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Abstract
This paper concerns about reducing the topology of a hid-
den Markov model (HMM) for a given task. The purpose
is two-fold: (1) to select a good model topology with im-
proved generalization capability; and/or (2) to reduce the
model complexity so as to save memory and computation
costs. The first goal falls into the active research area of
model selection. From the model-theoretic research com-
munity, various measures such as Bayesian information
criterion, minimum description length, minimum mes-
sage length have been proposed and used with some suc-
cess. In this paper, we are considering another approach
in which a well-performed HMM, though perhaps over-
sized, is optimally pruned so that the loss in the model
training cost function is minimal. The method is known
as Optimal Brain Surgeon (OBS) that has been used in
the neural network (NN) community. The application of
OBS to NN is a constrained optimization problem; its
application to HMM is more involved and it becomes a
quadratic programming problem with both equality and
inequality constraints. The detailed formulation is pre-
sented, and the algorithm is shown effective by an ex-
ample in which HMM state transitions are pruned. The
reduced model also results in better generalization per-
formance on unseen test data.

1. Introduction
In data modeling, one always faces the modeling
dilemma: if the model has too many parameters, it runs
the risk of over-fitting the training data; but if the model
has too few parameters, it may compromise its capability
to represent the data distribution. There are at least two
approaches for the regularization problem:

• In modeling theory, this is the model selection

problem. Various selection measures such as
the Bayesian information criterion (BIC), Akaike
information criterion (AIC), minimum descrip-
tion length (MDL), and minimum message length
(MML) have been proposed. ([6] is a good re-
view for these measures.) Some successful appli-
cations of BIC to select the number of Gaussian
mixtures or the model complexity have been re-
ported in speech recognition [3, 2] and handwriting
recognition [1].

• A (possibly oversized) model is trained and then
pruned to a desirable size according to an optimal-
ity criterion. This approach may also be used to
reduce the model size for saving memory and com-
putation cost at the expense of small degradation in
classification performance.

This paper investigates a method belonging to the sec-
ond approach, called Optimal Brain Surgeon (OBS) [5] to
reduce the topology of Hidden Markov model (HMM).
HMM has been widely used for representing temporal
or spatial data in areas like automatic speech recognition
(ASR) or handwriting recognition. However, for exam-
ple, in ASR, the topology of an HMM such as the number
of states and their connectivity is usually pre-set by expe-
rience or heuristic. It will be interesting to see if OBS
may help decide an optimal HMM topology for a given
task.

OBS belongs to a class of pruning methods that make
use of second-order derivatives to prune the least “impor-
tant” weights optimally in a neural network (NN). The
method has been shown effective in refining the com-
plex topology of an over-fitted neural network in [7].
When applied to a neural network, OBS is a constrained
optimization problem which tries to eliminate a weight



connection in an NN but at the same time re-adjusts all
the other weights optimally. When OBS is applied to
an HMM, it becomes a quadratic programming problem
with equality and inequality constraints.

2. Optimal Brain Surgeon on NN
To use Optimal Brain Surgeon (OBS) [5], a neural net-
work with a set of weights w is first trained to conver-
gence according to an error function E(w). By using the
Taylor’s expansion, a change in the error function, δE

induced by a change in the weights δw is given by

δE = δwT ·
∂E

∂w
+

1

2
δwT ·

∂2E

∂w2
· δw + · · · (1)

where ∂E
∂w is the gradient vector and ∂2E

∂w
2

is the Hessian
matrix H . The first term in Eqn(1) vanishes by the as-
sumption that the network has converged to a local, if not
global, minimum of the error function and the gradient is
zero. If the third- and all higher-order terms are negligi-
ble, then only the second-order derivative term remains
and the change in error can be approximated as

δE =
1

2
δwT ·

∂2E

∂w2
· δw . (2)

The deletion of a single weight wj is formulated as
the following constraint on Eqn(2)

e
T
j (δw + w) = 0 (3)

where ej is a unit vector with the j-th component being
1. The constrained optimization problem can be solved
by the standard Lagrangian method.

3. Optimal Brain Surgeon on HMM
The Optimal Brain Surgeon algorithm in the last Section
may be modified to prune a state transition in an HMM.
As will be shown below, the modification changes a La-
grange optimization problem to a quadratic programming
problem.

3.1. Theory
OBS on HMM requires the deletion of a state transition
to modify all the remaining transitions optimally so that
the decrease in log-likelihood of the training data, log L,
is minimal and all HMM constraints are preserved. Let
us arrange all HMM transitions in a vector w and assume
that we would like to delete the j-th transition; that is,
δwj = −wj . Based on Eqn(2), OBS on HMM may be
formalized as an optimization problem to minimize

δ log L = δwT ·
∂2 log L

∂w2
· δw (4)

subject to the following constraints:
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Figure 1: A left-to-right HMM with single-state skips.
Only 4 states are shown and all transitions are numbered.

I. Selection Constraint: To prune the j-th state transi-
tion, we have

ej
T (w + δw) = 0 . (5)

II. Sum-of-Transitions Constraint: The sum of proba-
bilities of all out-going transitions from a state
must be one. That is,

M
T (w + δw) = 1 or M

T δw = 0 (6)

where M is an indicator matrix in which the i-th
column vector indicates all valid transitions out of
the i-th states by 1 and invalid transitions by 0. For
example, if the HMM in Fig.1 has M states and
N transitions, and each state has 3 outgoing transi-
tions as shown, then its indicator matrix M is

M =























1 0 0
1 0 0
1 0 0
0 1 0 · · ·
0 1 0
0 1 0

...























N×M

. (7)

III. Positivity Constraint: All transition probabilities
must be positive.

w + δw ≥ 0 . (8)

One may think we need another constraint to make
sure all transitions are less than one. However,
the positivity constraint together with the sum-of-
transitions constraint implicitly imply that already.

It is because of the last inequality constraint that turns
the optimization to a quadratic programming problem. In
this paper, the quadratic programming problem is solved
by the active set method [4].

3.2. Algorithm
The whole OBS algorithm is shown in Algorithm 1. It is
an iterative procedure that removes one state transition at



a time. The saliency of a transition is defined as the de-
crease in the log-likelihood of the training data, δ log L,
if the transition is pruned. The algorithm deletes the tran-
sition with the maximum saliency in each iteration.

Notice that some transition deletions will render the
reduced HMM infeasible — that is, the final state of the
HMM cannot be reached. Thus, after each iteration of
the OBS algorithm, one has to run a feasibility test and
prevents this from happening.

Algorithm 1 Optimal Brain Surgeon algorithm on HMM

STEP 1. Train an HMM until it converges.

STEP 2. Compute its full Hessian on the training data.

STEP 3. Solve the quadratic programming problem of
Eqn(4) for deleting each possible transition and
record the corresponding saliency δ log L and δw.

STEP 4. Sort the saliencies. If the greatest saliency
δ log L is less than a threshold L̂, then stop.

STEP 5. Delete the transition corresponding to the
greatest saliency and update other transition prob-
abilities by the δw result in STEP 3.

STEP 6. Repeat STEP 2 – 5 until the maximum number
of allowable iterations is exceeded.

4. Hessian Calculation
The Hessian matrix, H = ∂2 log L

∂w2 is derived from the
first principle by differentiating the forward probability
in the well-known Forward-Backward algorithm with re-
spect to each state transition probability aij . Given an ob-
servation sequence O = {o1, o2, . . . , oT } and an HMM
with N states and model parameters λ, we will denote
the likelihood of the observation sequence P (O | λ) by
L, and the log-likelihood by log L. The likelihood may be
computed efficiently by the iterative Forward Procedure
as summarized in the following formulas:

αs(1) = πsbs(o1) (9)

αs(t) =

[

N
∑

r=1

αr(t − 1)ars

]

bs(ot) (10)

L = P (O|λ) =

N
∑

r=1

αr(T ) (11)

where αr(t) is the probability of observing the sub-
sequence {o1, o2, . . . , ot} by the model, ending up in
state r at time t; πs is the initial probability of state s;
ars is the probability of transiting from state r to state s;
and bs(ot) is the probability of observing ot at state s.

4.1. Gradient and Hessian in log Domain
A general term in the gradient of the log-likelihood is
given by

∂ log L
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=
1

L
·

∂L

∂aim

. (12)

Similarly, a general term in the Hessian of the log-
likelihood is given by
∂2 log L

∂aim∂ajn

=
1
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−
1
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. (13)

4.2. Gradient and Hessian in Linear Domain
The Hessian of the log-likelihood in Eqn(13) requires the
calculation of the gradient and Hessian of the likelihood
(in linear domain). The latter may be computed using
the iterative Forward Procedure by differentiating the for-
ward probabilities given by Eqn(10) as follows:
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Finally, elements of the Hessian matrix in Eqn(13) are
given by

∂L
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=
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∂αr(T )

∂aim

(16)

and ∂2L

∂aim∂ajn

=

N
∑

r=1

∂2αr(T )

∂aim∂ajn

. (17)

5. Experimental Evaluation
The adult data set of TIDIGITS is used for evaluation.
It consists of 8623 training utterances and 8700 testing
utterances. Whole digit HMMs are trained. Each digit
HMM has 16 states with 16 Gaussian components per
state. The HMM topology is shown in Fig.1. Compared
with the commonly used HMM topology which is strictly
left-to-right and each state only has two outgoing transi-
tions — from state i to state i and i + 1, our topology is
more complex with an additional skip-transition for each
state — from state i to state i + 2. The transition arcs are
numbered as follows:

• self-transitions are numbered as 1, 4, 7, . . ., 46.
• next-transitions are numbered as 2, 5, 8, . . ., 47.
• skip-transitions are numbered as 3, 6, 9, . . ., 48.

The acoustic vector is the conventional 39-dimensional
cepstral vector containing 12 MFCCs and normalized en-
ergy plus their first- and second-order derivatives.



5.1. Saliency Evaluation

Eleven digit models, a noise model, and a short pause
model are trained by the EM algorithm until convergence.
Then OBS in Algorithm 1 is used to compute the saliency,
δ log L of each transition for each digit HMM and the
transition with the greatest saliency is deleted from each
HMM. The greatest five saliencies and their correspond-
ing transition arcs for the HMM of digit “zero” are shown
in Table 1.

Table 1: Choice of transition deletion determined by OBS
and manual pruning for the HMM of digit “zero”.

Rank OBS Manual Pruning
Arc# Saliency Arc# Saliency

1st 12 -3.53e-36 12 -9.11e-02
2nd 18 -3.89e+00 18 -1.98e+01
3rd 39 -1.04e+01 3 -1.10e+02
4th 3 -1.19e+01 39 -1.13e+02
5th 33 -1.73e+01 33 -1.23e+02

To gauge our results, we also try to delete each tran-
sition manually from each HMM, re-normalize the tran-
sition probabilities of the affected state, and compute the
corresponding saliency. The results are also shown in Ta-
ble 1. Both OBS and manual pruning method suggest
to delete the transition arc numbered 12, which is the
skip transition from the 4th state to the 6th state. The
two methods also agree well in their top 5 recommenda-
tions. However, one should remind that the manual prun-
ing method is not optimal because the remaining transi-
tions are not optimally re-adjusted as in OBS.

5.2. Recognition Evaluation

Although the major objective of OBS is to reduce the
complexity of an HMM optimally, the recognition per-
formance is also our concern. In this experiment, the
OBS algorithm is iterated and during each iteration, one
transition is deleted from each HMM. The word accura-
cies of the reduced HMMs after each iteration are plot-
ted in Fig.2. We observe that OBS not only reduces the
topology of the digit HMMs but also improves their gen-
eralization performance on unseen test data even after
15 iterations. The generalization peaks at the 11-th it-
eration and the recognition accuracy improves from the
original 99.2% to 99.4% — an error reduction of 25%
which is statistically significant at the 0.05 confidence
level. Again, OBS gives better performance than manual
pruning. Another interesting observation is that although
we may expect the skip-transitions to be the least impor-
tant, not all deleted transitions are skip-transitions. In
fact, only 70% of deleted transitions are skip-transitions
after 16 iterations of OBS.
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Figure 2: Recognition performance of HMMs after tran-
sition pruning by OBS.

6. Conclusions
In this paper, we have adopted the theory of OBS in neu-
ral network to prune state transitions in an HMM success-
fully. Experimentally we also find that the generalization
performance of pruned models is also improved.

In the future, we would like to extend the current
work in two directions. Firstly, although we delete only
one transition at a time in this paper, it can be easily ex-
tended to prune several transitions simultaneously. As a
result, even a whole HMM state may be pruned optimally
under the OBS framework. Secondly, the evaluation ex-
periment in this paper uses a relatively simple HMM. It
will be interesting to apply the OBS algorithm to more
complex HMMs, such as product HMMs that are com-
monly used in multi-band ASR and audio-visual ASR.
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