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Overview

o Shannon Coding was introduced by Shan-
non as a proof technique In his noiseless
coding theorem

o Shannon-Fano coding is what's primarily
used for algorithm design

o This talk’s punchline: Shannon Coding can be
algorithmically useful



Outline

0 Huffman Coding and Generalizations

0 Previous Work & Background

O New Work

o A “"Counterexample”

o Open Problems



Prefix-free coding

O Let ¥ = {01,09,...,0,.} be an encoding alphabet.
Word w € X* is a prefix of word w’ € X* if w’ = wu
where © € X* is a non-empty word. A Code over X

is a collection of words C' = {w1, ..., w,}.
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Prefix-free coding

O Let ¥ = {01,09,...,0,.} be an encoding alphabet.
Word w € X* is a prefix of word w’ € X* if w’ = wu
where © € X* is a non-empty word. A Code over X
is a collection of words C' = {w1, ..., w,}.

O Code C'is prefix-free if for all © # j w; is not a prefix of w;.

{0, 10,11} is prefix-free. 10, 00,11} isn't.

O A prefix-free code can be modelled as (leaves of) a tree
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The prefix coding problem

O Let cost(w) be the length or number of characters
in w. Let P = {p1,p2,...,pn} be a fixed discrete
probability distribution (P.D.).

Define cost(C') = Z?’:l cost(w;)p;
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The prefix coding problem

O Let cost(w) be the length or number of characters

in w. Let P = {p1,p2,...,pn} be a fixed discrete
probability distribution (P.D.).

Define cost(C) = >_."_, cost(w;)p;
O The prefix coding problem, sometimes known as the

Huffman encoding problem is to find a prefix-free code
over X of minimum cost.

Equivalent to finding tree with
minimum external path-length

_|_

2x [1+3]+3x [ +1+1+1]
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The prefix coding problem

o Useful for Data transmission/storage.

O Modelling search problems

O Very well studied
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What's known

O Sub-optimal codes

Shannon coding: (from noiseless coding theorem)
There exists a prefix-free code with word lengths

éi: (—logrpﬂ,izl,Q,...,n.

Shannon-Fano coding: probability splitting
Try to put ~ % of the probability in each node.
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What's known

O Sub-optimal codes

Shannon coding: (from noiseless coding theorem)
There exists a prefix-free code with word lengths

éi — (—10g70p7;_‘,2': 1,2,...,%.

Shannon-Fano coding: probability splitting
Try to put ~ % of the probability in each node.

Both methods have cost within 1 of optimal

O Optimal codes

Huffman 1952: a well-know O(rn logn)-time greedy-
algorithm (O(rn)-time if the p; are sorted in non-
decreasing order)
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What's not as well known

e [he fact that the greedy Huffman algorithm “works”
IS quite amazing

e Almost any possible modification or generalization to
the original problem causes greedy to fall

e For some simple modifications, we don't even have
polynomial time algorithms.
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Generalizations: Min cost prefix coding

O Unequal-cost coding

Allow letters to have different costs, say, c(o;) = c;.

& Discrete Noiseless Channels (in Shannon's original paper)

This can be viewed as a strongly connected aperiodic directed
graph with k vertices (states).

1. Each edge leaving a vertex is labelled by an encoding letter
o € 2, with at most one o-edge leaving each vertex.

2. An edge labelled by o leaving vertex 7 has cost ¢; ;.

B La nguage restrictions

Require all codewords to be contained in some given Language £



Generalizations: Prefix-free coding ....

O With Unequal-cost letters

cr = 1; co = 2. Di, W;, c(w;)
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Generalizations: Prefix-free coding ....

O With Unequal-cost letters

c1 =1; co = 2. a1 Pi, Wi, c(w;)

2/6,aaa,3 b,

1/6,aab; 4

O Corresponds to different letter transmission /storage costs, e.g.,

the Telegraph Channel.
Also, to different costs for evaluating test outcomes in, e.g.,

group testing.
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Generalizations: Prefix-free coding ....

O With Unequal-cost letters

c1 =1; co = 2. a1 Pi, Wi, c(w;)

2/6,aaa,3 b,

1/6,aab; 4

O Corresponds to different letter transmission /storage costs, e.g.,

the Telegraph Channel.
Also, to different costs for evaluating test outcomes in, e.g.,

group testing.

O Size of encoding alphabet, >, could be countably infinite!
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Generalizations: Prefix-free coding ....

O |n a Discrete Noiseless Channel

a, 1a, 1
(Lﬁ
start @
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Generalizations: Prefix-free coding ....

O |n a Discrete Noiseless Channel

a, 10,, 1
a,
start @

o Cost of letter depends upon current state.
In Shannon's original paper, k = # states and |X| are both finite

o0 A codeword has both start and end states. In coded message,
new codeword must start from final state of preceeding one.
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Generalizations: Prefix-free coding ....

O |n a Discrete Noiseless Channel

o Cost of letter depends upon current state.
In Shannon's original paper, k = # states and |X| are both finite

o0 A codeword has both start and end states. In coded message,
new codeword must start from final state of preceeding one.

0 = Need k code trees: each one rooted with different state
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Generalizations: Prefix-free coding ....

O With Language Restrictions
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Generalizations: Prefix-free coding ....

O With Language Restrictions

o Find min-cost prefix code in which all words belong to given
language L.

O Example: £ = 0*1, all binary words ending in '1".
Used in constructing self-synchronizing codes.

o One of the problems that motivated this research.
Let £ be the set of all binary words that do not contain a given
pattern, e.g., 010.
No previous good way of finding min cost prefix code with such
restrictions.
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Generalizations: Prefix-free coding ....

O With Regular Language Restrictions
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Generalizations: Prefix-free coding ....

O With Regular Language Restrictions

O In this case, there is a DFA M accepting Language L.

= ((0 + 1)*000)“

\ C
= binary strings not ending in 000
0

Dana

0
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Generalizations: Prefix-free coding ....

O With Regular Language Restrictions

O In this case, there is a DFA M accepting Language L.

= ((0 + 1)*000)“

\ C
= binary strings not ending in 000
0

5

0

O Erasing the nonaccepting states, M can be drawn with a finite #
of states but a countably infinite encoding alphabet.

1 1
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Generalizations: Prefix-free coding ....

O With Regular Language Restrictions

O In this case, there is a DFA M accepting Language L.

= ((0 + 1)*000)¢

\ )
0 = binary strings not ending in 000
0

5

O Erasing the nonaccepting states, M can be drawn with a finite #
of states but a countably infinite encoding alphabet.

1 1

Note:  graph doesn’'t need to
strongly connected. It might even
have sinks!




Generalizations: Prefix-free coding ....

O With Regular Language Restrictions
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Generalizations: Prefix-free coding ....

O With Regular Language Restrictions

14-2



Generalizations: Prefix-free coding ....

O With Regular Language Restrictions

O Can still be rewritten as a
min-cost tree problem

()
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Outline

0 Huffman Coding and Generalizations

O Previous Work & Background

0 New Work

o A “Counterexample”

o Open Problems



Previous Work: Unequal Cost Coding

O Letters in X have different costs ¢1 < o <3 < --- < ¢,.

Models different transmission/storage costs
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Models different transmission/storage costs
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Karp (1961) — Integer Linear Programming Solution

G., Rote (1998) — O(n‘*2) DP solution
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G., Kenyon, Young (2002) — A PTAS
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Previous Work: Unequal Cost Coding

O Letters in X have different costs ¢; < ¢y <53 < --- <g,.
Models different transmission/storage costs

O Blachman (1954), Marcus (1957), Gilbert (1995) — Heuristics
Karp (1961) — Integer Linear Programming Solution

G., Rote (1998) — O(n‘*2) DP solution
Bradford, et. al. (2002), Dumitrescu(2006) — O(n°)

G., Kenyon, Young (2002) — A PTAS

O Big Open Question
Still don't know if it's NP-Hard, in P or something between.

B Most Practical Solutions are arithmetic error approximations



Previous Work: Unequal Cost Coding



Previous Work: Unequal Cost Coding

o Efficient algorithms (O(nlogn) or O(n)) that create
codes which are within an additive error of optimal.

COST <OPT+ K

17-2



Previous Work: Unequal Cost Coding

o Efficient algorithms (O(nlogn) or O(n)) that create
codes which are within an additive error of optimal.

COST <OPT + K
O e Krause (1962)
e Csiszar (1969)
o Cott (1977)
e Altenkamp and Mehlhorn (1980)
e Mehlhorn (1980)
e G. and Li (2007)

17-3



Previous Work: Unequal Cost Coding

o Efficient algorithms (O(nlogn) or O(n)) that create
codes which are within an additive error of optimal.

COST <OPT+ K
O e Krause (1962)
e Csiszar (1969)
o Cott (1977)
e Altenkamp and Mehlhorn (1980)
e Mehlhorn (1980)
e G. and Li (2007)

O K is a function of letter costs ¢y, co,c3, . . .

K(ci1,ca,cs3,...) are incomparable between different algorithms

K is often function of longest letter length c,., problem when r = oo.
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Previous Work: Unequal Cost Coding

o Efficient algorithms (O(nlogn) or O(n)) that create
codes which are within an additive error of optimal.

COST <OPT + K
O e Krause (1962)
e Csiszar (1969)
o Cott (1977)
e Altenkamp and Mehlhorn (1980)
e Mehlhorn (1980)
e G. and Li (2007)

O K is a function of letter costs ¢y, co,c3, . . .

K(ci1,ca,cs3,...) are incomparable between different algorithms

All algorithms above are Shannon-Fano type codes; differ in how they
define “approximate’ split
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Previous Work:

O The Discrete Noiseless Channel: Only previous result seems to
be Csiszar (1969) who gives additive approximation to optimal
code, again using a generalization of Shannon-Fano splitting.
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Previous Work:
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O “1"-ended codes:
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Chan, G. (2000) — O(n?) DP algorithm

O Sound of Silence — Binary Codes with at most k zeros
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Previous Work:

O The Discrete Noiseless Channel: Only previous result seems to
be Csiszar (1969) who gives additive approximation to optimal
code, again using a generalization of Shannon-Fano splitting.

o Language Constraints

O “1"-ended codes:
Capocelli, et.al., (1994) Berger, Yeung(1990) — Exponential Search

Chan, G. (2000) — O(n?) DP algorithm
O Sound of Silence — Binary Codes with at most k zeros
Dolev, et. al. (1999) — nOk) DP algorithm

0 General Regular Language Constraint

Folk theorem: If 4 a DFA with m states accepting £, optimal code
can be built in n@(™) time. (O(m) < 3m.)

O No good efficient algorithm known



Previous Work:

O Pre-Huffman there were two Sub-optimal construc-
tions for basic case
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Previous Work:

O Pre-Huffman there were two Sub-optimal construc-
tions for basic case

O Shannon coding: (from noiseless coding theorem)
There exists a prefix-free code with word lengths
gi — (—lOgrpi_‘, 1 = 1,2,...,%.

o Shannon-Fano coding: probability splitting
Try to put ~ % of the probability in each node.



Shannon Coding vs. Shannon-Fano Coding

O Shannon Coding

f
il l”L — (_ logr pz-‘
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Shannon Coding vs. Shannon-Fano Coding

O Shannon Coding

i f
v o li = [—log, p;
v Given depths [;, can build tree via

top-down “linear” scan. When
moving down a level, expand all
non-used leaves to be parents.
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Shannon Coding vs. Shannon-Fano Coding

O Shannon Coding

i f
v o li = [—log, p;
v Given depths [;, can build tree via

top-down “linear” scan. When
moving down a level, expand all
non-used leaves to be parents.

O Shannon-Fano Coding




Shannon Coding vs. Shannon-Fano Coding

Example: p1 = po = % P3 = P4 = P5 = P6 = 1_12
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Shannon Coding vs. Shannon-Fano Coding

Example: p1 = po = % P3 = P4 = P5 = P6 = 1_12

w|—
W=

1 1 1 1
12 12 12 12

Shannon coding

l1 =12 =2=[—logy 5]

ls=1l1=15=1s =4=[—logy 15|

Has empty “slots”
can be improved
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Shannon Coding vs. Shannon-Fano Coding

Example: p1 = po = % P3 = P4 = P5 = P6 = 1_12

W=

1 1 1

3 3 3
1 1 1 1 1
i3 T2 T2 12 12 12 12 12

Shannon coding Shannon-Fano coding
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Shannon Coding vs. Shannon-Fano Coding

Example: p1 = p2 = % P3 = P4 = P5 = P6 = 1_12

Shannon-Fano: First, sort items and insert at root.
While a node contains more than 1 item, split its items’ weights
as evenly as possible. At most 1/2 node's weight in left child.
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Previous Work. Unequal Cost Codes

O Shannon Fano coding for unequal cost codes

@: unique positive
rootof Y ¢~ ¢ =1

p17p27' < 7p’n,
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O Shannon Fano coding for unequal cost codes

@: unique positive
rootof Y ¢~ ¢ =1

p17p27' < 7p’l’b

P~

& Split probabilities so “approximately” ¢~ ¢ of the probability in a
node Is put into Its it child.
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Previous Work. Unequal Cost Codes

O Shannon Fano coding for unequal cost codes

@: unique positive
rootof Y ¢~ ¢ =1

p17p27' < 7p’l’b

& Split probabilities so “approximately” ¢~ ¢ of the probability in a
node Is put into Its it child.

O Note: This “can” work for infinite alphabets, as long as ¢ exists.
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Previous Work. Unequal Cost Codes

O Shannon Fano coding for unequal cost codes

@: unique positive
rootof Y ¢~ ¢ =1

p17p27' < 7p7’b

& Split probabilities so “approximately” ¢~ ¢ of the probability in a
node Is put into Its it child.

0O All previous algorithms were Shannon-Fano like.
They differed in how they implemented “approximate split”.
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o Shannon-Fano coding for unequal cost codes

¢: unique positive root of » ¢~ ¢ =1

5 Split probabilities so “approximately” ¢~ ¢ of the probability in a
node Is put into its it child.
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o Shannon-Fano coding for unequal cost codes

¢: unique positive root of » ¢~ ¢ =1

5 Split probabilities so “approximately” ¢~ ¢ of the probability in a
node Is put into its it child.

O Example: Telegraph Channel: ¢; =1, ¢co = 2

¢—1 v5—1 @

— 2
Put ~ ¢~ ! of the root’s weight

in the left subtree and ~ ¢—2 of @'
the weight in the right
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o Shannon-Fano coding for unequal cost codes

¢: unique positive root of » ¢~ ¢ =1

5 Split probabilities so “approximately” ¢~ ¢ of the probability in a
node Is put into its it child.
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o Shannon-Fano coding for unequal cost codes

¢: unique positive root of » ¢~ ¢ =1

5 Split probabilities so “approximately” ¢~ ¢ of the probability in a
node Is put into its it child.

O Example: 1-ended coding. Vi > 0, ¢; = 1.
i'th encoding letter denotes string 0*~11.

Y9 ¢ =1 gives ¢~ 1 = %

Put ~ 27% of a node's weight
into its ¢'th subtree
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Previous Work. Well Known Lower Bound

B Given coding letter lengths C = {c1,¢2,¢c3,...}, ged(c;) = 1,
let ¢ be the unique positive root of g(z) =1—) . ¢
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Previous Work. Well Known Lower Bound

B Given coding letter lengths C = {c1,¢2,¢c3,...}, ged(c;) = 1,
let ¢ be the unique positive root of g(z) =1—) . ¢

Note: ¢ sometimes called the “capacity”

O For given P.D. set Hy = — ) p; log, p;.

Note: If c1 = co = 1 then ¢ = 2 and H, is standard entropy

O Theorem:
Let OPT" be cost of min-cost code for given P.D. and letter

costs. Then

H, < OPT
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Previous Work. Well Known Lower Bound

B Given coding letter lengths C = {c1,¢2,¢c3,...}, ged(c;) = 1,
let ¢ be the unique positive root of g(z) =1—) . ¢

Note: ¢ sometimes called the “capacity”

O For given P.D. set Hy = — ) p; log, p;.

Note: If c1 = co = 1 then ¢ = 2 and H, is standard entropy

O Theorem:
Let OPT" be cost of min-cost code for given P.D. and letter
costs. Then

H, < OPT

Note: If co = co = 1 then ¢ = 2 and this is classic
“Shannon Information Theoretic Lower Bound”

26-6



Outline

0 Huffman Coding and Generalizations

0 Previous Work & Background

O New Work

o A “Counterexample”

o Open Problems



5 Shannon coding only seems to have been used in the proof of
the noiseless coding theorem. |t never seems to have actually
been used as an algorithmic tool.

28-1



5 Shannon coding only seems to have been used in the proof of
the noiseless coding theorem. |t never seems to have actually
been used as an algorithmic tool.

All of the (additive-error) approximation algoritms for unequal
cost coding and Csiszar's (1969) approximation algorithm for
coding in a Discrete Noiseless Channel, were variations of
Shannon-Fano coding

28-2



5 Shannon coding only seems to have been used in the proof of
the noiseless coding theorem. |t never seems to have actually
been used as an algorithmic tool.

All of the (additive-error) approximation algoritms for unequal
cost coding and Csiszar's (1969) approximation algorithm for
coding in a Discrete Noiseless Channel, were variations of
Shannon-Fano coding

O The main idea behind our new results is that
Shannon-Fano splitting is not necessary;
Shannon-coding suffices

28-3



5 Shannon coding only seems to have been used in the proof of
the noiseless coding theorem. |t never seems to have actually
been used as an algorithmic tool.

All of the (additive-error) approximation algoritms for unequal
cost coding and Csiszar's (1969) approximation algorithm for
coding in a Discrete Noiseless Channel, were variations of
Shannon-Fano coding

O The main idea behind our new results is that
Shannon-Fano splitting is not necessary;
Shannon-coding suffices

O Yields efficient additive-error approximation algorithms for un-
equal cost coding and the Discrete Noiseless Channel, as well as
for regular language constraints.
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New Results for Unequal Cost Coding

O Given coding letter lengths C, let ¢ be capacity.
Then dK > 0, depending only upon C, such that if

1. P=A{pi,p2,...,pn} is any P.D., and

2. 41, 4o, ..., L, any set of integers such that

then there exists a prefix free code for which the ¢; are
the word lengths.
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New Results for Unequal Cost Coding
O Given coding letter lengths C, let ¢ be capacity.
Then dK > 0, depending only upon C, such that if
1. P=A{pi,p2,...,pn} is any P.D., and

2. 41, 4o, ..., L, any set of integers such that

then there exists a prefix free code for which the ¢; are
the word lengths.

—> Y pili <K+ 1+ Hy(P)<OPT+K +1

O This gives an additive approximation of same type as Shannon-
Fano splitting without the splitting (same time complexity but
many fewer operations on reals).



29-5

New Results for Unequal Cost Coding

O Given coding letter lengths C, let ¢ be capacity.
Then dK > 0, depending only upon C, such that if

1. P=A{pi,p2,...,pn} is any P.D., and

2. 41, 4o, ..., L, any set of integers such that

then there exists a prefix free code for which the ¢; are
the word lengths.

—> Y pili <K+ 1+ Hy(P)<OPT+K +1

O Same result holds for DNC and regular language restrictions.
@ is a function of the DNC or L-accepting automaton graph



Proof of the Theorem

O We ftirst prove the following lemma.

Given C and corresponding ¢ then
3406 > 0 depending only upon C such that if

Y o7t < B,
1=1

then there exists a prefix-free code with word lengths
1,00, ..., 0,
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Proof of the Theorem

O We ftirst prove the following lemma.

Given C and corresponding ¢ then
3406 > 0 depending only upon C such that if

Y o7t < B,
1=1

then there exists a prefix-free code with word lengths

C1,0o,...,0,.

9 Note: ifcy =cy =1 then ¢ = 2. Let 3 = 1 and condition
becomes 27" < 1.

Lemma then becomes one direction of Kraft Inequality.
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Proof of the Lemma

O Let L(n) be the number of nodes on level n of the
infinite tree corresponding to C

Can show dtq,ts s.t., t10" < L(n) < t20".
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Proof of the Lemma

O Let L(n) be the number of nodes on level n of the
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Grey regions are parts
of infinite tree that are
t T erased when node k on 4,

becomes leaf.
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Proof of the Lemma

O Let L(n) be the number of nodes on level n of the

infinite tree corresponding to C

Can show dtq,ts s.t., t10" < L(n) < t20".

U L(E— ) < L(4)

Grey regions are parts
of infinite tree that are
erased when node k on 4,
becomes leaf.

Node on /i has L(¢; — {y)
descendents on /;

Node on ¢, can become
leaf iff grey regions do not
cover all nodes on level /;



Proof of the Lemma

B Just need to show that 0 < L(¢;) — 2;11 L6 —1y).
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Proof of the Lemma

B Just need to show that 0 < L(¢;) — 2;11 L6 —1y).

O
1—1

i—1
L(4;) — ZL(€ — b)) > t1d° — to Z T
k=1

k=1
1—1
¢€ (tl — 15 Z ¢£k>
k=1

o (t1 — t23)

IV

IV
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k=1
1—1
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k=1

o (t1 — t23)

IV

IV

O Choose (§ < i—;
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Proof of the Lemma

B Just need to show that 0 < L(¢;) — 2;11 L6 —1y).

O
1—1

i—1
L(4;) — ZL(€ — b)) > t1d° — to Z T
k=1

k=1
1—1
¢€ (tl — 15 Z ¢£k>
k=1

o (t1 — t23)

IV

IV

O Chooseﬁ<§—; > 0
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Proof of the Main Theorem

O Set K = —log, 0. (Recall I; > K + [—log,pi])
Then

n
>0t
1=1

VAN

Z ¢—K— | —log, pi ]
1=1

BY ¢l%Pi=8% pi=0
1=1 1=1

VAN
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Proof of the Main Theorem

O Set K = —log, 0. (Recall I; > K + [—log,pi])
Then
Z¢—€i < Z¢—K—f— log p; |
1=1 1=1
< BY ¢EPi =8 p=p
1=1 1=1

O From previous lemma, a prefix free code with those word
lengths ¢1,45, ..., ¢, exists, and we are done
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Example: C1 — 1, Co — 2

o =¢=H K=1
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Example: C1 — 1, Co — 2

o =¢=H K=1

1

0 Consider p1 = ps =p3 =ps = 5
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1
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Note that [— log pﬂ = 3.
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Example: C1 — 1, Co — 2

o =¢=H K=1

1

0 Consider p1 = ps =p3 =ps = 5

Note that [— log pﬂ = 3.

O No tree with [, = 3 exists.
But, a tree with [; = [—log, p;| + 1 = 4 does!

S L
ol L
=
e L
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The Algorithm

O A valid K could be found by working through the
proof of Theorem. Technically, O(1) but, practically,

this would require some complicated operations on
reals.
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proof of Theorem. Technically, O(1) but, practically,

this would require some complicated operations on
reals.

o Alternatively, perform doubling search for K,
the smallest K for which theorem is valid.

Set K =1,2,2°,2° .. ..
Test if £; = K + |[—log, pi| has valid code (can be done efficiently)

until K is good but K /2 is not.
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The Algorithm

O A valid K could be found by working through the
proof of Theorem. Technically, O(1) but, practically,

this would require some complicated operations on
reals.

o Alternatively, perform doubling search for K,
the smallest K for which theorem is valid.

Set K =1,2,2°,2° .. ..
Test if £; = K + |[—log, pi| has valid code (can be done efficiently)

until K is good but K /2 is not.
Note that K/2 < K < K
Now set a = K /2,b = K, and binary search for K in [a,b].

Subtle point: Search will find K’ < K for which code exists.

O Time complexity O(n - log K).
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The Algorithm for infinite encoding alphabets

O Proof assumed two things.
(i) Root of > ¢~ =1 exists

(II) dtq,ts s.t., t1§bn < L(N) < tggbn

L(n) is number of nodes on level n of infinite tree
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The Algorithm for infinite encoding alphabets

O Proof assumed two things.

(i) Root of > ¢~ =1 exists
(II) dt1,t9 s.t., 10" < L(n) < to"

L(n) is number of nodes on level n of infinite tree

O This is always true for finite encoding alphabet

S Not necessarily true for infinite encoding alphabets
Will see simple example in next section

o But, if (i) and (ii) are true for an infinite alphabet
= Theorem /algorithm hold

O Example: '1'-Ended codes. ¢; = 1.

= ¢ = = and (ii) is true = Theorem/algorithm hold
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Extensions to DNC and Regular Language Restrictions

O Discrete Noiseless Channels
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Extensions to DNC and Regular Language Restrictions

O Discrete Noiseless Channels

Let L(n) be number of nodes on level n of infinite tree

Fact that graph is biconnected and “aperiodic” implies that
1, ¢,t1,t2 s.t., thbn < L(n) < tQan
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Extensions to DNC and Regular Language Restrictions

O Discrete Noiseless Channels

a, 1a, 1
a,
start @
(53

Let L(n) be number of nodes on level n of infinite tree

Fact that graph is biconnected and “aperiodic” implies that
1, ¢,t1,t2 s.t., thbn < L(n) < tQan

Algorithm will still work for ¢; > K + [—log, pi|,
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Extensions to DNC and Regular Language Restrictions

O Discrete Noiseless Channels

Let L(n) be number of nodes on level n of infinite tree

Fact that graph is biconnected and “aperiodic” implies that
1, ¢,t1,t2 s.t., thbn < L(n) < tQan

Algorithm will still work for ¢; > K + | —logy pi|,

Note: Algorithm must construct £ different coding trees. One for each
state (tree root).
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Extensions to DNC and Regular Language Restrictions

O Discrete Noiseless Channels

Let L(n) be number of nodes on level n of infinite tree

Fact that graph is biconnected and “aperiodic” implies that
1, ¢,t1,t2 s.t., thbn < L(n) < t2¢n

Algorithm will still work for ¢; > K + | —logy pi|,

Subtle point is that any node on level [; can be chosen for p;, independent
of its state! Algorithm still works.
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Extensions to DNC and Regular Language Restrictions

O Regular Language Restrictions

Assumption: Language is 'aperiodic’, i.e., AN, such that Vn > N
there is at least one word of length n

Let L(n) be number of nodes on level n of infinite tree

Fact that language i1s "aperiodic’ implies that
3, ¢,t1,t2 s.t., tlgbn < L(n) < t2q5n

¢ is largest dominant 'eigenvalue’ of a conn component of the DFA.
Algorithm will still work for /; > K + |[— log,, pil,

Again, any node at level [; can be labelled with p;, independent of state
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A “Counterexample”

5 Let C be the countably infinite set defined by

1J | ¢ =i} =204

2?) is the 7-th Catalan number.

1

where C; = 7,4%1(

Constructing prefix-free codes with these C can be shown
to be equivalent to constructing balanced binary prefix-free

codes in which, for every word, the number of ‘0’s equals the
number of ‘1’s.
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A “Counterexample”

5 Let C be the countably infinite set defined by

17 Cj = i} =201

2;’) Is the 7-th Catalan number.

where C; = w%l(

Constructing prefix-free codes with these C can be shown
to be equivalent to constructing balanced binary prefix-free
codes in which, for every word, the number of ‘0’s equals the

number of ‘1’s.

O No efficient additive-error approximation known.
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A “Counterexample”

5 Let C be the countably infinite set defined by
{71 ¢j =i} =2Ci
2i

Z) Is the 7-th Catalan number.

where C; = w%l(

Constructing prefix-free codes with these C can be shown
to be equivalent to constructing balanced binary prefix-free
codes in which, for every word, the number of ‘0’s equals the
number of ‘1’s.

O No efficient additive-error approximation known.

O For this problem, the length of a balanced word = # of '0’s in word.
e.g., |10 =1, |001110| = 3.
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A “Counterexample”

Let £ be the set of all balanced binary words.

Set ©Q = {01, 10, 0011, 1100, 000111,...},
the language of all balanced binary words without a balanced prefix.

Then £ = O and every word in £ can be uniquely decomposed
into concatenation of words in Q.
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A “Counterexample”

Let £ be the set of all balanced binary words.

Set ©Q = {01, 10, 0011, 1100, 000111,...},
the language of all balanced binary words without a balanced prefix.

Then £ = O and every word in £ can be uniquely decomposed

Into concatenation of words in O.
2~ words of length 1 in Q is 2C';_1.

Prefix coding in L is equivalent to prefix coding with infinite alphabet Q.
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A “Counterexample”

5 Note: the characteristic equation is

g(z) =1=) ¢~ =1-» 2C;1¢""' =+/1—4/¢
9 )

for which root does not exist (¢ = 4 is an algebraic
singularity).

O Can prove that for Vi, K, we can always find
D1,P2,.-.,Pn S.t. there is no prefix code with length

li = K + [log,, pi]
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A “Counterexample”

O ¢ =4 is algebraic singularity of characteristic equation
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A “Counterexample”

O ¢ =4 is algebraic singularity of characteristic equation

O Can prove that for Vi > 4, K, we can always find
p1,D2,-..,Pn S.t. there is no prefix code with length

li = K + [logy p; |
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A “Counterexample”

O ¢ =4 is algebraic singularity of characteristic equation

O Can prove that for Vi > 4, K, we can always find
p1,D2,-..,Pn S.t. there is no prefix code with length

li = K + [logy p; |

O Can also prove that for Vi < 4, K, A, we can always
find p1,p2,...,pn s.t. if prefix code with lengths
li > K + |log,, p;| exists, then

Z,L- lz-pi — OPT > A.
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A “Counterexample”

O ¢ =4 is algebraic singularity of characteristic equation

O Can prove that for Vi > 4, K, we can always find
p1,D2,-..,Pn S.t. there is no prefix code with length

li = K + [logy p; |

O Can also prove that for Vi < 4, K, A, we can always
find p1,p2,...,pn s.t. if prefix code with lengths

li > K + |log,, p;| exists, then
Zz’ lz-pi — OPT > A.

O = No Shannon-Coding type algorithm can guarantee an
additive-error approximation for a balanced prefix code.

43-4
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Conclusion and Open Problems

O We saw how to use Shannon Coding to develop efficient
approximation algorithms for prefix-coding variants, e.g.,
unequal cost cost coding, coding in the Discrete Noiseless
Channel and coding with regular language constraints.
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Conclusion and Open Problems

O We saw how to use Shannon Coding to develop efficient
approximation algorithms for prefix-coding variants, e.g.,
unequal cost cost coding, coding in the Discrete Noiseless
Channel and coding with regular language constraints.

O Old Open Question: “is unequal-cost coding NP-complete?”

O New Open Question: “is there an additive-error approximation
algorithm for prefix coding using balanced strings?”

We just saw that Shannon Coding doesn’t work.
G. & Li (2007) proved that (variant of ) Shannon-Fano doesn't work.
Perhaps no such algorithm exists.
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The End

THANK YOU

Q and A



