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Abstract - In [1], our novel subspace distribution clustering hidden Markov model
(SDCHMM) made its debut as an approximation to continuous density HMM (CDHMM).
Deriving SDCHMMs from CDHMMs requires a definition of multiple streams and a
Gaussian clustering scheme. Previously we have tried 4 and 13 streams, which are com-
mon but ad hoc choices. Here we present a simple and coherent definition for streams of
any dimension: the streams comprise the most correlated features. The new definition is
shown to give better performance in two recognition tasks. The clustering scheme in [1]
is an O(n?) algorithm which can be slow when the number of Gaussians in the original
CDHMMs is large. Now we have devised a modified k-means clustering scheme using
the Bhattacharyya distance as the distance measure between Gaussian clusters. Not only
is the new clustering scheme faster, when combined with the new stream definitions, we
now obtain SDCHMMs which perform at least as well as the original CDHMMs (with
better results in some cases).

1 Introduction

In our SDCHMM debut paper [1], we presented a novel derivative of the con-
tinuous density HMM (CDHMM) which we cali “subspace distribution clustering
hidden Markov model” (SDCHMM). SDCHMMs are derived from CDHMMs by
projecting mixture Gaussians of CDHMMs into disjoint subspaces, and the subspace
Gaussians are then clustered into a small number of Gaussian prototypes. By exploit-
ing the combinatorial effect of subspace Gaussian encoding, all mixture Gaussians
can be represented by some combination of a small number of subspace Gaussian
prototypes (or codewords). In our experience, 16 to 128 prototypes are generally
adequate to give good accuracy. Consequently there is a great reduction in model
parameters, and thus substantial savings in memory and computation. This renders
SDCHMMs very attractive in practical implementation of acoustic models.

From the perspective of quantization, SDCHMM approximates CD'HMM and
achieves great data compression by Gaussian distribution quantization. From the
perspective of parameter tying, SDCHMM may allow acoustic modeling to a greater
detail without requiring more training data. Finally, SDCHMM unifies the theory of
CDHMM and feature-level tying HMM [7]. This is because when there is only
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one subspace, SDCHMM falls back to the conventional CDHMM, whereas if each
subspace is one dimension of the feature space (scalar), it becomes the feature-level
tying HMM., .

SDCHMM requires a definition of the disjoint subspaces (or streams) and a Gaus-
sian clustering scheme. We extend our previous work in [1] by:

o a simple and coherent definition for streams of any dimension;

¢ an O(nkN) modified k-means subspace Gaussian clustering algorithm to re-
place the previous O(n?) clustering scheme where kN < n in large vocabu-
lary recognition system; and,

¢ SDCHMM recognition on two tasks, ATIS and HMIHY.

Both new techniques for the generation of SDCHMMs lead to better performance.

2 Review Of SDCHMM

Using the following notations:

P(O) : state output probability given observation O

Oy : k-th stream of observation O

¢m  : weight of the m-th mixture

pm - mean vector of the m-th mixture
o2 : variance vector of the m-th mixture

cme - weight of the m-th mixture of the k-th stream
Mmk : mean vector of the m-th mixture of the £-th stream
: variance vector of the m-th mixture of the k-th stream

and assuming that observation pdfs of a CDHMM are Gaussians with diagonal co-
variances, the state output probability can be rewritten as follows:

M M
P(O) = Z em N(O; pim, 02,), Z Cm =1 (1)
m=1 m=1
M K
= Cm (H N(Ok;umk,aﬁlk)) )
m=1 k=1

Q

M K
Z Cm (H N¥e4(Oy; ik, U,znk)> 3)
m=1 k=1

The key observation is that Gaussians with diagonal covariances can be expressed
as a product of subspace Gaussians as in Equation (2), each with diagonal covari-
ance where the subspaces are disjoint and together span the original full feature
space. The proposed SDCHMM as in Equation (3) is obtained by clustering the
Gaussians in each subspace to a small number of subspace Gaussian prototypes.
Thus SDCHMM can be considered as an approximation to conventional CDHMM.
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Since it has been proved by years of research that CDHMM is a good model for
speech recognition, a carefully designed approximation to the CDHMM formula-
tion — SDCHMM — should, in principle, also deliver high performance.

3 Issue I: Subspaces Definition

In our previous paper [1], SDCHMMs were tested with “common” stream def-
initions which are designed in an ad hoc fashion. Here we use the heuristics that
correlated features, by definition, should tend to cluster in a similar manner, and we
require each stream to comprise the most correlated features. Intuitively this cri-
terion should result in smaller distortions for the clustered subspace Gaussians, It
also gives a single coherent definition for any arbitrary number of streams of any
dimension.

While the correlation between 2 features, p;;, is commonly measured by Pear-
son's moment product correlation coefficient,
_ 9
pij = 10" )
multiple correlation measures among 3 or more features are less well-defined. In
this paper, we define multiple correlation which will be denoted as R as

1 — determinant of correlation matrix of the features.

That is, the multiple correlation R among k features is,

1 pi2 p1a - pu
pa1 1 paz - pa
R=1-]|pP31 ps2 1 - pa 5)
Pri Pr2 pr3 - 1

In particular, when there are only 2 features,

1 pi P
=1- I = pZ.
R pii 1 Pij
Hence, in the case when there are only two features, R equals the square of the
moment product correlation coefficient. Since the correlation matrix is symmetric,
its determinant is equal to the product of its eigenvalues. Therefore,

R=1-XAz- X (6)

where A; is the j-th eigenvalue of the correlation matrix. Equation (6) gives a ge-
ometrical interpretation to the multiple correlation measure. When the features are
highly correlated, the correlation matrix corresponds to an elongated ellipsoid with
most eigenvalues except one being small, giving a small value for their product and
thus a high value of R. When the features are less correlated, the matrix is more
spherical, giving a higher value for the eigenvalue product and smaller value of R.
It can also easily be shown that R has the following desirable properties of a corre-
lation measure:
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s 0<RL1
o when all features are correlated, i.e. Vi,j, p;j =1, R=1

o when all features are uncorrelated, i.e. V4, j, pij = 0,R=0

Practically we apply a greedy algorithm to obtain the most correlated streams as
depicted in Algorithm 1. It is simple to modify the algorithm in cases when F is not
a multiple of K.

Algorithm 1 Selection of most correlated streams

Goal: Given F features, define K n-dimensional streams with F = nK.
Step 1. Compute the multiple correlation among any n features.

Step 2. Sort the multiple correlation valtues in descending order, each tagged by an
n-feature-tuple indicating the features it computes from.

Step 3. Starting from the top, an n-feature-tuple is moved from the sorted list to the
“solution list” if none of its features already appear in any feature-tuples of
the solution list.

Step 4. Repeat Step 3 until all features appear in the solution list.

Step 5. The feature-tuples in the “solution list” are the K-stream definition.

4 Issue II: Subspace Gaussian Clustering

Previously in [1], subspace Gaussians were clustered by a bottom-up agglom-
erative clustering scheme of O(n?) complexity in a similar way as in [2] in which
two Gaussians are merged if they result in minimum distortion (scatter) increase.
To avoid an otherwise O(n?) complexity, we introduced in [2] the heuristic that at
each iteration, the Gaussian corresponding to the smallest training ensemble must
be merged first. Algorithm 2 shows a newly devised O(nkN) modified k-means
clustering algorithm which derives the subspace Gaussian prototypes without using
such heuristics, where [V is the number of required subspace Gaussians per stream
and k is the number of iterations in going through the k-means clustering algorithm.
Usually kN < n for large systems.

Since the entities to cluster are Gaussians, we adopt as distance measure the
classification-based Bhattacharyya distance which has been shown to perform well
in speech-related tasks [5, 6]. The Bhattacharyya distance captures both the first and
the second order statistics, and is expected to give better clustering results than the
previous distortion measure.
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Algorithm 2 Modified K-means algorithm for clustering subspace Gaussians

Goal: To derive a K-stream SDCHMM with N subspace Gaussian prototypes for
each stream.

Step 1. Initialization: First train a 1-stream Gaussian mixture model with N mix-
ture components. Project each of the N mixture Gaussians into the K sub-
spaces according to the given K -stream specification. The resultant K N sub-
space Gaussians will be used as initial subspace Gaussian prototypes.

Step 2. Similarly project each Gaussian pdf in the original CDHMM into the K
subspaces.

Step 3. For each stream, repeat Step 4 & 5 until some convergence criterion is met.

Step 4. Membership: Associate each subspace Gaussian of CDHMM in each stream
with its nearest prototype as determined by their Bhattacharyya distance.

Step 5. Update: Merge all subspace Gaussians which share the same nearest proto-
type to become the new subspace Gaussian prototypes.

5 Recognition Evaluation

Two recognition tasks are used for evaluation: ARPA-ATIS [3] and ATT-HMIHY [4].
ATIS (Airline Travel Information Service) is a task containing spontaneous speech
for air travel information queries, with a 1532-word vocabulary. In these experi-
ments, we have used word-class bigrams language model with a perplexity of about
20. HMIHY (How May I Help You) is an AT&T speech corpus containing spon-
taneous responses to the open-ended prompt of “How may I help your?” over the
telephone. It has a vocabulary of about 3600 words and a phrase bigram language
model of perplexity of 18. The disfluencies in HMIHY speeches make word recog-
nition very difficult.

In all experiments, speech is represented by a 39-dimensional feature vector con-
sisting of 12 MFCCs and power, their first and second order time derivatives at a
frame rate of 10ms. Cepstral mean subtraction is applied and recognition is done
using a one-pass beam search with appropriate pruning thresholds.

5.1 Improved Results With Streams of Correlated Features and
MKM Gaussian Clustering

Fig. 1 and Fig. 2 show incremental improvements in recognition performance on
ATIS and HMIHY obtained by 13-stream context-independent SDCHMMs with the
four combinations of using the old or the new 13-stream definitions, and the old or

the new clustering schemes. (The common 13-stream definition is defined as in [1]
as follows: 12 streams of triplets {cep, Acep, AAcep} and 1 stream composed of
{power, Apower, AApower}.)
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Figure 1: Recognition accuracy of 13-stream context-independent SDCHMMs on
ATIS with various stream definitions and clustering schemes
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Figure 2: Recognition accuracy of 13-stream context-independent SDCHMMs on
HMIHY with various stream definitions and clustering schemes
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Notice that the improvement is bigger with fewer prototypes and this is desirable
as fewer prototypes usually translate into faster recognition.

5.2 Summary of Best Results

Using the two novel techniques, the best results for various SDCHMM config-
urations (with different number of streams and different number of prototypes) are
summarized in Table 1 and Table 2. Context-independent ATIS SDCHMMs give
an insignificant(absolute) 0.1% drop in accuracy, while ATIS context-dependent
SDCHMMs and HMIHY models give slightly better accuracies than their original
CDHMMs.

Table 1: Summary of the best ATIS results (K = #streams, n = #tied Gaussians, CI
= context independent, CD = context dependent, WER = word error rate, TIME is
relative to that of the baseline system, PR = parameter reduction and MS = memory
savings. For PR, figures in parenthesis takes into account the mappings of subspace
Gaussians to the full-space Gaussians. For MS, 1-byte mappings are assumed)

|CVCD [ K] n [WER|TIME] PR [MS]|
CI 142302 | 94 1.00 1 1

CI 13| 256 9.7 | 072 | 8(3.5) | 6.1
CI 20 | 128 95 1070 | 15@3.1) | 7.6
CI 39 32 95 | 070 | 38(1.9) | 6.7
CD 1 | 76725 | 52 | 1.00 1 1

CD 4 256 58 | 042 | 63(15) | 35
CD 13 128 52 | 044 1 70(5.6) | 18
CD 20 64 50 | 050 { 74(3.8) | 13
CD 39 16 50 | 071 | 71820) | 7.3

Table 2: Summary of the best HMIHY results (refer Table 1 for notations)

[CU/CD[ K] n [wer|TIME] PR [MS]
CI 1 12829 | 503 1.0 1 1
CI 13 ] 128 | 506 | 063 | 1745 | 10
CI 20 64 502 | 065 |293.5) | 10
CI 39 16 500 | 0.81 | 55(2.0) 7
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6 Conclusion

We show that by properly projecting mixture Gaussians of accurate CDHMMs
into subspaces and carefully tying the resultant subspace Gaussians, performance
of SDCHMMs can be greatly improved, especially in those cases with few Gaus-
sian prototypes per stream. Using the two new techniques, we now can achieve
recognition results on ATIS and HMIHY that are at least as good as the baseline
CDHMM results; yet the total computation time is reduced by 30% — 60% while
HMM memory usage is decreased by a factor of 10 — 20. For example, on ATIS,
a 20-strearn CD SDCHMM system with only 64 subspace Gaussian prototypes (for
each stream) is more accurate than a context-dependent CDHMM system contain-
ing 76725 mixture Gaussians, yet it runs at twice the speed with 75-fold (13-fold if
encoding information is also counted and represented by 1 byte) decrease in mem-
ory usage. Similarly, on the HMIRHY task, a 20-streamm SDCHMM system with 64
subspace Gaussian prototypes(for each stream) performs better than the original
CDHMM system it derives from, but saves 35% computation time and 96% (70%
when encoding information is also counted) of the acoustic parameters.

We are now investigating if re-training will further improve the performance.
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