
AN ALTERNATIVE APPROACH OF FINDING COMPETING HYPOTHESES FOR BETTER
MINIMUM CLASSIFICATION ERROR TRAINING

Yik-Cheung Tam and Brian Mak

Department of Computer Science,
The Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong�
cswilson,mak � @cs.ust.hk

ABSTRACT
During minimum-classification-error (MCE) training, competing
hypotheses against the correct one are commonly derived by the
N-best algorithm. One problem with the N-best algorithm is that,
in practice, some misclassified data can have very large misclassi-
fication distances from the N-best competitors and fall out of the
steep/trainable region of the sigmoid function, and thus cannot be
utilized effectively. Although one may alleviate the problem by
adjusting the shape of the sigmoid and then using an appropri-
ate learning rate, it requires careful tuning of these training pa-
rameters. In this paper, we propose using the nearest competing
hypothesis instead of the traditional N-best hypotheses for MCE
training. The aim is to keep the training data as close to the train-
able region as possible. Consequently, the amount of “effective”
training data is increased. Furthermore, by progressively beating
the nearest competitors, the training seems to be more stable. We
also design an approximation algorithm based on beam search to
locate the nearest competing hypothesis efficiently. We compare
the performance of MCE training using 1-nearest or 1-best com-
peting hypotheses on the Aurora database and find that the new ap-
proach (using 1-nearest hypotheses) reduces the word error rates
by 5.1% and 17.8% over the latter (of using the 1-best competing
hypotheses) and the official Aurora baseline respectively.

1. INTRODUCTION

Minimum classification error (MCE) training is a powerful dis-
criminative technique to optimize any system parameters so that
the ultimate classification errors are minimized. It has been suc-
cessfully applied to various problems in speech recognition; for
instance, optimizing the hidden Markov model (HMM) parame-
ters [1, 2], discriminative feature extraction [3], and finding opti-
mal subband weightings [4].

MCE training involves two steps to establish the optimization
criterion. Firstly, a misclassification distance measure ������� is de-
fined. It represents the “average” distance of competing hypothe-
ses from the correct hypothesis for an utterance � as follows:�����	��
����� ���� �� ���������! ��"$#&% � ��')(*,+ %�- (1)

where %/.1032)46587 � denotes a set of � discriminant functions
for each of the � competing hypotheses; and, %!- denotes the one
for the correct hypothesis. % . is commonly computed as the Viterbi

log-likelihood of the 5 -th competing hypothesis. Competing hy-
potheses can be derived using the N-best algorithm [5, 6]. Sec-
ondly, a misclassification distance is turned into a soft error count.
The 0-1 sigmoid function is usually employed:9 ���������3�:
 ��<;>=&?A@ � +CB �����	� ;ED � (2)

where
B

and
D

control its shape and offset respectively.
Given the training set F��HGI0 � 7JK76LNM , the empirical recog-

nition error for minimization is given byOQPSRUT 
 �LWV� G 9 ������� G �3��X (3)

Using the iterative generalized probabilistic descent (GPD) algo-
rithm [1], a better parameter estimate Y may be obtained by the
following update rule:YA�[Z ;� �:
6YA�[ZI� +]\ �[Z3�_^ O`PSRaT^ Ycbbb d � d�e�f[g (4)

where
\ �[ZI� is the learning rate at the Z -th iteration.

We observe that an utterance � is hardly trainable if its mis-
classification distance is so large that it falls outside the steep re-
gion of the sigmoid function, and its

9 ���������3� approaches one. In
light of this, instead of using the N-best competitors to compute the
misclassification distance, we propose using the nearest competi-
tor. By definition, under the same setup of corrective MCE train-
ing, the 1-nearest competitor always has a misclassification dis-
tance smaller than those of the N-best counterparts (except when
only one competitor is better than the correct hypothesis; in that
case, � 
 � and they are the same). Thus, the 1-nearest competi-
tors are always closer to the trainable region of the sigmoid func-
tion; or in other words, one will have more “effective” training
data using 1-nearest competitors than using N-best competitors.
This can be important when the baseline recognition performance
is already quite good and there will be very few training data for
MCE training. Another viewpoint is that, intuitively, if the best
competitor is so strong that it cannot be beaten directly, it may
be better to beat the weaker nearest competitors progressively and
hopefully it can find its way up to the strongest competitor. Figure
1 shows the distributions of the soft error counts of the 1-best and
the 1-nearest competitors during the 1st iteration of MCE training
of the Aurora corpus (see Section 3.3.1). From the figure, it can
be seen that most 1-best competing hypotheses concentrate in the
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Fig. 1. Distributions of the soft error counts of the 1-best and the 1-
nearest competitors on the Aurora corpus during the first iteration
of MCE training. The sigmoid slope is 0.1.

region of large hUi�jAk values: lAm nophUi�jAkqosrtm l , while there are
many more 1-nearest than 1-best competitors for hUi�jAkSuvlwm n .

In this paper, we will show, through a series of experiments,
that it is preferable to use 1-nearest competing hypotheses than
1-best competitors for MCE training. We also have designed an
approximation algorithm to compute the 1-nearest hypothesis that
is more efficient in time and space.

2. ALGORITHMS TO LOCATE THE NEAREST
COMPETITOR

In this section, we will introduce two algorithms to locate the near-
est competitor. The first algorithm will find the exact 1-nearest
competitor based on the N-best algorithm. The second one is an
approximation algorithm based on beam search.

2.1. The Exact Algorithm
The algorithm is outlined in pseudo-codes as follows:

INITIALIZE:
i = 1 and xzy = null hypothesis

LOOP
Retrieve the next competing hypothesis xz{ using the N-best

algorithm.
IF xz{ matches the correct hypothesis THEN

RETURN x {�|~}
END LOOP

The advantage of this approach is that it can accurately locate
the 1-nearest competitor by scanning through the rank-ordered N-
best list in a top-down fashion. However, in case of an extremely
low-ranking 1-nearest competitor, this approach will take a long
time and may run into a memory problem. In practice, one has
to limit the search depth whose value is application dependent. In
this paper, we set the maximum search depth to 1000.

2.2. The Approximation Algorithm
The algorithm is a slight modification of the Viterbi algorithm. The
forced-alignment path of the correct hypothesis is taken as a ref-
erence and Viterbi decoding is performed with the constraint that
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Fig. 2. The search space of an approximation algorithm that lo-
cates the 1-nearest competitor

any partial paths with an accumulated likelihood greater than the
accumulated likelihood of the reference at time � , ���I�3��i[�3k , by a
beam-width of �/���w�]i[�3k are pruned. The idea is illustrated in Fig-
ure 2 in which the shaded region represents the valid search space
of this approximation algorithm. Let �,i[�����1k and �/��i��1k denote the
accumulated likelihood and the state observation likelihood of the
HMM state � at time � respectively. Then our Viterbi updating
formula at time i[����r�k is modified as follows:��i[���r����1k���,��� {w� ��i[�&�3��k��/� { � �/�/�[  } i��1kI¡ (5)

where �Hi[�&�3��k���� { � ���&��  } i��1kSo�¢�I�3��i[����r�k��/�&���A�8i[�z�vr�k .
Since the reference path of the correct hypothesis is optimal,

and the output path of the algorithm must be better than the ref-
erence path given a suitable beam-width, a competing hypothesis
will be returned. The beam-width controls how close the output
competing hypothesis is to the correct hypothesis. If the beam-
width is too small, the output degenerates to the reference path. On
the other hand, if the beam-width tends to infinity, the best hypoth-
esis will be returned. In our experiments, we started with an initial
beam-width of 10, and if the output fell back to the reference hy-
pothesis, we incremented the beam-width by 10 progressively until
we found an approximate 1-nearest hypothesis. In most cases, an
approximate 1-nearest competitor could be found within the preset
beam-width of 10. The approximation algorithm solves both the
memory and computation problem of the exact approach.

3. EXPERIMENTS AND DISCUSSION

The performance of MCE training using£ the best competitor;£ the nearest competitor; or,£ the approximate nearest competitor
was investigated using the Aurora corpus [7]. Resulting models
were evaluated on the test set A which matches the noise types
and channel characteristics of the training set.

3.1. The Aurora Corpus
The Aurora corpus was created to support distributed speech recog-
nition research under noisy environments. Continuous TIDIG-



Table 1. The best word error rates on the test set A among the first
3 MCE/GPD iterations with different ¤ and ¥�¦¨§�© = 422.

System ¤ =0.5 ¤ =0.1 ¤ =0.02 ¤ =0.004
baseline(ML) 12.71% 12.71% 12.71% 12.71%

1-best 11.55% 11.01% 11.08% 12.07%
approx-1-nearest 10.85% 10.71% 11.27% 12.27%
exact-1-nearest 10.46% 10.45% 10.92% 12.16%

Table 2. String error rates on the training set during the first 3
MCE/GPD iterations. ¤ = 0.1 and ¥�¦¨§!© = 422.

System Before MCE 1 Iter 2 Iter 3 Iter
1-best 10.68% 9.00% 8.31% 7.46%

approx-1-nearest 10.68% 8.92% 8.19% 7.32%
exact-1-nearest 10.68% 8.68% 7.90% 7.29%

ITS [8] were first pre-filtered according to the frequency character-
istics of common telecommunication channels (G.712 or MIRS).
Then, realistic noises were artificially added at 6 different signal-
to-noise (SNR) ratios ranging from 20dB to -5dB at 5dB steps for
the test sets and from 20dB to 5dB at 5dB steps for the multi-
condition training set. Two training modes: clean training and
multi-condition training, and three test sets are defined to evalu-
ate recognition performance subject to matched/unmatched noises,
and matched/unmatched channel characteristics.

3.2. Experimental Setup
We followed the exact procedure in the official Aurora paper [7]
to create our maximum-likelihood (ML) baseline using HTK. The
feature vector consisted of 12 MFCCs and the logarithmic frame
energy + ª + ªHª . Each digit was represented by a whole-word
HMM, which was strictly left-to-right, with 16 states and 3 Gaus-
sian mixtures per state. The silence model was a 3-state HMM
with 6 Gaussian mixtures per state. The short pause with skip is a
1-state HMM that was tied with the 2nd state of the silence model.
All models were trained by the Baum-Welch algorithm to obtain
the initial ML models. Corrective string-based MCE training was
then performed, and the learning rate was decreased along training
iterations « by the following formula: ¥�¦[«I©¬®¦a¯$°±«3²�³t§�©µ´w¥�¦¨§�©
with t ¶ 0 and we limited the maximum number of iterations to
50. Furthermore, the sigmoid offset was set to zero in all our ex-
periments.

3.3. Experiment I: The Effect of the Sigmoid Slope
The aim of this experiment is to investigate the impact of different
steepness of the sigmoid function to the training performance by
using different ¤ : · 0.5, 0.1, 0.02, 0.004 ¸ . MCE training was per-
formed for three iterations and the initial learning rate ¥�¦¨§�© was set
to 422 which was empirically found to give good results.

3.3.1. Case I: With ¤ = 0.1

This gamma value yields the best performance among all the four
gamma values tested as shown in Table 1. MCE training with the
exact nearest competitor reduces the word error rate by 5.1% and
17.8% compared with the one using the best competitor and the

Table 3. Percentage of effective training data. Data with¹ ¦�º�¦�»	©3©S¼ 0.95 are defined to be effective.

System ¤ =0.5 ¤ =0.1 ¤ =0.02 ¤ =0.004
1-best 9.43% 39.73% 94.39% 100%

approx-1-nearest 12.53% 51.03% 97.61% 100%
exact-1-nearest 20.23% 67.01% 99.44% 100%

Table 4. The best word error rates on the test set A within the first
3 MCE/GPD iterations. ¤ = 0.004 and ¥�¦¨§!© = 10550.

System Overall word error rates
baseline(ML) 12.71%

1-best 11.55%
approx-1-nearest 10.70%
exact-1-nearest 10.79%

ML baseline respectively. As expected, the performance of MCE
training using the approximate nearest competitor is better than
that using the best competitor but worse than that using the ex-
act nearest competitor. The new approach using the exact nearest
competitor also demonstrates a faster convergence than the one us-
ing the 1-best competitor as shown in Table 2.

3.3.2. Case II: With larger slope, ¤ = 0.5

We investigated the effect of using a sigmoid function with a slope
steeper than the (empirically) optimal value of 0.1. The results
are tabulated in Table 1. In terms of word error rate, the perfor-
mance with the use of the best competitors deteriorates by 4.9%
from its corresponding result that uses ¤½¬¾§A¿�¯ . On the other
hand, the performance degradation of MCE training using the ap-
proximate nearest competitors is 1.3% and MCE training using
exact 1-nearest competitors does not degrade at all. It seems that
MCE training using the nearest competitors is less sensitive to an
increase in ¤ when compared with that using 1-best competitors.
This may be explained by the fact that more effective amount of
training data is available for the new approach according to Ta-
ble 3.
3.3.3. Case III: With smaller slopes, ¤ = · 0.02, 0.004 ¸
From Table 1, when the slope of the sigmoid function becomes
flatter, the advantage of using the nearest competitor disappears.
To illustrate this, we compute the effective amount of training data
in all three approaches during the first MCE/GPD iteration in Ta-
ble 3, which is defined as the amount of data whose soft errors,¹ ¦�º�¦�»	©3© , are less than 0.95. Notice that with a slope of 0.004,
the sigmoid is so flat that all training data fall within the trainable
region in all three methods. Thus, it is better to use the best com-
petitors directly rather than the nearest competitors. Nevertheless,
their performance difference is small. However, because of the
small slope, convergence is slow and the MCE training had not
converged in 3 iterations.

3.4. Experiment II: Compensation on Using a Flat Sigmoid
In Experiment I, we find that the sigmoid slope determines the
amount of “effective” training data which, in turn, affects the rel-
ative performance among the three methods. It is interesting to
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Fig. 3. String Error Rates on the training set. À = 0.004, Á�Â¨Ã!Ä =
422.

compare the three methods under the condition that they have the
same amount of effective training data. However, a small slope re-
sults in slow convergence of MCE training. In this experiment, we
choose a flat sigmoid with À = 0.004, and investigate the perfor-
mance of MCE using the three kinds of competitors when training
converges.

3.4.1. Case I: Using a larger learning rate

We followed the same procedure as in Experiment I except that we
increased the initial learning rate Á�Â¨Ã�Ä to 10550 so that the prod-
uct, À>Å]Á�Â¨Ã�Ä , is the same as in the best case with ÀÆpÃAÇ�È andÁ�Â¨Ã!ÄÉÆËÊ1Ì�Ì . The motivation is to compensate for the slow learn-
ing due to the flat sigmoid. Results are tabulated in Table 4. After
the compensation, the results are comparable to the best results in
Table 1 of Experiment I. However, the approach using the near-
est competitors is still better than the one using the best competi-
tor. One possible reason is that overshoot occurs due to the large
learning rate.

3.4.2. Case II: Applying more training iterations

We also allowed more training iterations with the same learning
rate of 422 as in Experiment I and checked its convergence while
avoiding training overshoot. When compared with MCE training
using a steep sigmoid slope of ÀÍÆÎÃAÇ�È , the convergence is very
slow as indicated by the the slow decrease in string error rates on
the training set in Figure 3. Despite more training iterations, recog-
nition performance is not as good as the best case in Experiment I
according to the results in Figure 4. Therefore, such setting is not
practical since many more training iterations are required.

4. CONCLUSION

In this paper, we propose using the nearest competing hypotheses
for MCE training. We also present an approximation algorithm
which, although, is not guaranteed to find the exact 1-nearest hy-
pothesis, is much faster and requires much less memory. On the
Aurora task, in the best case, MCE training using exact 1-nearest
competitors achieves a reduction in word error rate of 5.1% and
17.8% compared with that using 1-best competitors and the offi-
cial Aurora baseline respectively. We investigated the effect of the
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Fig. 4. Word error rates on the test set A. À = 0.004, Á�Â¨Ã�Ä = 422.

amount of “effective” training data by varying the slope of the sig-
moid function to show that the 1-nearest method always results in
the greatest amount of effective training data as expected and gives
the best performance in a few MCE training iterations except when
the amount of effective data is the same for all three methods. In
the latter case, we show that even with many more training iter-
ations, training with 1-best competitors still converges too slowly
to compare with the best result using 1-nearest competitor. On
the other hand, if the convergence is sped up by a larger learning
rate, training overshoot may occur. In summary, MCE training us-
ing 1-nearest competing hypotheses seems to outperform that us-
ing 1-best competing hypotheses in various settings of the training
conditions with a faster convergence.
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