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ABSTRACT

Recently multi-band speech recognition has been proposed
to improve robustness under environmental noises. One
important issue is how to combine decisions from indi-
vidual sub-band recognizers to arrive at a final decision.
Under the hidden Markov modeling (HMM) framework,
one common approach is combining sub-band likelihood-
s linearly in an optimal manner so that the more reliable
sub-bands are emphasized and the corrupted sub-bands are
de-emphasized. In our experience, estimating the weights
from clean speech is not effective as the weights are not
optimal under noisy environments. In this paper, we de-
rive the optimal weights from simulated noisy speech us-
ing discriminative training method with minimum clas-
sification errors (MCE) or maximum mutual information
(MMI) as the cost function. The methods are evaluat-
ed on recognition of isolated TI digits. Compared with
full-band recognition with noises at an SNR of 0dB, multi-
band recognition with MCE-derived weights reduces word
errors by 45.9% on a tone noise, and an average of 17.9% on
three real noises. MCE-derived weights and MMI-derived
weights have similar performance, and are much better
than weights derived from other means.

1. INTRODUCTION

Recently multi-band speech recognition has been proposed
by Bourlard et al. [2] and Hermansky et al. [5] to improve
robustness under noisy environment. It is motivated by the
empirical findings by Harvey Fletcher of Bell Labs [1] from
a thorough study of human speech recognition. In their ap-
proach, the full frequency band is divided into sub-bands
and a speech recognizer is built for each band. During
recognition, decisions from individual sub-band recogniz-
ers are recombined to arrive at a final decision at some
phonetic/linguistic level. Under the hidden Markov mod-
eling framework, this reduces to a recombination strategy
of sub-band likelihoods. Another approach is taken by Boc-
chieri et al. [7] in which sub-band features are recombined
in juxtaposition before model estimation. They called their
method “frequency recombination” and the other method
“likelihood recombination”. This paper concerns only the
likelihood recombination strategy in which sub-band like-
lihoods are linearly combined. The aim is to emphasize
the more reliable sub-bands in the final decision, and the

degree of emphasis is to be determined automatically and
optimally.

Two approaches are commonly used to determine the
weightings of sub-band likelihoods:

e Sub-band weights are set according to some reliabil-
ity measure of the sub-bands. For instance, SNR or
entropy-based measure of the sub-bands have been
tried [2, 5].

e Optimization techniques are used to derive the “best”
sub-band weights. Discriminative training with min-
imum classification errors (MCE) criterion is used
in [3]; and in the context of multiple-stream sys-
tems, stream weights have been found with maxi-
mum mutual information (MMI) training [4], and
maximum likelihood (ML) estimation with addition-
al constraint on weights [6].

Since the first approach does not guarantee to find the
optimal sub-band weights, we focus only on the second ap-
proach. The referenced works all derive the weights during
model training with clean speech. In practice, sub-band
weights should be estimated online from little adaptation
data. In this paper, we study various optimization meth-
ods of finding linear sub-band weights from noisy speech.

In the next Section, we first derive the MCE estimation
formulas for sub-band weights, and briefly point out ML
and MMI estimations in Section 3. This is followed by
recognition experiments in Section 4 and conclusions in
Section 5.

2. MINIMUM CLASSIFICATION ERROR
ESTIMATION OF LINEAR SUB-BAND
WEIGHTS

For simplicity, we will only show estimation formulas in
which sub-band weights depend only on the sub-band and
not on the model nor the state; the latter can easily be
derived in a similar fashion. Model-independent sub-band
weights are more interesting because in most practical s-
cenarios, the sub-band weights have to be determined on-
line using very few adaptation data, and model- or state-
dependent sub-band weights may not be estimated reliably.

1«best” here applies only to linear re-combination of sub-
band likelihoods. In fact, they can be re-combined non-linearly
using MLP.
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Suppose we have a K-sub-band isolated-word recogni-
tion system with a vocabulary of M words. The probability
of an utterance X;, ¢ = 1,2,..., N, belonging to the class
C; with sub-band models A\jx, k =1,2,..., K, is given by

K
P(XilCy) = [] P(XilAg) (1)
k=1
K
where 0<wi <1 andZwk =1 (2)
k=1

assuming sub-band independence. We will denote P(X;|C})
by Pi; and P(X;|\; k) by Pijk, and their log-likelihoods by
L;; and L;j; respectively. Thus we have

K
p; = [P (3)
k=1
K
and, L;; = Zkaijk- (4)
k=1

The misclassification measure d(X;) is then given by the
log-likelihood difference between the mean likelihood of all
competing words and the likelihood of Xj. i.e.

d(X;) = log{Ml_ 1 Z-Pim} — L . (5)

m#j

The misclassification measure is smoothed using the sig-
moid function, I(d) = 1/{1 + exp(—~d + 6)}, to obtain the
total loss function over all utterances, Rmce = y_, 1(d(X3)).
To satisfy Eqn.(2) throughout the optimization process,
parameter transformation is performed:

Wy = log(we) (6)

Taking derivative with respect to the k-th sub-band weight,
Wk, we have

ORmece ol dd(X;
s = 34 BEu_k ), where (7)
ol
3 = VX)) - i(d(X))] (8)
8d(X;) Ei\:# Py (ALimi — ALjji)
and, Owr, = M P, (9)
Zm;{:] m

where AL,k = exp(Wg)Limk-

Starting from an initial guess of wy where 0 < wi <
1 and transforming it to wy using Eqn.(6), we may use
a gradient-descent algorithm to get a better estimate of
the sub-band weight for the (¢ + 1)-th iteration from its
estimate from the ¢-th iteration:

Tt = g ® (aRﬁ:e )

o (10)

where €; is the learning rate at the ¢-th iteration.
Finally, wy, is transformed back to wy, after the gradient-
descent procedure completes.

3. MAXIMUM MUTUAL INFORMATION
AND MAXIMUM LIKELTHOOD ESTIMATION
OF LINEAR SUB-BAND WEIGHTS

One may also estimate the sub-band weights by other mean-
s. In the following, we will briefly discuss two common
methods.

3.1. MMI Estimation

The mutual information between an utterance X; and all
the models A = {A\1, A2,..., A} is defined as

M
I(Xi;A) ~ L;; —log (% Z P¢m> (11)
m=1

assuming equal priors for all the M words. Thus, the MMI
criterion is

Romi = Y I(Xi;A) and (12)
i
M
; Py (ALijr — AL,
Oy .y~ Lomms P (Bt = Aimt) 1
aqu EM Pi
i m=1

and the optimal weights may be found by a gradient-descent
algorithm as in MCE training.

Notice that the estimation formulas, Eqn.(13) and Eqn.(7)
for MMI and MCE training are very similar. The main d-
ifference is the additional term 2% due to smoothing of the

ad
log-likelihood difference by the sigmoid function.

3.2. ML Estimation

In principle, the sub-band weights cannot be determined
analytically by the maximum-likelihood method, since it
will simply give all weights to the sub-band with the high-
est probability if we assume Zszlwk = 1. However, if
one is willing to impose certain constraints on the weights,
then ML estimation of sub-band weights is plausible. For
example, in [6], J. Hernando suggested constraints in the
form

K
dwt=1, n>1. (14)
k=1

The solution to this constrained ML criterion is

1
L) =T
Wi = (Zl uk) (15)

(55 (5, Ligm) ™) *

The main drawback of the method is that the con-
straint on sub-band weights is not well justified, and is
imposed in an ad hoc manner.

4. RECOGNITION EXPERIMENTS AND
RESULTS

We evaluated the various methods of finding sub-band weight-
s on isolated TI digits [8]. Data from 55 male speakers were
used for training and data from the remaining 56 male s-
peakers were used for testing. Noisy data for testing were
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Figure 1: Recognition results with 590Hz tone: FB=full-
band, Bl=Band-1, B2=Band-2, MCE-WL=word-level
likelihood combination with MCE-derived weights, MMI-
WL=word-level likelihood combination with MMI-derived
weights, ML-WL=word-level likelihood combination with
ML-derived weights, 1:1-WL=word-level likelihood combi-
nation with equal weights

created from the corresponding clean speech by manual-
ly adding the noise at a prescribed signal-to-noise-ratio
(SNR). Noisy speech were also created for training sub-
band weights in a similar manner from a randomly picked
one-fifth of the training data — of about 48 seconds. (In
practice, one may pre-compute sub-band weights at vari-
ous SNRs for each type of noises as in this paper, or they
may be estimated online from adaptation data.)

Speech data were low-passed at 4400Hz and MFCC-
s were extracted from a window of 15ms at a frame rate
of 100Hz. The full-band acoustic vector consists of 12 M-
FCCs and the normalized energy while a sub-band acous-
tic vector consists of 6 MFCCs and the normalized energy.
Cepstral mean subtraction was performed as well.

All (full-band or sub-band) HMMs are left-right, whole-
word models with 6 states and 4 mixture Gaussians per
state. They are all trained with clean speech. Two sub-
bands consisting of equal number of critical bands were
used:

e Band-1: 100 — 1080 Hz
e Band-2: 1000 — 4400 Hz .

4.1. Experiment I: Tone at 590Hz

We first checked when only Band-1 was corrupted by a
band-limited noise — a tone of 590Hz. Multi-band recog-
nizers combined sub-band word likelihoods linearly before
final decisions are made. The result is shown in Figure 1.

Table 1: Changes in sub-band weight of Band-1 as SNR
decreases using 590Hz tone noise. ML? means n = 2 ac-
cording to Eqn.(14)

[Weights | 0dB | 5dB | 10dB | 15dB | 20dB | 30dB

MCE 0.159 | 0.143 | 0.138 | 0.167 | 0.200 | 0.487
MMI 0.210 | 0.212 | 0.137 | 0.123 | 0.119 | 0.500
ML? 0.610 | 0.626 | 0.630 | 0.626 | 0.610 | 0.441

Since only Band-1 is corrupted, Band-2 maintains good
performance under all SNRs while the full-band recogniz-
er’s accuracy degrades with lower SNR. Among the multi-
band recognizers, performance is poor when their sub-band
weights are derived by ML training or set equal, while
MCE/MMI-derived weights give the highest accuracy. From
the sub-band weights found by the various methods in Ta-
ble 1, we see that MCE training is more effective than
the other methods and gradually moves more weights from
Band-1 — the corrupted band — to Band-2 as the SNR
decreases.

The results serve as a theoretical upper bound on how
good multi-band recognition can be under band-limited
noises.

4.2. Experiment II: NOISEX-92

In reality, noises often spread over a wide spectrum. We
performed a set of experiments with three noise types from
the NOISEX-92 database: white, m109, and babble noise.
White noise and babble noise are chosen because they are
often encountered in real life, and m109 noise represents a
more characteristic noise.

We have the following observations from the results
shown in Figure 2-4.

e Performance of the full-band recognizer drops dras-
tically once the SNR falls below 15dB.

o When the individual sub-band recognizers have sim-
ilar performance, all recognizers, full-band or multi-
band with weights trained by different methods, have
similar accuracies.

e However, when the performance of the two sub-band

recognizers diverges, the acclaimed advantage of multi-

band recognizers sets in if the sub-band weights are
trained with MMI or MCE: they effectively weigh
the two bands to emphasize more on the more reli-
able band; and their performance is at least as good
as that of the best sub-band recognizer.

e Sub-band weights derived from MMI or MCE train-

ing result in similar performance; MCE-trained weight-

s give just slightly better performance.

5. CONCLUSION

Our experiments show that sub-band weights derived from
MCE or MMI training can effectively emphasize the more
reliable bands. Subsequent multi-band speech recognition
by linear combination of sub-band likelihoods at word level
reduces word-error-rate (WER) by 17.9% on average over



the full-band recognizer trained with clean speech. In prac-
tice, one may train sub-band recognizers with clean speech,
and either use simulated noisy speech to pre-compute the
sub-band weights using MCE training method, or derive
the weights from adaptation data online. We will expand
our work to continuous speech recognition under noisy en-
vironments.
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Figure 2: Recognition results with white noise.

m109 noise
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Figure 3: Recognition results with m109 noise.
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Figure 4: Recognition results with babble noise.
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