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ABSTRACT

Recently, Li et al. proposed a new auditory feature for robust
speech recognition in noise environments. The new feature was
derived by mimicking closely the function of human auditory pro-
cess. Several filters were used to model the outer ear, middle ear,
and cochlea, and the initial filter parameters and shapes were ob-
tained from crude psychoacoustics results, experience, or experi-
ments. Although one may adjust the feature parameters by hand to
get better performance, the resulting feature parameters still may
not be optimal in the sense of minimal recognition errors, espe-
cially for different tasks. To further improve the auditory feature,
in this paper we apply discriminative training to optimize the audi-
tory feature parameters with some guidance from psychoacoustic
evidence but otherwise in a data-driven approach so as to mini-
mize the recognition errors. One significant contribution over sim-
ilar efforts in the past, such as discriminative feature extraction, is
that we make no assumption on the parametric form of the audi-
tory filters. Instead, we only require the filters to be smooth and
triangular-like as suggested by psychoacoustics research. Our ap-
proach is evaluated on the Aurora database and achieves a word
error reduction of 19.2%.

1. INTRODUCTION

In automatic speech recognition (ASR), the design of acoustic mod-
els involves two main tasks: feature extraction and data modeling.
Acoustic features such as LPCC, MFCC, PLP are commonly used;
and the most popular data modeling techniques in current ASR
are based on hidden Markov modeling (HMM). Recently, Li et
al. proposed a new auditory feature for robust speech recognition
based on an analysis of the human peripheral auditory system [1].
In the approach, the auditory system is first divided into several
modules, then each module is modeled from a signal processing
point of view with a constraint on computational complexity. The
feature computation is comprised of an outer-middle-ear transfer
function, FFT, conversion from linear frequency scale to the Bark
scale, auditory filtering, non-linearity, and discrete cosine trans-
form (DCT). As reported in [1], the new auditory feature outper-
formed MFCC, LPCC, and PLP, in noise environments, and the
major improvement was attributed to the new auditory filters. Al-
though in the new auditory feature platform, the filter shapes and
other parameters can be adjusted easily through experiments, the
filters still may not be optimal in the sense of minimal recognition
errors, especially under the context of different tasks.

Traditionally, in ASR, feature extraction and acoustic model-
ing are addressed separately, which may not result in an optimal
recognition performance. Several approaches have been proposed

to optimize feature parameters using discriminative feature extrac-
tion (DFE) along with the optimization of model parameters under
the unified framework of MCE/GPD (minimum classification er-
ror and generalized probabilistic descent) [2, 3]. The past efforts
on DFE may be divided into two major categories:

(1) Most DFE-related works were based on common features
such as log power spectra [4], mel-filterbank log power
spectra [5], and LPCC [6] and discriminatively trained a
transformation network to obtain new discriminative fea-
tures for the following data modeling process. Notice that
these work did not touch the front-end signal processing
module that derives inputs to their transformation networks.

(2) In contrast, Alain Biem et al. [7] applied joint discrimi-
native training on both HMM parameters and filters in the
front-end. Two kinds of filter parameterization were tried:
Gaussian filters or free-formed filters. The tasks were rel-
atively simple to today’s standard, and the improvement
was small. Furthermore, the free-formed filters performed
worse than Gaussian filters.

In this paper, we attempt to design the auditory filters involved
in the extraction of our new auditory features without making an
assumption on the parametric form of the auditory filters. Instead,
guided by psychoacoustic evidences, we only require the filters to
be smooth and triangular-like. One of the challenges is to derive a
mathematical expression for a filter satisfying the two constraints.
We achieve this through two parameter space transformations.

2. AUDITORY FILTER DESIGN

We postulate that the use of Gaussian auditory filters in [7] may be
too restrictive; however, the suggestion of absolutely free-formed
filters in [7] is not supported by psychoacoustic findings either.
We believe that the shape of human auditory filters is not arbitrary
and their properties should be observed in our discriminative au-
ditory filter design. Based on the findings from psychoacoustics,
we require our auditory filter response to satisfy the following two
constraints:
Constraint #1 : it is triangular-like. That is, all its weights must

be positive with a maximum response of 1.0 somewhere in
the middle, and then its values taper off to both ends; and,

Constraint #2 : it is differentiable.
In our feature extraction, a 128-point Bark spectrum from FFT

and the outer-middle-ear transfer function was fed to 32 auditory
filters as in the cochlea. The filters were equally spaced at an inter-
val of 4 points apart in the spectrum. Thus, after auditory filtering,
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Fig. 1. A constrained auditory filter of the � -th channel

the 128-point input spectrum was converted to 32 channel energies
from which ceptsra were computed using DCT. An auditory filter
of our system has the design as depicted in Fig. 1(a), one for each
channel. It can be thought of as a two-layer perceptron without any
nonlinearity. The weight ����� in the second layer perceptron is the
gain of the auditory filter while the weights in the first layer are
the normalized filter weights. Although the two-layer perceptron
is equivalent to a single-layer perceptron, the design allows us to
examine the resulting filter shapes and gains separately.

A filter satisfying the two aforementioned constraints can be
implemented through two successive parameter space transforma-
tions. For a digital filter with ���
	����� points, we associate the
filter weights ����������������������� , ��� , ����� ���!���"�#�%$ with a set of
deltas, ��& �'� �!��� ���"& �(� �)& � �!��� ���"& � $ so that after parameter trans-
formation and proper scaling, &�* will be equivalent to +,�#* (see
Fig. 1(b)). Positively-indexed weights are related to the positively-
indexed deltas mathematically as follows:�.-0/1�243�� -5 *76���8 �9& * �"�:�<;,/�=�!� �����)	 (1)

where 3���� � and 8 ��� � are any monotonically increasing functions
such that > � >@? 3��9A'� ? 
� >CB
DFEG> � >�? 8 �9A���� (2)
Similarly, negatively-indexed weights are related to the negatively-
indexed deltas. The motivation is that we want to subtract more
positive quantities from the maximum weight �#�#/� as we move
towards the two ends of the filter. Eqn.(1) involves two transforma-
tions: 8 ��� � is any monotonically increasing function which turns
arbitrarily-valued deltas to positive quantities; and, 3���� � is any
monotonically increasing function that restricts the sum of trans-
formed deltas to less than unity. In this paper, we use the exponen-
tial function as 8 �9A�� and the sigmoid function as 3��9A�� .

3. DISCRIMINATIVE AUDITORY FEATURE (DAF)

In our acoustic modeling, there are two types of free parametersH /I�9J#�LK�� : the HMM parameters J and the parameters K that
control feature extraction (FE). The former include state transition
probabilities and observation probability distribution functions; and,
the latter consist of inner-ear auditory filters in our filter-bank-
based feature extraction. All these parameters were trained in the
discriminative framework of MCE/GPD.

3.1. Re-estimation formulas
Various feature extraction parameters are denoted as follows:MON : FFT inputs to auditory filters at time PQ N : outputs from auditory filters at time PRON : channel outputs at time PSTN : acoustic features at time PU N : static acoustic features at time PU�VN : delta acoustic features at time P����� : gain of the filter in the

�
-th channelWYX%Z : weights of the � -th filter[ Z : supplementary deltas associated with W X%Z\^] � : intermediate output of the
�

-th filter

These parameter notations are also illustrated in Fig. 2. As
usual, vectors are bold-faced.

The empirical expected string-based misclassification error _ ,
is defined as_`� H �T/ acbed(f5b 6�� _ b � H �T/ acbgd%f5b 6h�=i �9j'�9k b �"� (3)

where k b is one of the a b training utterances; j'��� � is a distance
measure for misclassifications; and, i ��� � is a soft error-counting
function. We followed the common practice of using the sigmoid
function for counting soft errors and using log-likelihood ratio be-
tween the correct string and its competing hypotheses as the dis-
tance function. i.e. j'�9k�*l��/nm�*"�9k�*o�.24p^*"�9k�*o� in which the dis-
criminant function p���� � is the log-likelihood of a decoding hypoth-
esis of an utterance and m * �9k * � is the log of the mean probabilities
of its arq competing strings that is defined as:

m * �9k * �T/tsvu=w xy a q d�z5- 6��"{ -
|6%*�}L~O� �9��p -��9k * �"���� �o��� � (4)

To optimize any parameter ��� H
, one finds the derivative of

the loss function _ w.r.t. � for each training utterance kY* :������� *o���� / ������ x��y�� d z-=|6�* }!~�� �9��p�-��9k * �"��� ��� -��� 2 ��� *���,�� d�z-=|6�* }!~�� �9��p�-��9k * �"� � ��� � (5)

To evaluate Eqn.(5), one has to find the partial derivative of p *
w.r.t. any trainable parameters. We will drop the utterance index �
for clarity from now on. Also, since many works have been done
on discriminative training of HMM parameters with MCE/GPD,
one may refer the tutorial paper [3] for the re-estimation formu-
las of HMM parameters and we will only present those of feature
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Fig. 2. Parameter notations in the extraction of our discriminative auditory feature

extraction parameters. Firstly, we assumed that the trainable FE
parameters � are independent of HMM parameters � . Second, it
is helpful to see that the log-likelihood of an utterance is related
to an FE parameter � �¡� through the static features, and the
dynamic features are related to � also through the static features.
Let’s assume that the final feature vector ¢T£ at time ¤ consists of ¥
static features ¦§£ and ¥ dynamic features ¦�¨£ which are computed
from ¦ £ by the following regression formula¦ ¨£ª© «O¬®�¯�° «O¬O± ²® ¦§£l³µ´ ¶ (6)

Hence, the derivative of an utterance hypothesis log-likelihood ·
w.r.t an FE parameter � is given by¸�¹¸Oº © O» ¼½L¾�¿�À ¢ £LÁÃÂÄ ¯hÅ ¸OÆ�Ç »¸�È%ÉËÊ4Ì ¸�È%ÉËÊ¸FºÎÍO» ¼½ ¾ ¿�À ¢T£ ÁÃÂÄ ¯hÅ ¸OÆ�Ç »¸�ÈhÏÉËÊtÐ «O¬®�¯�° «O¬ ±

² ® ¸�ÈhÑ É�ÒªÓ�ÔËÊ¸Oº Õ ¶ (7)

The computation of
¸�È%ÉËÊ¸Oº depends on the nature of each train-

able parameter � and will be described below separately.

3.2. Re-estimation of Filter Gains
Gain of the Ö -the channel filter is represented by the weight ×�Ø�Ù
in the second layer of the filter shown in Fig. 1(a). Positivity of the
gains are ensured by the transformation: × Ø^Ù ©tÚ!Û�Ü À'Ý× Ø^Ù Á . Since
the static feature ¦ £ is related to the non-linearity function outputÞ £ which in turn is related to the filter output ßª£ , by applying the
chain rule (see Fig. 1(a) and Fig. 2), one may obtain the derivative
of each static feature à » Ä w.r.t.

Ý×�Ø�Ù as follows:¸�È�ÉËÊ¸�áâäã§å © ¸�È�ÉËÊ¸OæFÉ å Ì ¸OæFÉ å¸�ç�É å Ì ¸�ç�É å¸ âäãFå Ì ¸ âäã§å¸�áâäã§å© èêéËë.ìÄ Ù Ì ¼í » Ù Ì î » Ù Ì�ï Ý× Ø�Ù (8)

where ðòñ�ó#ô is the DCT matrix and õ » Ù ©÷övø
ù À í » Ù Á .
3.3. Re-estimation of Filter Weights
Filter weights of the Ö -th channel úYû%ü are re-estimated indirectly
through the associated deltas. Again using the chain rule, the
derivative of the ý -th static feature w.r.t. the þ -th positively-indexed
delta in the filter of the Ö -th channel is given by,¸�È�ÉËÊ¸�ÿ å�� © ¸�È%ÉËÊ¸�æFÉ å Ì ¸�æFÉ å¸�ç�É å Ì ¸�ç�É å¸��%É å Ì ¸��%É å¸�ÿ å��© è éËëµìÄ Ù Ì ¼í » Ù Ì × Ø�Ù Ì�� ² À	� Ù�
 Á �� « � ¯ 
�� ² Ì�ï » Ù ��� ¶(9)

3.3.1. Updates

Finally, a (locally) optimal model or feature extraction parameter� ��� may be found by the iterative procedure of GPD using the
following update rule:� À ¤ Í ¼ Á © � À ¤ Á �� À ¤ Á Ì ¸��¸������� � ¯ � é » ì ¶ (10)

The actual filter weights úYû%ü and gains × Ø�Ù are obtained by
the appropriate inverse transformations of

� Ù�
 and
Ý× Ø�Ù .

4. EVALUATION

The proposed discriminative auditory feature was evaluated on the
Aurora task. Only the multi-condition training mode was investi-
gated and results were reported by combining its performance on
all three test sets according to Aurora’s testing standard.

4.1. The Aurora Corpus
The Aurora corpus [8] was created for research in distributed speech
recognition under noisy environments. Connected digits from the
clean TIDIGITS database [9] were pre-filtered according to the
frequency characteristics of common telecommunication channels
(G.712 or MIRS) and realistic noises were then artificially added
at six different signal-to-noise (SNR) ratios ranging from 20dB to
-5dB at 5dB steps. Two training modes: clean training and multi-
condition training, and three test sets were also defined to evalu-
ate recognition technologies under matched and unmatched noises,
and matched and unmatched channel characteristics.

4.2. Experimental Setup
Auditory features were extracted from speech utterances every 10ms
as described in [1] except that the auditory filters were replaced by
those depicted in Section 2. Each feature vector consisted of 13
MFCCs including c0, and their first- and second-order derivatives
computed by regression.

Each auditory filter had 11 weights and the middle (6-th) weight
was assumed maximum with the value of 1.0. However, each chan-
nel had its own filter and the filters were not assumed symmetrical.

Context-dependent head-body-tail (HBT) digit models [10] were
trained using maximum likelihood estimation to produce the initial
“ML estimates” (MLE) of the models. Each model was a straightly
left-to-right HMM with no skips. Each head and tail HMM had
three states and each body HMM had four states, all with four
mixtures per state. There was also a 1-state silence model with 8
mixtures. From the initial MLE models and auditory feature pa-
rameters, discriminative training was performed to obtain MCE
estimates of the HMM parameters and/or MCE estimates of the
filter parameters. Corrective training was employed and compet-
ing hypotheses were obtained from 4-best decoding. As the HMM



and FE parameters were assumed independent, different learning
rates were used to account for their different dynamic ranges. The
following learning rates were found empirically to give good re-
sults: 1.0 for FE parameters and 442 for HMM parameters. As
required by the GPD algorithm, these learning rates � decreased
with iteration � as: �! "�$#�%&�! ('�#*)+ -,/.0�21�34'�# ; and, we limited our
maximum number of iterations to 50.

4.3. Results and Discussion
Since there are two kinds of trainable parameters: HMM or FE
parameters, we combined their training in various ways as follows:5 “Our Baseline”: ML estimation of the HBT digit models

using the original auditory feature [1].5 “M only”: discriminative training of HMM parameters only;5 “F + M-mle”: discriminative training of FE parameters fol-
lowed by an ML re-estimation of the models under the new
feature space.5 “F + M-mle + M-mce”: same as the last one but followed by
a subsequent discriminative training of HMM parameters.

Discriminative training of FE parameters alone was not found
helpful if without subsequent re-training of the models using new
features generated by the new FE parameters. It seems to indi-
cate that HMM parameters should “move” with the new feature
space in order to make good use of the new features. The training
mode “F + M-mle” tries to remedy the situation in two separate
steps: first the FE parameters were discriminatively trained then
new HMMs were re-estimated using the new features.

Table 1. Results on Aurora test sets A+B+C (Baseline results are in
word accuracy %, and the rest are absolute % gains from ”Our Baseline”.)

dB Aurora Our F + M F + M-mle (F + M-mle 687
Baseline Baseline M-mle only + M-mce + M-mce

clean 98.52 99.13 -0.13 0.03 -0.47 0.17
20 97.35 98.66 -0.01 -0.08 0.16 0.39
15 96.29 97.81 0.01 0.26 0.12 0.55
10 93.78 95.55 0.17 0.82 0.81 1.16
5 85.51 88.86 0.76 1.81 1.93 2.38
0 58.99 68.65 2.38 3.53 4.64 5.24
-5 24.49 33.21 2.99 4.21 7.21 6.75

Ave 79.28 83.12 0.88 1.51 2.01 2.38
A-Ave 86.38 89.91 0.66 1.27 1.47 1.94

(86.38) (89.91) (90.57) (91.18) (91.38) (91.85)

4.3.1. Discriminative Training of HMM and/or FE Parameters

Recognition performance of the various training modes is shown in
columns 4–6 in Tables 1 together with the official Aurora baseline
results given in [8]. Two different averages are reported: “Ave”
represents the mean performance over all 7 SNRs, while “A.Ave”
ignores clean speech and speech at -5dB in conformity to Aurora’s
evaluation metric. Furthermore, recognition results from discrim-
inative auditory feature (DAF) estimation are reported in terms of
their accuracy gains from our baseline results. The results show
that our discriminative training all gave significant improvements
in word accuracies, and the improvement was greater for noisier
data. One obvious reason is that many training samples came from
the noisier data as the recognizer made more errors with them and
the model parameters were adjusted to fix those errors. It also

shows that discriminative training of HMM parameters alone is
more effective than DAF estimation alone. Nevertheless, DAF es-
timation followed by MCE training of the model parameters gave
the best performance. Compared with our baseline word error rate
(WER) using the Aurora averages, DAF estimation alone reduced
WER by 6.54% (relative); and a further reduction of 8.59% (rela-
tive) was obtained if the resulting MLE models were subsequently
re-trained using the MCE/GPD algorithm. That is, altogether for a
WER reduction of 14.6%. On the other hand, if only HMM param-
eters were discriminatively trained, WER was reduced by 12.6%.

4.3.2. Number of DAF Iterations

We also explored the effect of more iterations for DAF estimation.
Empirically we found that two iterations were enough and the re-
sults are shown in the rightmost column in Table 1. Compared
with the Aurora baseline, our baseline improved WER by 25.9%;
one iteration of DAF estimation followed by MCE model training
improved WER by 36.7%; and, two iterations of DAF estimation
followed by MCE model training improved WER by 40.2%.

5. FUTURE WORKS

In the future, we would like to apply discriminative training on
other FE parameters such as the non-linearity function parame-
ters. In addition, we would also like to remove the independence
assumption between HMM and FE parameters in discriminative
auditory feature estimation.
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