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ABSTRACT

It is well-known in machine learning that multitask learning
(MTL) can help improve the generalization performance of
singly learning tasks if the tasks being trained in parallel are re-
lated, especially when the amount of training data is relatively
small. In this paper, we investigate the estimation of triphone
acoustic models in parallel with the estimation of trigrapheme
acoustic models under the MTL framework using deep neural
network (DNN). As triphone modeling and trigrapheme model-
ing are highly related learning tasks, a better shared internal rep-
resentation (the hidden layers) can be learned to improve their
generalization performance. Experimental evaluation on three
low-resource South African languages shows that triphone DNNs
trained by the MTL approach perform significantly better than
triphone DNNSs that are trained by the single-task learning (STL)
approach by ~3-13%. The MTL-DNN triphone models also out-
perform the ROVER result that combines a triphone STL-DNN
and a trigrapheme STL-DNN.

Index Terms: triphone modeling, trigrapheme modeling, multi-
task learning, deep neural networks

1. INTRODUCTION

Since the emergence of automatic speech recognition (ASR)
techniques several decades ago, huge research efforts have been
spent on the most popular languages such as English, French,
German, Mandarin, ..., etc., and great achievement has been ac-
complished. On the other hand, there are still many languages
in the world which do not benefit from the advanced human lan-
guage technologies due to their lack of audio and language re-
sources that are costly to obtain. Ways are sought to either create
resources for a new language more efficiently, or to mitigate its
reliance on language-specific resources in training its acoustic
models. Notable efforts include cross-lingual [1, 2] and multi-
lingual [3] acoustic modeling techniques. A basic assumption
behind these methods is that a good mapping between phonemes
in some rich-resource languages and the phonemes of the target
low-resource language can be found so that transfer learning may
be applied to transform the acoustic models of the former to those
of the latter.

In this paper, we take a different approach: we try to improve
the phonetic models of a low-resource language by using only its
own language resources without relying on finding a good map-
ping between its phonemes and phonemes from other languages
which is sometimes not easily achieved. We investigate a mul-
titask learning (MTL) approach [4] in which the estimation of
triphone acoustic models is performed in parallel with the es-
timation of trigrapheme acoustic models of the same language
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using deep neural network (DNN) [5]. According to the theory
of multitask learning, related tasks can be jointly learned to im-
prove the generalization performance of both tasks; the effect is
more prominent when the amount of training data is relatively
small. Obviously, triphone modeling and trigrapheme modeling
are highly related learning tasks. Their joint training does not
require additional resources of other languages but only the or-
thographic transcriptions of the training data as well as a pho-
netic dictionary of the target language which phonetic acoustic
modeling already requires. In fact, both can be trained using the
same kind of acoustic feature vectors (e.g., PLP coefficients in
our case). Although the performance of grapheme-based acoustic
modeling [6, 7, 8] in ASR can be sensitive to the language under
investigation, it has been shown to be comparable to phone-based
modeling on many languages too. Thus, there are reasons to be-
lieve that trigrapheme modeling may be used as the secondary
task to improve the performance of triphone modeling — the pri-
mary task — in the MTL framework.

The rest of this paper is organized as follows. In the next sec-
tion, the concepts of multitask learning and deep neural network
are reviewed. Then in Section 3, we describe the proposed joint
training of triphone and trigrapheme models using a DNN in the
MTL framework. Experimental evaluation on three low-resource
South African languages are described in Section 4, which is fol-
lowed by concluding remarks in Section 5.

2. REVIEW OF MULTITASK LEARNING (MTL) AND
DEEP NEURAL NETWORK (DNN)

2.1. Deep Neural Network

Deep neural network (DNN) is simply a multilayer perceptron
with many hidden layers. Although the concept is not new,
there was a resurgence of DNNs after Hinton et al. introduced a
fast pre-training algorithm for a deep belief network (DBN) [9].
Since then DNN has been proved to be very effective in many
tasks of speech recognition [5], computer vision [10] and natural
language processing [11].

Theoretically, DNN is able to model highly non-linear func-
tions but it is very hard to train DNNs in practice. Hinton pro-
posed initializing a DNN with a generative pre-trained DBN,
which consists of repeated layers of restricted Boltzmann ma-
chine (RBM). Each RBM is an undirected bipartite graph con-
sisting of two disjoint groups of nodes: visible nodes and hidden
nodes. RBM can be effectively trained by minimizing the con-
trastive divergence [9] in an unsupervised manner. After a RBM
is trained, another new one is placed on top of it. At the end,
several RBMs are stacked together to form a DBN which is then
converted to a DNN with the addition of an output layer that is
designed for each application. In ASR, the output layer is usually
a softmax layer consisting of units that represent phones or pho-



netic states. Finally supervised backpropagation is performed on
the whole network to optimize the per-frame cross-entropy be-
tween the predictions and the targets.

2.2. Multitask Learning

Multitask learning (MTL) [4] or learning to learn [12] is a ma-
chine learning approach that aims at improving the generaliza-
tion performance of a learning task by jointly learning multiple
related tasks together. It is found that if the multiple tasks are
related and if they can share some internal representation, then
through learning them together, they are able to transfer knowl-
edge to one another. As a result, the common internal represen-
tation thus learned generalizes better for future unseen data, and
the amount of training data is effectively increased for each task.
In [13], a statistical learning theory based approach to MTL is de-
veloped and a generalization bound on the average error of MTL
is derived. In [13, 14], the notion of relatedness among multiple
tasks is defined in a particular way so as to derive a tighter gener-
alization bound for each learning task. In his thesis [4], Caruana
postulates some requirements for related tasks if their joint learn-
ing in the MTL approach is to work well: (a) related tasks must
share input features, and (b) related tasks must share hidden units
to benefit each other when trained with MTL-backprop.

MTL has been applied successfully in many speech, lan-
guage, and image/vision tasks with the use of neural network
(NN) because the hidden layers of an NN naturally capture
learned knowledge that can be readily transferred or shared
across multiple tasks. For example, in ASR, MTL is used to im-
prove ASR robustness using recurrent neural networks in [15].
In language applications, [11] applies MTL on a single convo-
lutional neural network to produce state-of-the-art performance
for several language processing predictions; [16] improves in-
tent classification in goal-oriented human-machine spoken dia-
log systems especially when the amount of labeled training data
is limited. In [17], the MTL approach is used to perform multi-
label learning in an image annotation application.

2.3. Multitask Learning Deep Neural Network (MTL-DNN)

Obviously one may apply MTL with the recently very successful
DNN to further improve learning performance. Related works
in the area of ASR include the use of MTL-DNN for TIMIT
phoneme recognition in [18] which learns posteriors of mono-
phone states together with a secondary task which can be learn-
ing phone labeling, state context, or phone context. MTL-DNN
is also used in multilingual ASR to transfer cross-lingual knowl-
edge [19, 20]. In these works, during pre-training and subsequent
fine-tuning, the hidden layers are updated with data from multi-
ple languages, but each language has its own softmax layer that
estimates the posterior probabilities of its senones (tied-states).

3. JOINT TRIPHONE AND TRIGRAPHEME ACOUSTIC
MODELING WITH A MTL-DNN

We would like to improve the generalization performance of tri-
phone models by jointly training them with the trigrapheme mod-
els of the same language under the MTL framework with a DNN
for low-resource languages. The motivations are:

e triphone modeling and trigrapheme modeling are obvi-
ously related learning tasks for the same language;

e when they are trained singly, they give comparable recog-
nition performance;

e they can be trained using the same acoustic input features,
and no additional language resources are required besides
those already used by triphone modeling;

Final output

ROVER

Triphone HMM
recognition results

Trigrapheme HMM
recognition results

Triphone
HMM
Decoder

Trigrapheme
HMM
Decoder

Triphone senone
posteriors

Trigrapheme senone
posteriors

MTL-DNN
Triphone

senones

Trigrapheme
senones

I
I

Hidden
layers

Input layer
L

Features

Fig. 1. An MTL-DNN system for joint training of triphone and
trigrapheme acoustic models.

e when DNN is used for their joint training, they share the
same internal representation (the hidden layers);

e MTL is particularly helpful when the amount of training
data is limited.

3.1. The Basic MTL-DNN

Since in our experience, triphone models usually perform at least
as well as trigrapheme models, we pick triphone acoustic mod-
eling as the primary task, and trigrapheme acoustic modeling
as the secondary task for MTL. Fig.1 shows an overview of the
proposed MTL-DNN system for joint training of triphone and
trigrapheme acoustic models. The DNN architecture is similar
to the one used in multi-lingual speech recognition [19, 20].
Essentially two single-task learning DNNs (STL-DNNs), one for
training triphone models and the other for training trigrapheme
models are merged so that their hidden layers are shared, while
each of them keeps its own output layer. The two output layers
are trained to model the posterior probabilities of triphone
senones (tied states) and trigrapheme senones respectively for
a given input acoustic frame. More specifically, given an input
vector X, the posterior probability of the ¢th triphone senone
s; at the triphone output layer is computed using the softmax
function as follows:

(p)
P(sPx) = —N‘iff(yi )( —, Vi=1,...,N®,
Yir—y exp(y;”)
where yz@ ) is the activation of the senone, and N® is the total

number of triphone senones. A similar formula may be derived
for the posterior probabilities P(sgg ) |x) of the N9 trigrapheme
senones. Finally, the whole MTL-DNN is trained by minimizing
the sum of cross-entropies from each of the two tasks over all
frames:

N(P) N(Q)

— Z Z dl(m log P(s§p>|x) + Z dl(g) log P(s§g>|x)
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where d™ and d'?) are the target values of the ith triphone
senone and the ¢th trigrapheme senone respectively.

The triphone and trigrapheme senones in the MTL-DNN
are obtained from their corresponding tied-state GMM-HMM
systems. The triphone and trigrapheme GMM-HMMs are also
utilized to obtain the frame label and senone priors by forced



aligning the training data. During MTL-DNN training, the target
values of one triphone senone output unit and one trigrapheme
senone output unit will be set to 1.0. During decoding, the
MTL-DNN posterior probabilities of the senones are first
converted back to a scaled senone likelihood by dividing them
by the senone priors as follows:

P(si”x)
P(s{7)

Afterward, Viterbi decoding is performed on the respective
MTL-DNN-HMM.
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Fig. 2. MTL-DNN2: Stacking an STL-MLP on top of the MTL-
DNN system of Fig. 1.

3.2. Extended MTL-DNN with an STL-MLP (Triphone
MTL-DNN2)

We further investigate if the trigrapheme posteriors that are ob-
tained as a by-product of MTL may be useful features for tri-
phone modeling when the amount of training data is small. In a
manner similar to the use of NN tandem features in HMM train-
ing [21], we concatenate the outputs from the shared hidden lay-
ers with the trigrapheme senone posteriors from the well-trained
MTL-DNN and feed them to another STL multi-layer perceptron
(MLP) to estimate the triphone posteriors again. The MLP has
only a single hidden layer with 2048 units, and an output layer
with triphone senone targets. Back-propagation is performed to
train this MLP while keeping the MTL-DNN unchanged. The
corresponding system, which we call triphone MTL-DNN?2, is
shown in Fig. 2.

3.3. System Combination by ROVER

We also compare the gain from transfer learning between tasks
in MTL with the gain obtained from the simple system combina-
tion method ROVER [22]. If the decoding errors of the triphone-
based and the trigrapheme-based systems are complementary,
ROVER may be able to improve recognition performance by in-
tegrating their outputs. The SRILM toolkit [23] was employed
to do posterior decoding on the two n-best lattices produced by
the two systems while estimating the confidence scores of the de-
coded words. Finally, ROVER aligned multiple hypotheses from
the two systems by dynamic programming, and searched for the
best path based on the confidence scores of the words.

’N(T)7 a’ndT: {p7g}'

Table 1. Number of phones and graphemes of the 3 languages,
and the perplexity of their test-set LMs.

| Data Set | #Phones | #Graphemes | LM Perplexity |

Afrikaans 37 31 11.18
Sesotho 41 25 19.69
siSwati 40 25 10.94

Table 2. Partition and details of various data sets. OOV means
“out-of-vocabulary” and “-S” means small training set.

| Data Set [ #Spkr [ #Utt | Dur(hr) | Vocab [ OOV ]
Afrikaans:
Train-S 160 1,195 0.82 1,159 | 0.00%
Train 160 4,784 3.37 1,513 | 0.00%
Dev 20 600 - 870 0.89%
Eval 20 599 - 876 0.97%
Sesotho:
Train-S 162 1,206 1.43 1,513 | 0.00%
Train 162 4,826 5.70 2,360 | 0.00%
Dev 20 600 — 1,096 | 1.86%
Eval 20 601 - 1,089 | 2.29%
siSwati:
Train-S 156 580 1.02 1,833 | 0.00%
Train 156 4,643 8.38 4,645 | 0.00%
Dev 20 599 — 1,889 | 6.14%
Eval 20 596 - 1,851 | 4.53%

4. EXPERIMENTAL EVALUATION

The proposed MTL-DNN approach is evaluated on three low-
resource South African languages.

4.1. The Lwazi Speech Corpus

The Lwazi ASR corpus [24] consists of telephone speech for all
the 11 official languages of South Africa. For each language, a
5000-word pronunciation dictionary was created. These dictio-
naries cover the most common words in the languages but not
all the words in the corpus. Thus, for the phone-based experi-
ments, the DictionaryMaker [25] software was used to generate
dictionary entries for the words that are not covered by the Lwazi
dictionaries.

Three languages were selected from the corpus in our exper-
iments. They are Afrikaans, Sesotho, and siSwati. The num-
bers of phones and graphemes of the three languages, together
with the test-set perplexity of their word bigram language models
(which were trained only by the transcriptions in the training set)
are shown in Table 1. The partition of the various data sets into
training, development, and test subsets follows from [26]. In or-
der to evaluate the proposed joint triphone and trigrapheme mod-
eling in the scenario where acoustic data is scarce and good pro-
nunciation dictionary may not be available, smaller data sets were
created by randomly sampling approximately 1 hour of speech
from the full training set of each language; care had been taken
to ensure that each speaker has roughly the same number of ut-
terances. Details of the various data sets are listed in Table 2.

4.2. Feature Extraction and System Configurations

An input acoustic vector consists of the first 13 PLP coefficients,
including c0, and their first and second order derivatives. These
39-dimensional feature vectors were extracted at every 10ms over
a window of 25ms. Speaker-based cepstral mean subtraction



and variance normalization were performed. Then, conventional
strictly left-to-right 3-state continuous-density hidden Markov
models were trained by maximum-likelihood estimation. State
output probability density functions were modeled by Gaussian
mixture densities with at most 16 components.

Single-task learning (STL) DNNs were trained to classify the
central frame of each 15-frame acoustic context window. Feature
vectors in the window were concatenated and then normalized to
have zero mean and unit variance over the whole training set. All
DNN:ss in our experiments had 4 hidden layers with 2048 nodes
per layer. During pre-training, the mini-batch size was kept at
128, and a momentum of 0.5 was employed at the beginning
which was then grown to 0.9 after 5 iterations. For Gaussian-
Bernoulli RBMs, training kept going for 220 epochs with a learn-
ing rate of 0.002, while Bernoulli-Bernoulli RBMs were trained
for 100 iterations with a learning rate of 0.02. After pre-training,
a softmax layer was added on top of the DBN. The targets were
derived from the senones of the respective GMM-HMM base-
line models. The whole network was fine-tuned with a learning
rate starting at 0.02 which was subsequently halved when perfor-
mance gain on the validation set was less than 0.5%. Training
continued for at least 10 iterations and was stopped when the
classification error rate on the development set increased.

Each MTL-DNN was initialized by the DBN of the corre-
sponding STL-DNN. But now the single softmax output layer in
STL-DNN was replaced by 2 separate softmax layers, one for
the primary task and one for the secondary task. Otherwise, the
training procedure was the same as that of STL-DNN. Then, the
MTL-DNN was extended by stacking on top of it an STL-MLP
layer which takes the trigrapheme posterior probabilities and the
outputs from the last hidden layer of the well-trained MTL-DNN
to train the final triphone senone posteriors. This experiment was
only performed with the small reduced training data sets.

4.3. Experimental Results

Experimental results on both the reduced and full training data
sets of each language are listed in Table 3 and 4 respectively. We
have the following observations:

e For GMM-HMMs, trigrapheme models are superior to tri-
phone models in siSwati and Sesotho when there are only
about 1 hour of training data. One reason may be that
there are much fewer grapheme units than phoneme units
in the two languages: the ratio is 1:1.6 in these two lan-
guages but is 1:1.2 in Africaans. Thus, the trigrapheme
models could be robustly trained using a smaller amount
of data. This is supported by the fact that the better per-
formance disappear when the full training set was used.

e All phone-based and grapheme-based DNN-HMMs out-
perform their GMM-HMM counterparts by 15-24% in the
reduced training sets and 9-24% in the full training sets.

e Triphone and trigrapheme models estimated jointly by
MTL-DNN consistently outperform their respective STL-
DNN counterparts: the gain ranges from 2% to 13%. This
shows that MTL benefits learning of not only the primary
task but also the secondary task.

e The triphone MTL-DNNs even outperform the ROVER
integration of triphone and trigrapheme STL-DNNs (ex-
cept in one case when the two are basically the same).
This shows that MTL can transfer knowledge between
the multiple learning tasks to improve recognition perfor-
mance, and such knowledge sharing is more effective than
ROVER integration. Nevertheless, ROVER may still take
advantage of residual complementary errors made by the
triphone and trigrapheme MTL-DNN-HMMs and gives
the best recognition performance by integrating them.

Table 3. Word recognition accuracies (%) with the small training
sets (~1 hr). Figures in bracket are #tied states in each baseline.

[ Model | Afrikaans | Sesotho | siSwati |
triphone GMM 87.5(514) | 70.0(722) | 72.9 (271)
trigrapheme GMM 85.5(210) | 72.3(324) | 75.4 (243)
triphone STL-DNN 90.5 76.9 78.6
trigrapheme STL-DNN 88.2 76.5 80.2
triphone MTL-DNN 91.1 779 79.4
trigrapheme MTL-DNN 88.7 76.9 81.1
triphone MTL-DNN2 91.3 78.1 81.2
ROVER on STL-DNNs 90.8 77.6 80.7
ROVER on MTL-DNN5 91.3 78.2 81.6

Table 4. Word recognition accuracies (%) with the full training
sets. Figures in bracket are #tied states in each baseline.

[ Model | Afrikaans | Sesotho | siSwati |
triphone GMM 90.7 (641) | 75.6 (741) | 79.8 (339)
trigrapheme GMM 89.4 (728) | 75.7 (543) | 80.0 (931)
triphone STL-DNN 92.8 79.9 82.0
trigrapheme STL-DNN 92.0 79.6 81.8
triphone MTL-DNN 93.6 80.5 82.5
trigrapheme MTL-DNN 92.4 80.2 82.0
ROVER on STL-DNNs 93.3 80.3 82.6
ROVER on MTL-DNNs 93.8 80.7 83.0

e Triphone MTL-DNN2 trained with the reduced small
training set gives a performance that is almost as good as
the ROVER integration of the triphone and trigrapheme
MTL-DNNSs, even on siSwati where triphone DNNs are
inferior to the corresponding trigrapheme DNNs.

5. CONCLUSIONS AND RELATION TO PRIOR WORK

We make use of the fact that triphone modeling and trigrapheme
modeling are highly related learning tasks, and successfully ap-
ply multitask learning (MTL) to joint training of the two models
using deep neural networks (DNN). The ensuing triphone MTL-
DNN outperforms not only its STL-DNN counterpart, but also
the ROVER system that integrates the triphone and trigrapheme
STL-DNNs. Our work is similar to the use of MTL on multi-
lingual ASR [19, 20] but we do not require any additional lan-
guage resources other than those for training the primary task
(triphone modeling here). Moreover, each training input vector
in [19, 20] will only activate one target of one language and is
not shared by other languages, whereas each input vector in our
work actually activates one senone in the output layer of each of
the multiple tasks. From this perspective, our work is similar to
the use MTL for TIMIT phoneme recognition in [18]. However,
we use grapheme information instead of other phonetic informa-
tion in [18], and we focus on word recognition instead.

We further investigate stacking up another simple STL-MLP
on top of the well-trained MTL-DNN and obtain triphone mod-
els that perform close to the ROVER system that integrates the
triphone and trigrapheme MTL-DNNs. This opens the possibil-
ity of further improving the MTL-DNN by the addition of other
structures such as additional layers of MTL-DNNs.
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