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ABSTRACT

In this paper, we investigate guided discriminative training in the
context of improving multi-class classification problems. We are
interested in applications that require improvement in the classi-
fication performance of only a subset of the classes at the possi-
ble expense of poorer classification performance of the remain-
ing classes. However, should the classification of the remaining
classes deteriorate, it is guaranteed not to be worse than the extent
that the user specifies. The problem is formulated as a nonlinear
programming problem, which can be translated to a unconstrained
nonlinear optimization problem using the barrier method that, in
turn, can be solved by gradient descent method. To prove the con-
cept, we apply guided discriminative training to derive an optimal
linear transformation on the mel-filterbank log power spectra to
improve TIMIT phoneme classification. Encouraging results are
obtained.

1. INTRODUCTION

Many problems related to multi-class classification or recognition,
such as data modeling and model adaptation, are cast as optimiza-
tion problems. Common approaches to solve these optimization
problems include the maximum likelihood (ML), the maximum
a posteriori (MAP), and the minimum classification errors (MCE)
methods. Usually these methods are applied to optimize all the dif-
ferent classes simultaneously. However, there are situations where
the classification performance of only a subset of the classes needs
improvement. For example, after building the acoustic models of
various phonemes in a computer-aided language learning (CALL)
application, some phoneme pairs, such as “f” and “v”, or “sh”
and “zh”, are highly confusable. Thus, it would be good to boost
the discrimination between these pairs of phonemes. Although
some sort of discriminative training may be applied (e.g. correc-
tive training [1]) to remedy the situation, in general, it is hard to
improve the discrimination between only a subset of classes with-
out sacrificing the discrimination with the remaining classes.

In this paper, we investigate a special form of discriminative
training which we call guided discriminative training (GDT) in the
context of multi-class classification problems. We are interested in
the following problem: Can we improve the classification perfor-
mance of only a subset of the classes, which we call the “discrim-

inatory group”, at the expense of possibly, (but not necessarily), a
poorer classification performance of the remaining classes, which
we call the “constrained group”? Also, should the classification of
the constrained group get worse, can we guarantee that it will not
be worse than to the extent that a user may specify? Our work is
inspired by Xing’s work on distance metric learning [2] in which a
distance metric is learned from data to improve subsequent cluster-
ing on the data using side-information provided by the user. Here,
the user has to provide three pieces of side-information to our GDT
method:

� membership of the discriminatory group

� membership of the constrained group
� the maximum allowable performance degradation of the con-

strained group.
Our GDT method is also similar to corrective training except that
the latter does not guarantee the performance of the constrained
group.

To prove the concept, we apply our guided discriminative train-
ing to derive an optimal linear transformation on the mel-filterbank
log power spectra to improve TIMIT phoneme classification. Tra-
ditionally, statistical techniques such as linear discriminant analy-
sis (LDA) [3] and heteroscedastic discriminant analysis (HDA) [4]
are applied to achieve feature transformation. More recently, MCE
discriminative training [5] has been used to optimize a feature
transformation on log power spectra [6], mel-filterbank log power
spectra [7], or LPCC [8] with the final goal of improving speech
recognition accuracy. On the other hand, discriminative feature
extraction [9, 10, 11] has also been proposed to derive discrimi-
native features through modifying the auditory-based filters in the
filterbank-based feature extraction process.

The paper is organized as follows. In the next section, we
formulate the feature transformation problem in our guided dis-
criminative training framework as a nonlinear programming prob-
lem. In Section 2.2, we show how this can be solved by the barrier
method. This is followed by the experimental evaluation in Sec-
tion 3 and conclusions in Section 4.

2. DISCRIMINATIVE FEATURE TRANSFORMATION

Similar to the work in [7], we would like to generalize the dis-
crete cosine transform (DCT) commonly used to generate mel-
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frequency cepstral coefficients (MFCCs) by a linear transforma-
tion optimally derived in a data-driven approach. However, while
[7] computed the optimal linear transformation using MCE train-
ing, we derive it using our guided discriminative training (GDT)
method.

Let us denote the mel-filterbank log power spectral vector by
� � �� , the generalized linear transformation by an��� matrix
�� (� � � ), and the MFCC vector by � � �� . Thus, we have
� � ��� for the generalized MFCCs. Also let �� and �� be two
acoustic classes in a multi-class classification problem in speech,
and let ����� �� be an estimate of the classification error between
�� and �� after feature transformation using�. All class pairs are
divided into three groups:

� the discriminatory group �: ���� ��� � � if �� and �� are
to be more discriminative with each other.

� the constrained group �: ���� ��� � � if the discrimination
between �� and �� may be sacrificed.

� the don’t-care group �: ���� ��� � � if we do not care
about the discrimination between �� and �� after the feature
transformation.

The problem of feature transformation may then be formulated
under the GDT framework as follows:

Minimize
�

���������

����� ��

subject to
����� ��

����� ��
� Æ � ����� ��� � � � (1)

where�� is the DCT transform with
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�� 	� will be called the
degradation level of the constrained group.

The meaning of the above expression is that the GDT method
tries to find a linear feature transformation A which will minimize
an estimate of the classification errors between classes in the dis-
criminatory group, and at the same time, will not increase an es-
timate of the classification error between any two classes in the
constrained group by more than ���

Æ
� of the error given by the

DCT transform.

2.1. Estimate of the Classification Error

If we assume that all classes are equally likely and are Gaussian
distributed so that � ������ 
 ��������


 ��
���

 �� ���, then we

may use the Bhattacharyya bound

����� �� � ������������ (2)

as an estimate for the classification error between �� and �� . ����� ��
is the Bhattacharyya distance between the two classes, and is given
by
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where �����
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�
. (Note that a subscript of � or � is

used to denote a quantity related to the corresponding random vari-
able in the cepstral domain or in the filterbank log power spectral
domain respectively.)

2.2. Barrier Method

The feature transformation problem in Eqn (1) is a nonlinear pro-
gramming problem, which can be solved by the barrier method.
The barrier method converts the constrained optimization problem
of Eqn (1) into the following unconstrained optimization problem:
Minimize

� ��� �� � ���
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2.2.1. Derivatives for Gradient Descent Method

The optimal linear transformation A in the unconstrained function
� ��� �� of Eqn (4) may now be solved by the iterative gradient
descent method. Differentiating � ��� �� w.r.t. A, we obtain
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From Eqn (3), we get
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Since � � ���, we have, for any class ��
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Taking the derivatives of ���� and ���� in Eqn (3) w.r.t. A, and
making use of the relations in Eqn (7), we get
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where, if �	 represents the 
th basis (unit) vector, then
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2.2.2. Remarks

Several remarks on the use of barrier methods are worth mention-
ing:

� As the iterative solution approaches the boundary of any
constraint, the log value in Eqn (4) will tend to -ve infinity
which protects the solution from violating that constraint.

� The value of ��� �� controls the strength of the barrier. It
can be shown that when � � �, the local minimum of �
would be close to the local minimum of the original con-
strained problem [12].

� The initial state of � has to be in the feasible region; in our
experiments, we start with the DCT matrix.

� It is possible to get into the infeasible region if we allow
overshooting during the gradient descent. Hence, it is rec-
ommended to use a small learning rate and gradually de-
crease � until the solution is reached.

3. EXPERIMENTAL EVALUATION

The proposed guided discriminative training method was evalu-
ated on the TIMIT database [13] to find the optimal linear feature
transformation for phoneme classification. TIMIT consists of 10
utterances from each of 630 native American speakers. The train-
ing set is composed of the data from 462 speakers, while the test
set is composed of the data from the remaining 168 speakers.

3.1. Feature Extraction and Acoustic Modeling

Log power spectra y were computed using a filterbank of � �
�� mel-scaled triangular filters at every 10ms over a window of
25ms of speech. They were transformed using the generalized lin-
ear transformation A to obtain � � �� MFCCs. The final 39-
dimensional acoustic vector consists of 12 MFCCs and the nor-
malized frame energy as well as their first- and second-order time
derivatives.

Each phoneme was represented by a strictly left-to-right hid-
den Markov model (HMM) and each HMM had 3 states and 5
Gaussian mixtures per state. A skip arc was added from the first
state to the third state of each phoneme HMM to account for the
fact that some phonemes occur with only two frames. In addition,
there were a 1-state short-pause model and a 3-state silence model.
Forty-two phoneme labels were used but they were folded into the
standard 39 phoneme set before results were reported.

3.2. Experimental Procedure

The phoneme set was divided into the following five broad phoneme
categories: vowels, stops, fricatives, nasals, and semi-vowels. Guided
discriminative training was employed to improve the classification
of each broad phoneme category separately by finding an optimal
linear feature transformation using the TIMIT training set. The
optimal linear transformation thus computed was used to gener-
ate MFCCs for the TIMIT test data, and phoneme classification
was carried out. The amount of data of each broad phoneme cate-
gory is tabulated in Table 1. The assignment of phoneme pairs to
various groups in GDT were done as follows: for example, if we

attempted to improve the classification performance of the vow-
els, all phoneme pairs consisting of at least one vowel phoneme
were assigned to the discriminatory group �; all phoneme pairs
consisting of at least one short-pause or silence were assigned to
the don’t-care group�; all phoneme pairs except those in� were
assigned to the constrained group �. Notice that � � � in our
case. The reason is that since the objective function only mini-
mizes the sum of classification errors over all phoneme pairs in
�, it is possible that the optimization will sacrifice certain pairs of
phonemes in � to get a better overall minimum. By putting all the
phoneme pairs in � to �, we can make sure that even if that hap-
pens, the classification degradation for those phoneme pairs cannot
be worse by the user-specified degradation level Æ.

Table 1. Number of phoneme tokens in the TIMT corpus.

Phoneme Category Training Set Test Set
vowels 59261 21552
stops 22281 7932

fricatives 23455 8355
nasals 14157 5104

semi-vowels 23664 9205
others 11656 4287
total 154474 56435

Table 2. Improvement in phoneme classification accuracy after
GDT with a degradation level of 95% and 90%.

Degradation-level Vowels Stops Fricatives Nasals Semi-vowels

(Baseline) 60.05 64.11 71.86 65.77 67.71
95% 60.54 64.93 72.38 65.62 67.96
90% 61.34 66.23 72.47 66.16 67.21

Table 3. Confusion matrix from the result of GDT with a degra-
dation level of 90%.

Discriminatory Vowels Stops Fricatives Nasals Semi- Overall
Group vowels

(Baseline) 60.05 64.11 71.86 65.77 67.71 66.04
Vowels 61.34 64.09 71.24 65.16 66.57 66.30
Stops 60.78 66.23 70.54 64.77 67.40 66.38

Fricatives 60.18 64.96 72.47 66.01 67.26 66.31
Nasals 59.97 64.13 71.98 66.16 66.80 65.93

Semi-vowels 60.34 64.03 72.00 65.44 67.21 66.14

3.3. Results and Discussions

Two degradation levels of 95% and 90% for the constrained group
were investigated and the results are shown in Table 2. The con-
fusion matrix is computed for the experiment with a degradation
level of 90% and is shown in Table 3. Notice that the diagonal en-
tries in the confusion matrix correspond to the last row of results
in Table 2. The following observations are made:
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� In general, when the constrained group is allowed to de-
grade by a greater extent, more improvement can be ob-
tained for the discriminatory group. (See Table 2.)

� The overall classification accuracy is fairly constant over all
cases; actually, there are small improvement in most cases.
Thus, it seems that the performance gain by the discrimina-
tory group usually offsets the performance degradation of
the constrained group. (See Table 3.)

� Stops show the biggest gain of an absolute 2.12%, and nasals
show the smallest gain of an absolute 0.39%.

� For some unknown reasons, classification performance of
semi-vowels gets worse after GDT. We are looking into
possible mismatch between the semi-vowels in the training
data and those in the test data.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate a special form of discriminative train-
ing which we call guided discriminative training (GDT) in the
context of multi-class classification problems. We also show how
GDT may be used to derive an optimal linear transformation to
compute generalized MFCCs from mel-filterbank log power spec-
tra to improve TIMIT phoneme classification. As an initial investi-
gation of the new training method, only simple models and simple
error functions were employed; modest performance gain was ob-
served.

The GDT method is very general, and we believe that by mod-
ifying the error function, it can have many applications in speech
recognition. For example, one should be able to introduce MCE
type of error function to the GDT formulation so that the classifi-
cation errors can be minimized directly.
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