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ABSTRACT

In context-dependent acoustic modeling, it is important to strike a
balance between detailed modeling and data sufficiency for robust
estimation of model parameters. In the past, parameter sharing or
tying is one of the most common techniques to solve the problem.
In recent years, another technique which may be loosely and col-
lectively called the subspace approach tries to express a phonetic or
sub-phonetic unit in terms of a small set of canonical vectors or units.
In this paper, we investigate the development of an eigenbasis over
the triphones and model each triphone as a point in the basis. We
call the eigenvectors in the basis eigentriphones. From another per-
spective, we investigate the use of the eigenvoice adaptation method
as a general acoustic modeling method for training triphones — es-
pecially the less frequent triphones without tying their states so that
all the triphones are really distinct from each other and thus may be
more discriminative. Experimental evaluation on the 5K-vocabulary
HUB2 recognition task shows that a triphone HMM system trained
using only eigentriphones without state tying may achieve slightly
better performance than the common tied-state triphones.

Index Terms— Eigenvoices, eigentriphones, context-dependent
acoustic modeling, adaptation.

1. INTRODUCTION

It is well-known that for any reasonably complicated automatic
speech recognition (ASR) task, it is crucial to use context-dependent
(CD) acoustic units to model contextual acoustic variations. With
an inventory of 40–60 context-independent (CI) phones, the num-
ber of CD phones grows exponentially with the extent of context
that one considers. Take the triphones as an example; if we as-
sume 40 CI monophones, theoretically, there may be a maximum
total of 403 = 64, 000 triphones. Even though, in practice, most of
these triphones do not appear, they may distribute very unevenly.
For instance, Fig.1 depicts the triphones coverage in the HUB2
WSJ0/WSJ1 training corpus. There are 18,991 triphones, and only
3,510 of them have more than 200 samples. That is, about 80% of
the training data are concentrated on (the most common) 20% of all
the seen triphones. Thus a major challenge in CD modeling is to esti-
mate the less frequent CD units reliably, otherwise the poorly-trained
models may affect the overall performance of an ASR system.

Parameter sharing or tying has been a common technique to
strike a balance between detailed context modeling and data insuffi-
ciency. The idea is to group the acoustic units of interest into disjoint
classes so that members of the same class will share the same model
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Fig. 1. Cumulative triphones coverage in the training set of HUB2

parameters and thus their training data. The classes of acoustic units
are usually determined automatically in some data-driven approach
such as the decision tree clustering method. Various parameter ty-
ing units have been tried resulting in, for example, generalized tri-
phones [1], tied states [2], shared distributions or senones [3], and
tied subspace Gaussian distributions [4].

Another solution is model interpolation or smoothing, in which
models of various modeling resolutions are interpolated to give a
more reliable estimate of the poorly-trained CD model. For example,
deleted interpolation is used in the Sphinx speech recognition system
to improve the robustness of the generalized triphones [5]. Recently,
the back-off acoustic modeling [6] is proposed to combine a triphone
score with those from acoustic models that are defined on phonetic
class contexts. The back-off method has the benefit that in contrast
to the common tied-state triphones, the states in its triphones may
not be tied so that each state is distinct with its own acoustic score.

Recently, another approach seems to be emerging, and it will
be loosely and collectively called the subspace approach in this pa-
per. In the subspace approach, a phonetic or sub-phonetic unit is
expressed in terms of a small set of canonical vectors or units. Ex-
amples are semi-continuous hidden Markov model (SCHMM) [7],
subspace Gaussian mixture model (SGMM) [8], and canonical state
model (CSM) [9].

In this paper, we investigate the development of an eigenbasis
over the triphones and model each triphone as a point in the basis.
We call the eigenvectors in the basis eigentriphones. The eigent-
riphone method belongs to the recent subspace approach. Eigen-



triphone differs from the other methods as follows:

• the modeling unit in this paper is the whole triphone and not
a sub-phonetic unit such as states in CSM. Nevertheless, the
method is very flexible and may be applied to sub-phonetic
units or bigger linguistic units such as syllables as well.

• state are generally not tied in our eigentriphone method so
that, similar to the back-off acoustic modeling method and
unlike the other subspace methods, all the triphones in our
new method are distinct from each other. Thus, they can be
more discriminative than those trained in other methods.

• no phonetic knowledge is required as the whole method is
data-driven: the number of eigentriphones may be determined
automatically.

• the eigentriphones can be found using formal eigen-
decomposition without the application of any heuristic.

• unlike some state tying methods using a phonetic tree or back-
off acoustic modeling using broad phonetic classes, since
eigentriphones does not require any phonetic knowledge, one
may easily modify it for other acoustic units such as syllables
without having to re-derive all the phonetic questions which
may not be as obvious as in the case of triphone state tying.

From another perspective, our new eigentriphones is motivated by
eigenvoice adaptation. The estimation of triphones with insufficient
training samples is treated as an adaptation problem, and the eigen-
voice approach is used to solve the data insufficiency problem with-
out sacrificing detailed context modeling.

This paper is organized as follows. In Section 2, we will describe
our eigentriphone approach for training triphones with few training
samples. That is followed by experimental evaluation in Section 3
and conclusions in Section 4.

Fig. 2. An overview of the eigentriphone approach.

2. EIGENTRIPHONES

Fig. 2 shows an overview of the proposed eigentriphone approach
for the estimation of “poor” triphones.

2.1. Derivation of the Eigenbasis for Triphones

The procedure is basically the same as the eigenvoice adaptation
approach [10] except that speaker-dependent models are replaced

by triphone HMMs, and that an eigenbasis is created for each base
phone (or monophone). Thus, as there are 39 base phones in our ex-
periments, 39 eigenbases have to be derived. The following proce-
dure is repeated for each base phone over its triphones in the training
data.

STEP 1: For each base phone p, collect all its triphones from the
training corpus and split them into 2 groups: the rich set Rp and
the poor set Pp based on a threshold θr on the sample count. If
the sample count of a triphone is greater than θr , it is put into the
rich set, otherwise into the poor set.

STEP 2: Monophone hidden Markov models (HMM) are first es-
timated from the training data. Each monophone is a 3-state
strictly left-to-right HMM, and each state is represented by an
M -component Gaussian mixture model (GMM). Let’s denote the
GMM of the jth state (where j = 1, 2, 3) of base phone p as

ppj(xt) =

MX
m=1

cpjmN (xt; µpjm, Σpjm) . (1)

STEP 3: The monophone HMM of base phone p is cloned to ini-
tialize all its triphones. No state tying is performed for the tri-
phones. The Gaussian means are then reestimated while the mix-
ture weights and Gaussian covariances are kept unchanged. Thus,
after the reestimation of the Gaussian means, the triphone q of the
base phone p will have the following GMM:

ppqj(xt) =

MX
m=1

cpjmN (xt; µpqjm, Σpjm) . (2)

Notice that all triphones of the same base phone will share the
same set of mixture weights and covariances and differ only in
their Gaussian means.

STEP 4: For each triphone q in the rich set Rp of the base phone
p, create a triphone supervector by stacking up all its Gaussian
mean vectors in each of its 3 states as follows.

vpq =

[ µpq11, µpq12, · · · , µpq1M ,
µpq21, µpq22, · · · , µpq2M ,
· · · , · · · , · · · , · · · ,

µpq31, µpq32, · · · , µpq3M ]

. (3)

STEP 5: Collect the triphone supervectors vp1, vp2, . . ., vp|Rp| of
base phone p, and derive an eigenbasis from their correlation ma-
trix by principal component analysis (PCA).

STEP 6: Arrange the eigenvectors epk, k = 1, 2, . . . , |Rp| in de-
scending order of their eigenvalues, and select the top Kp eigen-
vectors so that they together cover θv of the total variations. (In
the current paper, θv = 80%.) These Kp eigenvectors are the
eigentriphones of phone p. Notice that different base phones will,
in general, have a different number of eigentriphones.

STEP 7: Now the supervector of any triphone of base phone p is
assumed to lie in the basis spanned by its Kp eigentriphones.
Thus, each triphone q′ in the poor set Pp may be expressed as

vpq′ = ep0 +

KpX
k=1

wpq′kepk (4)

where ep0 is the average of all the “rich” triphone supervectors
of phone p.



STEP 8: The Gaussian means of the poor triphone q′ may be de-
rived from its supervector vpq′ . On the other hand, its Gaussian
covariances and mixture weights are simply copied from its cor-
responding monophone HMM.

STEP 9: The eigentriphone coefficients wpq′k (where k =
1, 2, . . . , Kp) may be estimated using the MLED algorithm as
in eigenvoice [10] by maximizing the likelihood of its training
data.

STEP 10: The estimation of the eigentriphone coefficients is re-
peated until the coefficients converge.

Table 1. Information of various WSJ data sets.

Data Set #speakers #utterances vocab size
train (si tr s) 302 46,995 13,725
dev (si dt 05) 10 496 1,842
eval (si et h2) 10 205 998

Table 2. Recognition performance of various system on the test set.

Model Word Acc.
Baseline1: tied-state triphones 91.45%
Baseline2: no state tying; rich triphones reesti-
mated; poor triphones are clones of monophones

89.72%

Baseline3: no state tying; only Gaussian means of
all triphones reestimated

89.99%

+ eigentriphone “adaptation” for the poor set 91.09%
+ further training for the rich set 91.58%

3. EXPERIMENTAL EVALUATION

3.1. Speech Corpora and Experimental Setup

The standard SI-284 Wall Street Journal (WSJ) training set plus ad-
ditional WSJ adaptation data and short-term training data was used
for training the speaker-independent model. It consists of 8,720
WSJ0 utterances from 101 WSJ0 speakers and 38,275 WSJ1 utter-
ances from 201 WSJ1 speakers. Thus, there is a total of about 44
hours of read speech in 46,995 training utterances from 302 speak-
ers.

The standard Nov’93 5K non-verbalized Hub2 test set si et h2
was used for evaluation using the standard 5K-vocabulary bigram
that came along with the WSJ corpus. The WSJ1 5K development
set si dt 05 was used for tuning the system parameters. Notice that
utterances containing OOV words were removed from both the de-
velopment and evaluation test sets. A summary of these data sets is
shown in Table 1.

There were altogether 18,991 cross-word triphones based on 39
base phonemes. Each triphone model was a strictly left-to-right 3-
state continuous-density hidden Markov model (CDHMM), with a
Gaussian mixture density of at most M = 16 components per state.
In addition, there were a 1-state short pause model and a 3-state si-
lence model. The traditional 39-dimensional MFCC vectors were
extracted at every 10ms over a window of 25ms. Recognition was
performed using the HTK toolkit [11] with a beam search threshold
of 250.

The sample count threshold for rich triphones θr was set to 200,
and the variation coverage threshold θv was set to 80%.

3.2. Baseline Systems

Three baseline systems were trained for comparison.

• Baseline1: A conventional tied-state triphone system. There
were totally 5,864 tied states which were derived from a pho-
netic decision tree.

• Baseline2: A triphone system with no tied states. The corre-
sponding monophone system was first trained and then cloned
to initialize the triphones. Then only the triphones in the rich
sets were reestimated. All model parameters — transition
probabilities, Gaussian means and covariances, and mixture
weights — of the rich sets were reestimated. The triphones in
the poor set were all tied to their monophone model.

• Baseline3: Same as the second baseline except that now only
the Gaussian means of all triphones were estimated and they
all shared the same monophone transition probabilities, mix-
ture weights, and Gaussian covariances.

The recognition word accuracies of these three baselines are
shown in Table 2.
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Fig. 3. Variation coverage by the eigentriphones derived from the
rich set of the base phone [er].

3.3. The Eigentriphone Model

Eigenbasis was derived from the triphones in the baseline3 models
according to the procedure described in Section 2. Since all the tri-
phones in this baseline have the same mixture weights and Gaussian
covariances, one may create the triphone supervectors by stacking up
the Gaussian mean vectors of a state GMM in a consistent order for
all the triphones of the same base phone. The dimension of these
triphone supervectors is 3 (states) ×16 (mixtures) ×39 (MFCC)
= 1872 parameters. PCA was performed for the rich triphones of
each base phone and the number of eigentriphones was determined
by the variation coverage threshold θv = 80%. Fig. 3 shows the cu-
mulative variation coverage by the eigenvectors of the rich triphones
of the phone [er]. In the case of [er], θv = 80% requires selecting
50 eigentriphones.

After the eigentriphone coefficients were estimated (“adapta-
tion”) for the poor triphones, the Gaussian covariances, mixture
weights, and transition probabilities of the rich triphones may fur-
ther be reestimated.

The recognition performance of the eigentriphone systems are
also shown in Table 2.



3.4. Results and Discussions

From Table 2 one can see that

• comparing the 3 baselines, it is clear that state tying using a
phonetic decision tree is effective and may boost the recogni-
tion accuracy by 1.5% absolute.

• the proposed eigentriphone approach is also effective in train-
ing the poor triphones, resulting in a system whose recogni-
tion performance is even better than a conventional tied-state
triphone system by 0.13% absolute.
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Fig. 4. The first 2 eigentriphone coefficients of all the triphones of
the base phone [jh].

3.5. Analysis of Eigentriphone Coefficients

We took a quick look at the first two eigentriphone coefficients of all
the triphones of each base phone. One of the most interesting result
is shown in Fig. 4 for the base phone [jh].

There are 328 points ([jh] triphones) on the plot. A line with the
first coefficient being 9 is drawn on the plot as well. It is interesting
to see that for the 102 triphones lying to the right of this line, all of
them except one have a consonant as their right context; whereas, for
the 226 triphones lying to the left of the line, again all except one of
them have a vowel as their right context.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we successfully derive a basis for acoustic modeling.
In the case of triphone modeling, the result is a set of eigentriphones
from which the less frequent triphones may be estimated. From an-
other perspective, we try to view the data insufficient problem in
context-dependent acoustic modeling as an adaptation problem, and
existing adaptation techniques are applied for acoustic modeling.
Experimental results show that triphones with no tied states trained
in this way performs slightly better than tied-state triphones.

In this work, only the Gaussian means of the poor triphones were
“adapted” and all the remaining model parameters were copied from
their corresponding context-independent models. In the future, We
would like to extend the method to include other model parameters.
Moreover, the adaptation perspective of our new acoustic modeling
method may suggest that other adaptation algorithms be investigated
as well.

Finally, a basis consisting of eigentriphones of acoustic model
renders a compact representation of acoustic models: one may sim-
ply store the eigentriphones for each base phone, and then each tri-
phone model will be represented by a small set of eigentriphone co-
efficients.
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