnected and "aperiodic" implies that

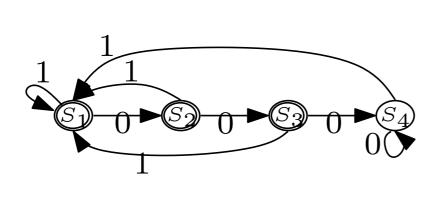
$$\exists, \phi, t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$$

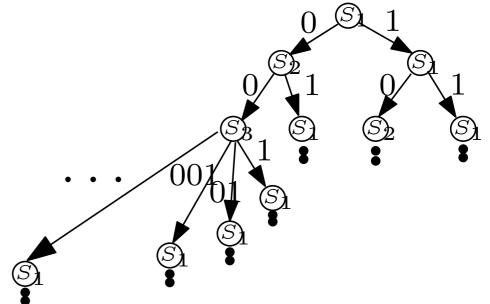
Algorithm will still work for $\ell_i \geq K + \lceil -\log_{\phi} p_i \rceil$,

Subtle point is that any node on level l_i can be chosen for p_i , independent of its state! Algorithm still works.

Regular Language Restrictions

Assumption: Language is 'aperiodic', i.e., $\exists N$, such that $\forall n > N$ there is at least one word of length n





Let L(n) be number of nodes on level n of infinite tree Fact that language is "aperiodic" implies that

$$\exists, \phi, t_1, t_2 \text{ s.t., } t_1 \phi^n \leq L(n) \leq t_2 \phi^n$$

 ϕ is largest dominant 'eigenvalue' of a conn component of the DFA.

Algorithm will still work for $\ell_i \geq K + \lceil -\log_{\phi} p_i \rceil$,

Again, any node at level l_i can be labelled with p_i , independent of state

Outline

Huffman Coding and Generalizations

Previous Work & Background

New Work

A "Counterexample"

Conclusion and Open Problems

Let \mathcal{C} be the countably infinite set defined by

$$|\{j \mid c_j = i\}| = 2C_{i-1}$$

where $C_i = \frac{1}{i+1} \binom{2i}{i}$ is the *i*-th Catalan number.

Constructing prefix-free codes with these \mathcal{C} can be shown to be equivalent to constructing balanced binary prefix-free codes in which, for every word, the number of '0's equals the number of '1's.

Let \mathcal{C} be the countably infinite set defined by

$$|\{j \mid c_j = i\}| = 2C_{i-1}$$

where $C_i = \frac{1}{i+1} \binom{2i}{i}$ is the *i*-th Catalan number.

Constructing prefix-free codes with these \mathcal{C} can be shown to be equivalent to constructing balanced binary prefix-free codes in which, for every word, the number of '0's equals the number of '1's.

No efficient additive-error approximation known.

Let \mathcal{C} be the countably infinite set defined by

$$|\{j \mid c_j = i\}| = 2C_{i-1}$$

where $C_i = \frac{1}{i+1} \binom{2i}{i}$ is the *i*-th Catalan number.

Constructing prefix-free codes with these \mathcal{C} can be shown to be equivalent to constructing balanced binary prefix-free codes in which, for every word, the number of '0's equals the number of '1's.

- No efficient additive-error approximation known.
- For this problem, the length of a balanced word = # of '0's in word. e.g., |10| = 1, |001110| = 3.

Let \mathcal{L} be the set of all balanced binary words.

Set $Q = \{01, 10, 0011, 1100, 000111, \ldots\}$,

the language of all balanced binary words without a balanced prefix.

Then $\mathcal{L} = \mathcal{Q}^*$ and every word in \mathcal{L} can be uniquely decomposed into concatenation of words in \mathcal{Q} .

Let \mathcal{L} be the set of all balanced binary words.

Set $Q = \{01, 10, 0011, 1100, 000111, \ldots\}$,

the language of all balanced binary words without a balanced prefix.

Then $\mathcal{L} = \mathcal{Q}^*$ and every word in \mathcal{L} can be uniquely decomposed into concatenation of words in \mathcal{Q} .

words of length i in Q is $2C_{i-1}$.

Let \mathcal{L} be the set of all balanced binary words.

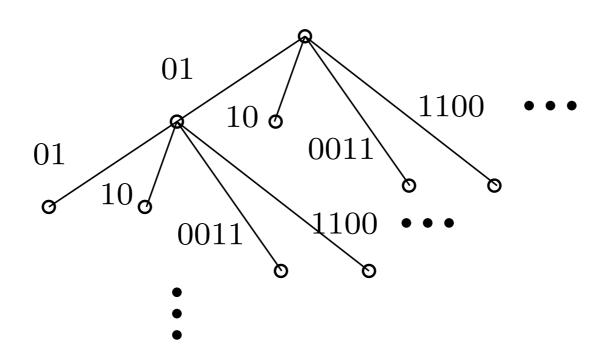
Set $Q = \{01, 10, 0011, 1100, 000111, \ldots\}$,

the language of all balanced binary words without a balanced prefix.

Then $\mathcal{L} = \mathcal{Q}^*$ and every word in \mathcal{L} can be uniquely decomposed into concatenation of words in \mathcal{Q} .

words of length i in Q is $2C_{i-1}$.

Prefix coding in \mathcal{L} is equivalent to prefix coding with infinite alphabet \mathcal{Q} .



Note: the characteristic equation is

$$g(z) = 1 - \sum_{j} \phi^{-c_j} = 1 - \sum_{i} 2C_{i-1}\phi^{-i} = \sqrt{1 - 4/\phi}$$

for which root does not exist ($\phi=4$ is an algebraic singularity).

 \square Can prove that for $\forall \psi, K$, we can always find p_1, p_2, \ldots, p_n s.t. there is no prefix code with length

$$l_i = K + \lceil \log_{\psi} p_i \rceil$$

ullet $\phi=4$ is algebraic singularity of characteristic equation

- ullet $\phi=4$ is algebraic singularity of characteristic equation
- Can prove that for $\forall \psi \geq 4, K$, we can always find p_1, p_2, \ldots, p_n s.t. there is no prefix code with length

$$l_i = K + \lceil \log_{\psi} p_i \rceil$$

- ullet $\phi=4$ is algebraic singularity of characteristic equation
- Can prove that for $\forall \psi \geq 4, K$, we can always find p_1, p_2, \ldots, p_n s.t. there is no prefix code with length

$$l_i = K + \lceil \log_{\psi} p_i \rceil$$

Can also prove that for $\forall \psi < 4, K, \Delta$, we can always find p_1, p_2, \ldots, p_n s.t. if prefix code with lengths $l_i \geq K + \lceil \log_{\psi} p_i \rceil$ exists, then

$$\sum_{i} l_{i} p_{i} - OPT > \Delta.$$

- ullet $\phi=4$ is algebraic singularity of characteristic equation
- Can prove that for $\forall \psi \geq 4, K$, we can always find p_1, p_2, \ldots, p_n s.t. there is no prefix code with length

$$l_i = K + \lceil \log_{\psi} p_i \rceil$$

Can also prove that for $\forall \psi < 4, K, \Delta$, we can always find p_1, p_2, \ldots, p_n s.t. if prefix code with lengths $l_i \geq K + \lceil \log_{\psi} p_i \rceil$ exists, then

$$\sum_{i} l_{i} p_{i} - OPT > \Delta.$$

■ No Shannon-Coding type algorithm can guarantee an additive-error approximation for a balanced prefix code.

Outline

Huffman Coding and Generalizations

Previous Work & Background

New Work

A "Counterexample"

Conclusion and Open Problems

Conclusion and Open Problems

We saw how to use Shannon Coding to develop efficient approximation algorithms for prefix-coding variants, e.g., unequal cost cost coding, coding in the Discrete Noiseless Channel and coding with regular language constraints.

Conclusion and Open Problems

- We saw how to use Shannon Coding to develop efficient approximation algorithms for prefix-coding variants, e.g., unequal cost cost coding, coding in the Discrete Noiseless Channel and coding with regular language constraints.
- Old Open Question: "is unequal-cost coding NP-complete?"

Conclusion and Open Problems

- We saw how to use Shannon Coding to develop efficient approximation algorithms for prefix-coding variants, e.g., unequal cost cost coding, coding in the Discrete Noiseless Channel and coding with regular language constraints.
- Old Open Question: "is unequal-cost coding NP-complete?"
- New Open Question: "is there an additive-error approximation algorithm for prefix coding using balanced strings?"

We just saw that Shannon Coding doesn't work. G. & Li (2007) proved that (variant of) Shannon-Fano doesn't work. Perhaps no such algorithm exists.

The End

