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Abstract— In wireless sensor networks, estimating nodal po-
sitions is important for routing efficiency and location-based
services. Traditional techniques based on precise measurements
are often expensive and power-inefficient, while approaches based
on landmarks often require bandwidth-inefficient flooding and
hence are not scalable for large networks. In this paper, we pro-
pose and investigate a cost-effective and distributed algorithm to
accurately estimate nodal positions for wireless sensor networks.
In our algorithm, a node only needs to identify and exchange
information with a certain number of neighbors (around 30)
in its proximity in order to estimate its relative nodal position
accurately. For location-identification, only a small number of
nodes (around 10) are needed to have additional GPS capabilities
to accurately estimate the absolute position of every node in the
network. Our algorithm is shown to have fast convergence with
low estimation error, even for large networks.

Index Terms— position estimation, wireless sensors network,
position-based routing, location identification

I. INTRODUCTION

In recent years, there has been an increasing interest in wire-
less sensor networks in academic, industrial, and commercial
sectors. Unlike ad-hoc mobile networks, such networks are
usually assumed to have a high density of nodes with lower
computational power. It is often useful to know the relative
or absolute nodal positions in order to improve the quality
of position-related services provided. Two typical examples
are: Position-based routing in which relative nodal positions
are used for correct and efficient route estimation; Location-
based services in which absolute nodal positions are used to
provide location-specific services

In this paper, we propose and investigate a cost-effective and
distributed algorithm to estimate nodal positions in wireless
sensor networks. In our algorithm, each node has a certain
maximum transmission power. By controlling its power in
a quantized manner, a node only needs to discover its one-
hop neighbors at discrete distances away1. Based on this
information, each node computes its own position in the
network in an autonomous manner, and only needs to exchange
the information with a number of its neighbors. Our algorithm
starts with a certain number (1 to 10) of “bootstrap” nodes and
the position information propagates in the network like ripples
until all nodes are able to estimate their own positions.

This work was supported, in part, by the Areas of Excellence (AoE) Scheme
on Information Technology funded by the University Grant Council in Hong
Kong (AoE/E-01/99), and by the Central Allocation Grant by the University
Grant Council in Hong Kong (CA03/04.EG01).

1Our scheme differs from the technique of Received Signal Strength (RSS),
since wireless nodes do not require to measure the strength of the received
RF signal. Thus no measurement device on the signal strength is required.

In our algorithm, we modify a machine learning technique
called ISOMAP, which is originally proposed for nonlin-
ear dimensionality reduction [13]. In particular, we employ
the multidimensional scaling technique (MDS [3]), which is
generally used for data visualization and feature extraction.
With some modifications to the techniques, we achieve an
algorithm which is robust against measurement errors and yet
computationally unintensive and bandwidth efficient.

The contributions of the paper are as follows:

• We propose a distributed algorithm where only local in-
formation is exchanged between a node and its neighbors,
and the convergence time is quite fast.

• We illustrate the usefulness and accuracy of the algorithm
by applying it to position-based routing and location
identification. Regarding to position-based routing, our
algorithm does not require any GPS devices to estimate
relative nodal positions. Regarding to location identifi-
cation, our algorithm requires only a few (around 10)
GPS devices to estimate the global positions of all the
nodes. Remarkably, the number of GPS devices needed
does not depend on the size of the network. Simulation
results confirm the effectiveness of our algorithm.

The paper is organized as follows. In Section II, we briefly
discuss the related work. We then present our position estima-
tion algorithm in Section III. We discuss how our algorithm is
extended to position-based routing and location-based service
in Section IV. Illustrative simulation results are then presented
in Section V, followed by the conclusion in Section VI.

II. RELATED WORK

Many algorithms have been proposed to find nodal posi-
tions. In general, these algorithms may be divided into two
categories:

• Approaches based on precise measurements
These approaches include techniques making use of di-
rectional antennae or certain measuring devices, examples
are RADAR [1], APS [7], VORBA [9]. They are often
expensive due to the specialized hardware involved in
measuring nodal distances or angle of arrival. A node
may also need to consume much power to communicate
with distant nodes. Also, in the presence of obstacles or in
an enclosed environment, some of these techniques may
not work properly. Our idea does not require expensive
devices and communication with distant nodes. It can also
work in an enclosed environment.
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Fig. 1. Quantized Distance and Close-Neighbor Vector (CNV).

• Landmark-based approaches
In such systems, several landmarks are introduced, their
position information are transmitted and used to find
nodal positions. These landmarks are usually assumed to
have GPS and are more powerful in terms of transmission
range or computing power. Examples are (APIT)[4] and
[8]. In general, all the aforementioned appoarches require
many powerful landmarks and the number of landmarks
required usually increases with the population size. In
order to distribute location information to all the nodes,
bandwidth-inefficient flooding from landmarks are often
required. Our algorithm does not require any landmark or
fixed infrastructure in order to estimate the relative nodal
positions. To obtain the absolute (global) position of a
node, our algorithm requires only a few nodes with GPS
capability (typically 5 to 10, and independent of the size
of the population).

Using MDS to estimate nodal positions is first studied in
[12]. This work studied a centralized algorithm that requires
global information obtained by bandwidth inefficient flooding.
The system also requires global re-computation at the joining
of new nodes or position updating for existing nodes. On the
other hand, our distributed algorithm only requires local re-
computation in these cases.

Several work has been proposed recently to use MDS in
a distributed manner [5], [11]. [5] requires a node (starting
anchor) to initialize a flooding to the whole network for the
positioning process to begin. After computing the local maps,
both of them have to share and merge the maps together to
create a global map. In our work, however, an initial flooding
to the whole network is not required, and the nodes do not
have to share their own local map with each other, they only
need to send their own updated coordinates to their neighbors.

III. POSITION ESTIMATION ALGORITHM

In this section, we present the detailed operations of the po-
sition estimation algorithm. First, we discuss how to determine
the (quantized) distances between a node and its neighbors.
We then discuss how to compute the relative nodal positions
given the information of the quantized distances, followed by
a summary of the distributed algorithm for position estimation.
Finally we provide a complexity analysis for our system.
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Fig. 2. Compilation of the distance matrix G. a) Sending of CNV to a central
server (Node 1). b) Compilation of the distance matrix G.

A. Quantized Distance Determination

In the system, every node has a unique identifier (ID) and
has a maximum transmission range R. We assume that the
node is able to adjust power so that it can communicate with
its neighbors at discrete distances away2. The idea is shown
in Figure 1, where the square node with ID 1 is to identify its
one-hop neighbors. First, it sends out beacons with increasing
discrete ranges shown as concentric circles. In this example,
we have 3 quantization levels. The beacon message contains
the level and polls the neighbors for reply. Based on the reply
from the neighbors, Node 1 then compiles a close-neighbors
vector (CNV), which indicates the distance levels between
itself and its neighbors. The CNV for Node 1 is shown on
the right of the figure. Since Node 3 is out of the range of
Node 1, it cannot be detected and hence is not included. This
CNV will be used to compute nodal positions as discussed in
the following sections.

B. The Estimation Algorithm

In the algorithm, a node first collects a number of CNVs,
and compiles a distance matrix G. Figure 2 illustrates the idea.
The entry [dij ] is the quantized distance between nodes i and
j. Nodes which are invisible to each other are denoted by a
cross “x” as the matrix entry. These entries are then estimated
by some shortest path algorithms, such as Dijkstra’s algorithm.

After resolving all the entries in the matrix G, multidimen-
sional scaling (MDS) is used to find the best node coordinates
in the two-dimensional Euclidean space that satisfies all these
pair wise distance constraints in G [3]. Note that the posi-
tions obtained from MDS differ from the real positions by
an arbitrary translation, rotation and reflection, as all these
transformations would not alter the same distance matrix.

C. Distributed Algorithm

We assume there is a bootstrap node in the network which
triggers the computational processes. The bootstrap node acts
as the origin and computes a small set (C) of nodal coordinates
using the CNVs from C of its closest nodes. Based on these
CNVs, it computes its own coordinates locally. Clearly, the
estimation results would be more accurate if C is large. How-
ever, the larger C is, the larger is the bandwidth consumption.

2For simplicity, we assume every node has the same transmission range R
and the same levels of quantized distances.
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Hence, there is a tradeoff between accuracy and bandwidth.
From our simulations, we find that C = 30 gives very good
results. The detailed procedures of our distributed algorithm
are summarized as follows:

• Bootstrap node
At the begining, the bootstrap node requests CNVs from
the C closest neighbors (1 broadcast in max. power range
R of a sensor and C broadcasts in R for reply).
Then it performs the estimation algorithm with C + 1
nodes (including itself). Lastly, it sends the computed
coordinate of its C neighbors themselves individually (C
broadcasts/multicast in R).

• General node
Upon receiving its coordinate from the bootstrap node,
the node updates its current coordinates and send the new
coordinates to its neighbors (1 broadcast in R).
Upon receiving a new coordinate from its neighbors, in-
crement the variable “RECEIVED” by 1. If RECEIVED
is equal to C, it performs the estimation algorithm and
sends the new computed coordinates of itself only to its
neighbors (1 boardcast in R), reset RECEIVED.
In case there are fewer than C nodes that are one hop
away (within R) at this time frame (iteration), it sleeps
and increments RECEIVED by 1. If RECEIVED is still
less than C after C − L iterations, it performs N -hop
broadcasting. N can be estimated by �√C/K�, where
K is the number of the node’s one-hop neighbors.

Note that, the L coordinates from the neighbors generalize
the translation, rotation and reflection, and thus the new
local coordinate will have the same translation, rotation and
reflection as the origin. Although a large L leads to better
estimation results, it takes a longer convergence time. Our
results show that L = 12 (for C = 30) is a reasonably
good choice. The processes are repeated and the nodes in the
parameter finally can have their coordinates. Also, in practice,
N is usually not high. And since it is only performed in a
sparse network and is limited in scope (not flooding to the
boundary of the network), such N -hop data broadcasting does
not consume too much bandwidth.

Our algorithm can be extended to mobile network by
periodically performing the triggering process in the bootstrap
node (the period can be set according to the mobility) and
the triggering process stimulates the re-computation of nodal
position.

D. Complexity Analysis

Here we analyze the computational complexity of the esti-
mation algorithm, which is the core part of our system.

As mentioned the estimation algorithm starts with a Dijk-
stra’s algorithm to complete the distance matrix. For a matrix
of size m × m it takes O(em log m) time, where e is the
number of edges covered in the matrix. After that MDS
is performed, with a computational complexity of O(dm2),
where d is the number of dimension of embedding.

Since in each node the algorithm is performed with at most
C nodes and the dimension of embedding is at most 3, the

overall computational complexity for each node is therefore
O(EC log C + C2), where E is the number of edges among
the nodes.

IV. APPLICATIONS

In this section, we discuss how our system can be applied
to position-based routing and location-based services.

A. Position-Based Routing

One possible application of our system is position-based
routing [6]. In position-based routing, nodes deliver packets
based on the locations of the source and destination. In general,
the aim of these systems is to reduce the fraction of failure
connections and the number of hop-counts for routing. Here,
we employ a simple greedy algorithm as described in [10]
to deliver packets and study the performance of our scheme
compared with the use of true position information.

Now consider the presence of obstacles in the environment.
Two nodes are invisible to each other if their line of sight is
blocked by an obstacle. We determine the connectivity (in both
directions) for each pair of nodes i, j. If packets cannot be
routed from i to j due to obstacles, we say that the connection
fails; otherwise, we say that node i is connected to node j.
Note that, node i is connected to node j does not necessary
imply node j is connected to node i.

B. Location-based Services

Another possible application of our system is location
identification. Our system can be applied to global positions
estimation like GPS. However, our system discussed before
is for estimating relative positions, and the resulting coordi-
nates may randomly rotate or reflect at the bootstrap node.
Landmarks are therefore required to fix the rotation/reflection.
They are not required to flood the network or to have high
computational power. Also, we assume that there are only a
few landmarks, say 5 or 10, in the whole network, and the
required number of them is independent of the population size.

Suppose that there are n landmarks and each of them is
a bootstrap node. So for each node it will have n relative
coordinates [lx1, lx2, ..., lxn] corresponding to each landmark.
The global coordinates [g1, g2, ..., gn] of each landmark can
be attached in the CNVs where no additional information
exchanging is required. Then each node can compute its global
coordinates gx by minimizing the following:

n∑

i=1

(‖gx − gi‖ − ‖lxi‖)2. (1)

V. ILLUSTRATIVE SIMULATION RESULTS

We present the simulation results of our system in this
section. We assume each node has a restricted transmission
range (R) of 20 units. We randomly generate the node’s
coordinates in an enclosed 100 × 100 square area. The node
density is the average number of peers inside the maximum
transmission range R of a node. We generate 30 independent
iterations and take the average for each data point.
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TABLE I

DISTRIBUTION OF BROADCASTING LEVELS AT DIFFERENT DENSITIES.

Node Density 20 30 40
1-Hop Broadcasting 0.0% 28.0% 73.7%
2-Hop Broadcasting 85.6% 69.9% 26.3%
3-Hop Broadcasting 14.4% 2.1% 0.0%

We compare our system with the centroid algorithm in [2]
in the sense that it is distributed and has no information
flooding. We assume that there are 20 landmarks for the
centroid algorithm (and no landmark for our system) if we
do not specify the number of landmarks.

A. General Characteristics

In this part, we examine the general characteristics of our
system. We use the distance error in terms of range (R) as
the performance metric. For each pair of nodes, we define
the distance error as the difference between the estimated
distance and the true distance, normalized to R. According
to the simulation results in [4], the routing performance is
highly related to distance error (in terms of R). In general,
routing performance is significantly decreased when the error
is above 0.4R.

We first examine the effect of the number of quantization
levels. Figure 3(a) shows the distance error versus the number
of quantization levels at a node density of 40. As expected,
the distance error in our system decreases with increasing
number of quantization levels, as more information on the
distances between nodes is available. Generally, the rate of
decrease falls with the number of quantization levels. Although
for the centroid algorithm the distance error is independent
of the number of quantization levels, our system achieves
substantially better performance. In the rest of our simulation,
we set the number of quantization levels to be 20.

We next examine how fast our system converges. Fig-
ure 3(b) shows the cumulative fraction of converged nodes
versus the number of iterations, at different node densities.
We find that higher node density converges faster, since every
node can identify L of the users faster. In general, the system
needs about 30 iterations for 90% of the nodes to converge.

Since each node needs to obtain enough CNVs, different
levels of data broadcasting are required to communicate with
its C neighbors. Table I shows the distribution of broadcasting
levels at different node densities. In general, most nodes only
need to perform 1-hop broadcasting at a density of 40. For
sparse networks, most nodes perform 2-hop broadcasting.

B. Position-Based Routing

In this section, we consider the routing performance of our
system. We insert 20 horizontal / vertical obstacles into the
graph with the length in terms of transmission range (20 units)
in the 100×100 square area. We assume a node drops a packet
only when it cannot find any neighbor closer to the destination.

Figure 3(c) shows the fraction of connection failures versus
the node density. The fraction of connection failures decreases
with increasing node densities, since there are more choices for

(a) (b) (c)

Fig. 4. Position estimation results. a) True position. b) Relative position
estimation. c) Global position estimation.

routing when the node density is high and thus lower failure
rate. In the simulation, the system with our estimated positions
works better than the one using true geometric positions.

Figure 3(d) shows the cumulative distributions of the hop
counts for our system and the one with true position infor-
mation. We only consider the successful connections here, so
both curves go to 1 on the right. We find that 90% of the
connections have a hop count of 5. Again, the performance
of our system is comparable with the one using true position
information.

C. Location-based Services

In this section, we study the performance of our system
when being used for location-based services. Figure 4(a)
shows the true positions of the nodes. Each cross in the figure
represents a wireless node. We randomly generate the nodes
in a 100× 100 square area with node density 40. Figure 4(b)
shows the relative positions estimated. We can observe that in
this example, the axes are rotated around 20◦ anti-clockwise
and the origin is shifted. Figure 4(c) shows the result after
landmark adjustment as discussed in section IV-B.

Figure 3(e) shows the relative distance error defined as:

γ =
∥∥∥∥

measured distance − true distance
true distance

∥∥∥∥. (2)

We compare our algorithm (with landmark adjustment) with
the centroid algorithm. We assume there are 10 landmarks
for our system. The relative error first decreases and then
increases. Generally, our system gives better estimation for
higher density, since more information (in the CNVs) can be
exchanged among the C neighbors. For close pairs, small
estimation error can lead to high relative error, and thus
results in higher relative errors. We achieve 2% - 17% relative
distance error for different densities. For centriod algorithm,
the system generally achieves 28% - 30% relative distance
error for different densities. Although our system is more
sensitive to node density, it is generally better than the centroid
algorithm.

Lastly, we examine the effect of varying the number of
landmarks. Figure 3(f) shows the relative distance errors versus
the number of landmarks. The estimation errors reduces as
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(c) Number of connection failures versus node
density.
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(d) Cumulative distribution of path lengths at
density = 40.
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(e) Relative Distance Error versus Node Density.
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Fig. 3. Simulation Results.

the number of landmark increases for both systems. However,
our system is less sensitive to the changes and 10 landmarks
already give very accurate estimation.

VI. CONCLUSION

In this paper, we propose and investigate a position estima-
tion algorithm for estimating nodal positions in wireless sensor
networks. We have considered two applications of our system,
namely, position-based routing and location identification.

In our scheme, we first obtain the quantized distance infor-
mation of neighboring nodes by power controlling. After that,
Dijkstra’s algorithm and MDS are performed at each node in
a distributed manner. Since our distributed algorithm depends
neither on specific hardware nor bandwidth-consuming data
flooding, it is both cost and bandwidth effective.

We have described the details of our system, and showed via
simulation that it achieves better results than the system using
true position information with a simple geographic routing
algorithm. For location identification, we accurately calculated
nodal positions with less than 17% relative distance error.
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