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ABSTRACT

Lip-reading is the task of recognizing speech solely from
the visual movement of the mouth. Although recent works
have demonstrated the effectiveness of convolutional neural
network (CNN) and long short-term memory (LSTM) re-
current neural network in lip-reading, similar architectures
under low-resource scenario have not yet been explored. Our
proposed end-to-end deep learning model fuses conventional
CNN and bidirectional LSTM (BLSTM) together with max-
out activation units (maxout-CNN-BLSTM), and is capable
of attaining a word accuracy of 87.6% on the Ouluvs2 corpus,
offering an absolute improvement of 3.1% to the previous
state-of-the-art auto-encoder-BLSTM model. To the best
of our knowledge, this is the first end-to-end low-resource
lip-reading system that does not require any separate feature
extraction stage nor pre-training phase with external data re-
sources. This is also the first work that utilizes maxout units
in both CNN and LSTM in one single deep neural network.

Index Terms— lip-reading, visual speech recognition,
low-resource, end-to-end deep learning, maxout activation

1. INTRODUCTION

Visual speech recognition (a.k.a. lip-reading) is the technol-
ogy of interpreting speech through mouth movement without
any audio aid. Whilst this is crucial for the hearing impaired
to understand speech, it is also natural for the others to employ
this technique to help determine speech in situations where
audio alone is ambiguous, especially under noise-corrupted
or far-field scenarios.

With the recent advancement in computational power,
now it becomes feasible to accomplish this task through a
wide spectrum of machine learning approaches, from latent
variable models to hidden Markov models and artificial neu-
ral networks. Many of them have shown decent performance
over various corpora, including the high-resource Lip Read-
ing in the Wild (LRW) [1] and low-resource Ouluvs2 [2]. In
this paper, we are going to present a pure end-to-end deep
neural network that makes use of convolutional neural net-
work (CNN) and long short-term memory (LSTM) recurrent

neural network with maxout activation units for the low-
resource Ouluvs2 lip-reading task. Unlike the previous work
[3], we are able to obtain superior results on the task with this
architecture without any additional training resources.

2. LITERATURE REVIEW

Conventional methods on lip-reading include latent variable
models [4] and hidden Markov models (HMM) [5, 6], in
which a prior separate stage of feature extraction is required.
With the growing popularity of artificial neural network mod-
els, deep belief networks (DBN) such as auto-encoder and
restricted Boltzmann machine (RBM) have been used as fea-
ture extractors, in conjunction with support vector machines
(SVM) as the label classifiers [7, 8]. Recently, there is a neu-
ral network connecting encoding layers from a separate RBM
pre-trained auto-encoder to LSTM layers, followed by an
end-to-end training stage [3]. This model is able to reach an
accuracy of 84.5% in the low-resource lip-reading Ouluvs2
corpus, which is the current state-of-the-art result without
recourse to external training data.

On the other hand, numerous models pre-trained with ex-
tra data resources succeed in getting better accuracies in low-
resource lip-reading tasks over the aforementioned models.
For example, a frame concatenated model [9] that uses a num-
ber of deep pre-trained CNNs such as GoogLeNet [10] is able
to achieve a better accuracy of 85.6% on Ouluvs2. Another
work [1] exploiting multi-tower 3D convolutional neural net-
work (3D CNN) that resembles the very deep convolutional
network (VGG) [11] and multiple layer perceptron (MLP)
further improves the accuracy to 93.2%, in which a sepa-
rate pre-training stage using the very large LRW corpus is
required. However, as far as we know, experiments of end-to-
end networks combining CNN with LSTM without external
data on low-resource corpora such as Ouluvs2 have not yet
been reported. Moreover, leveraging the power of maxout ac-
tivation units [12] in both CNN and LSTM in one single deep
neural network has not been attempted before.



3. MAXOUT NETWORK

Maxout unit is a simple yet elegant activation function that
is believed to work better in combination with dropout owing
to its more accurate approximate model averaging capability
[12]. It is proposed as a plausible choice for replacing ReLU,
which is criticized for its high saturation rate at zero, and as an
alternative to ReLU’s other improved versions such as leaky
[13] and randomized ReL.Us. For a neural network with the
previous hidden layer of size d, the current hidden layer of
size m, and a number of k feature maps, the output of the i-
th node of the current hidden layer, denoted as h;(x), can be
characterized by the following simple formula:

hz(X) = max {XTW.Z'J' + b”} s (1)

JelL,k]

where x € R4, W € R4*™*E gnd b € R™*F,

Whilst maxout units for CNN (maxout-CNN) would be
equivalent to max-pooling across channels with stride equal
to k, LSTM can incorporate maxout by replacing the hyper-
bolic tangent activation in the memory gate, resulting in the
following maxout-LSTM:
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We notice that another work has also utilized maxout ac-
tivation units in the LSTM alone [14].

4. OULUVS2 CORPUS

We chose Ouluvs2 because it is a low-resource corpus con-
sisting of a reasonable number of disparate subjects for train-
ing. The corpus is composed of 3 distinct parts, 5 views and
52 subjects, of which 39 are male and 13 are female. The
first part of the corpus is a set of 10 different strings of digits
from O to 9 in random order, while the second part is 10 dif-
ferent daily-use short phrases, and the third part is 10 random
sentences adopted from the TIMIT corpus [15]. Similar to the
previous work [3], we used only the frontal view of the second
part of the corpus in our evaluation section, which comprises
the following 10 phrases: ‘Excuse me’, ‘Goodbye’, ‘Hello’,
‘How are you’, ‘Nice to meet you’, ‘See you’, ‘I am sorry’,
‘Thank you’, ‘Have a good time’, and ‘You are welcome’.
Amongst the 10 distinct phrases, every subject repeats
each of them 3 times; therefore, a total number of 156 sam-
ples are provided for each phrase, as compared with 800-1100
samples for each word in the high-resource LRW corpus. Fol-
lowing the traditional data splitting scheme as suggested by

the author [9], we reserved subjects 06, 08, 09, 15, 26, 30, 34,
43,44,49, 51 and 52 for testing, in which 10 of them are male
and 2 of them are female, and the remaining for training.

5. EXPERIMENTS

We present our experiments in three parts, namely data pre-
processing, network architecture and hyper-parameters, and
evaluation results.

5.1. Data preprocessing

Each video clip was converted to a sequence of lossless
grayscale images of variable length using the FFmpeg [16]
software. Then we performed a 1:2 crop around the mouth
region found by dlib [17] and contrast enhancement in each
image. Afterwards, each image was downsampled to 16x32
using bicubic interpolation smoother. Data augmentation
was carried out by shifting the cropping area to 8 different
directions (top-left, top, top-right, right, bottom-right, bot-
tom, bottom-left, and left) by 10 pixels, followed by a further
augmentation through horizontal flipping, to create a total of
16 different copies from the original image. Finally, each
image was z-normalized across each pixel through a global
mean subtraction and variance normalization. The whole
preprocessing procedure is depicted in Fig. 1.
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Fig. 1. Preprocessing flow-chart

5.2. Network architecture and hyper-parameters

Our end-to-end deep neural network is comprised of two
parts. The first part contains 8 layers of convolutional layers
as the visual front-end and the second part contains one layer
of bidirectional LSTM (BLSTM) as the sequence learning
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Fig. 2. Network architecture of the maxout-CNN-BLSTM model. C: Channel; BN: Batch Normalization; D: Dropout.

back-end. Each of the convolutional layers is a spatial-
temporal convolution (3D convolution) with no zero-padding
or stride, followed by an activation function, either a maxout
or ReLU unit, without any pooling layer. For the BLSTM
layer, either the common bidirectional peephole LSTM using
the hyperbolic tangent activation, or its maxout version de-
scribed in Section 3 was used. Finally, outputs of the forward
and backward LSTM of the last frame of each input sequence
were concatenated together into a vector, which serves as the
input to the softmax classification layer of 10 targets.

In order to demonstrate the effectiveness of the maxout
activation units in the deep neural network, we carried out
the experiment under four different setups, namely ReLU-
CNN with tanh-BLSTM, ReLU-CNN with maxout-BLSTM,
maxout-CNN with tanh-BLSTM, and maxout-CNN with
maxout-BLSTM (maxout-CNN-BLSTM) respectively. Note
that the input at each time step is a stack of 8 consecutive
images obtained from a sliding window along the image se-
quence, i.e. a tensor of 16x32x8. Fig. 2 gives the network
architecture of the maxout-CNN-BLSTM as an example.

To alleviate the problem of overfitting, we employed a
number of regularization methods including batch normal-
ization, dropout and L2-regularization. Whilst batch normal-
ization layer was inserted between various layers in CNN, a
dropout rate of 0.5 was applied to the whole network start-
ing from the 4th epoch, and an L2-regularization with weight
0.00155 was applied to all trainable parameters to penalize
highly positive and negative values. Along with batch nor-
malization, a momentum of 0.6 was used in the first 10 epochs
followed by 0.9 in the remaining epochs to speed up conver-
gence in the training stage. Initial learning rate was set to
0.01 and was reduced by roughly half after every 2 epochs.
A mini-batch size of 256 images, not image sequences, was
used, and a total number of 15 epochs were run in every setup.

5.3. Evaluation results

We implemented and evaluated our models using CNTK [18],
which takes great advantage of the parallel computations in
GPUs to improve training speed. To improve performance re-
liability, each of the above experimental setups was repeated

12 times. During each run, the training set of 40 subjects
was randomly partitioned into two non-overlapping groups of
4 and 36 subjects respectively. The small and large partitions
were used as the validation and training data respectively. The
reported result of each setup is the average of testing accura-
cies under 12 respective runs, where each was evaluated on
the epoch with the lowest validation error.

Table 1. Classification accuracy of various models.

Method (k = 4 for maxout) Accuracy (%)
Auto-encoder with tanh-BLSTM [3] 84.5
ReLU-CNN with tanh-BLSTM 84.6
ReLU-CNN with maxout-BLSTM 84.4
maxout-CNN with tanh-BLSTM 85.6
maxout-CNN-BLSTM 87.6

It can be seen from Table. 1 that our proposed maxout-
CNN-BLSTM model is the best among the tested models and
is able to obtain a state-of-the-art accuracy of 87.6% in the
low-resource Ouluvs2 task without resorting to any other ex-
ternal data resources. This also confirms the superior perfor-
mance of maxout unit over the conventional ReLLU and tanh
in deep neural network, probably because it is free of the high
zero saturation rate problem that occurs in ReLU, and has
more accurate approximate model averaging with dropout.

Table 2. Training time (hr) of various models (each run).

Method (k = 4 for maxout) Time (hr)
ReLU-CNN with tanh-BLSTM 2.4
ReLU-CNN with maxout-BLSTM 2.5
maxout-CNN with tanh-BLSTM 7.8
maxout-CNN-BLSTM 7.8

From Table. 2, it can be seen that CNN with maxout units
increases the training time to more than 3 times to that with
ReLU. This confirms the use of maxout units involves a k-
time increase in the network parameter size, which in turn



leads to many more computations. On the other hand, the dif-
ference in training time between BLSTM with hyperbolic tan-
gent activations and that with maxout units is minor. Nonethe-
less, maxout units are still beneficial due to the abovemen-
tioned accuracy gain.

Table 3. Effect of various number of maxout feature maps, k.

maxout-CNN-BLSTM | Accuracy (%) | Time (hr)
k=2 85.6 4.2
k=3 86.1 6.2
k=4 87.6 7.8
k=5 86.3 10.0

To further investigate the maxout activation units, we have
conducted experiments on the effect of the number of fea-
ture maps, denoted as k, in the maxout-CNN-BLSTM archi-
tecture. As shown in Table. 3, we observe that the time of
computation increases with the number of feature maps, and
k = 4 offers a slightly better accuracy in comparison with
others. It also confirms that even with only two feature maps,
it is already sufficient to approximate arbitrarily sophisticated
and non-linear functions, having a similar effect to other acti-
vation functions such as ReLU and tanh.

6. DISCUSSION

In this section, we will make some key comparisons to the
auto-encoder-BLSTM model, and explain the difficulties in
coming up with our final maxout-CNN-BLSTM architecture.

6.1. Comparisons to auto-encoder-BLSTM

We propose using a CNN as a replacement of the auto-
encoder employed in the previous work [3] chiefly because of
its capability of capturing spatial correlations. We believe that
a CNN, of which each convolutional layer is designed and
intended to work as a filter to capture local correlations along
the spatial dimensions, will not work worse than encoding
layers in an auto-encoder.

Using a CNN front-end also allows us to extend the 2D
convolution (using 2D filters) to 3D convolution (using 3D fil-
ters) by taking into account the additional temporal dimension
S0 as to capture the temporal correlations among successive
images on top of the spatial correlations in an image. Results
show that 3D convolution can provide a substantial gain in the
lip-reading performance. In [3], the authors had trained en-
coder layers on the differences between images, which should
also model the temporal correlations among successive im-
ages to some extent, contributing to a significant performance
gain in their work as well. However, we believe that the use
of 3D convolution in our work is more effective.

One may question about the use of 3D convolution in the
front-end given that the back-end LSTM can also learn the

temporal dependency among the images in the input image
sequence. Our results show that it is better to do both. We be-
lieve that the 3D convolutions performed in the front-end can
probably capture the short-term temporal correlations among
the successive images, and the resulting feature maps can thus
provide the back-end LSTM with a more global view of the
image sequence to help to capture both the long-term and
short-term correlations from the image sequence.

6.2. Difficulties in training with CNN-BLSTM

The previous work [3] failed to reach better accuracy using a
CNN as the visual feature extractor when compared with our
work, probably due to multiple reasons in its network design
and training strategies. First and foremost, we used convo-
lutional layers to reduce each stacked image input to a small
size before feeding it to the BLSTM. That is, in our case,
it is 2x2x2 along width, height and temporal depth of the
images. We found that any dimension above 2 would lead
to worse performance. Second, the maxout activation works
better in comparison with the conventional ReLU activation
in CNN and tanh activation in BLSTM. As demonstrated by
the maxout-CNN-BLSTM architecture, the maxout activation
provides a considerable absolute gain of 3.0% in accuracy
compared to its counterparts. Third, techniques of preventing
overfitting are important across the whole network. Among
the aforementioned three methods, L2-regularization has the
most direct impact in addressing this problem. It can pre-
vent the network weights from becoming too positive or nega-
tive. Finally, data augmentation is important for training such
a deep network for a low-resource corpus. Though a deep
neural network is well-known for its ability in learning high-
level and abstract features, that happens only when a sufficient
number of training samples is provided.

7. CONCLUSION

We have successfully demonstrated the capability and fea-
sibility of designing an end-to-end deep neural network for
the low-resource lip-reading task using CNN and BLSTM
with incorporation of maxout activation units. We are able to
achieve a state-of-the-art accuracy of 87.6% on the Ouluvs2
10-phrase task without using any external data resources. In
the future, we are going to explore the possibility of applying
the maxout units in larger and more difficult lip-reading tasks
such as the visual speech recognition of sentences [19, 20],
through utilizing other end-to-end architectures.
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