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Abstract
In automatic speech recognition, the decoding parameters —
grammar factor and word insertion penalty — are usually hand-
tuned to give the best recognition performance. This paper in-
vestigates an automatic procedure to determine their values us-
ing an iterative linear programming (LP) algorithm. LP natu-
rally implements discriminative training by mapping linear dis-
criminants into LP constraints. A min-max cost function is also
defined to get more stable and robust result. Empirical eval-
uations on the RM1 and WSJ0 speech recognition tasks show
that decoding parameters found by the proposed algorithm are
as good as those found by a brute-force grid search; their opti-
mal values also seem to be independent of the initial values set
to start the iterative LP algorithm.

Index Terms: iterative linear programming, discriminative
training, decoding parameters, min-max optimization.

1. Introduction
Current state-of-the-art automatic speech recognition (ASR)
systems employ statistical pattern recognition to decode an ut-
terance into a sequence of words. Specifically, themaximum a
posterioriapproach is used: given a sequence ofT acoustic ob-
servations,xT

1 = {x1,x2, · · · ,xT }, we would like to find the
correspondingN -word sequence,̂wN

1 = {ŵ1, ŵ2, · · · , ŵN},
such that

ŵN
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acoustic score

+ ln p(wN
1 )| {z }

language score

. (1)

The acoustic score is computed from acoustic models
which are usually continuous density hidden Markov mod-
els (CDHMM), whereas the language score is computed from
language models which are usuallyn-grams. Although the
Bayesian decision rule of Eqn.(1) is correct in theory, in prac-
tice, there are two problems:

• the particular generative mathematical models used by
an ASR system to capture the statistics of acoustics and
linguistics may not be correct, and
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• the dynamic ranges of the acoustic score and language
score are usually very different. This is particularly im-
portant when CDHMMs are used since evaluation of
state probability density functions in CDHMMs does not
result in true probability quantities, while the evaluation
of language model usually does.

A common heuristic used by the ASR community is to bal-
ance the two kinds of scores linearly with the introduction of
two decoding parameters [1]: a grammar factorKgf , and a
word insertion penaltyKwip, and Eqn.(1) is re-written as

ŵN
1 = argmax

wN
1 ,N

n
ln p(xT

1 |wN
1 ) + Kgf ln p(wN

1 ) + KwipN
o

. (2)

In practice, the two decoding parameters are usually hand-
tuned using utterances from a development set. Nevertheless,
there were a few attempts to automate their estimation. The
most notable work perhaps is discriminative model combina-
tion (DMC) [2] proposed by Beyerlein. DMC is a variant
of minimum-classification-error (MCE) discriminative training
that minimizes the word error rate (WER) when several mod-
els (including acoustic and language models) are combined.
Emori et al. treated Eqn.(2) as a log-linear model consisting
of the decoding parameters, and estimated them directly using
a gradient-ascent method [3]. On the other hand, Colthurstet
al. devised a heuristic algorithm [4] to tune all system parame-
ters (including grammar factor and word insertion penalty) in an
ASR system with a cost function that trades off between WER
and decoding time. Notice that both Emori’s and Colthurst’s
methods are not discriminative.

Recently we proposed an iterative linear programming (LP)
algorithm for discriminative training. The new algorithm was
shown effective in the estimation of state-dependent stream
weights for a multi-stream HMM system [5]. It turns out that
the new algorithm can be used to determine the optimal values
of the parameters in any linear function. In this paper, we will
show that it is also effective in the estimation of the decoding
parameters of Eqn. (2). There are several advantages of using
our iterative LP algorithm:

• It is discriminative in nature.

• Unlike some other discriminative training methods, our
cost function is linear.

• LP optimization is well studied with established solu-
tions, and efficient LP solvers are freely available.

• Few parameters to tune.



• Scientists may concentrate on how to map a discrimina-
tive training problem into the new iterative LP algorithm,
and do not have to worry about how to solve it.

2. Formulation of the Estimation of
Decoding Parameters as an LP Problem

Suppose there areM training utterancesxi, i = 1, . . . , M ,
and their corresponding word transcriptions of lengthNi are
ŵi, i = 1, . . . , M . Further assume that we can identifyJ com-
peting hypotheses for each training utterancexi, and itsjth
competitor of lengthNij is denoted aswij , j = 1, . . . , J . No-
tice that we have dropped the duration and length specification
from the acoustic and word sequences for simplicity.

2.1. Linear Discriminants as LP Constraints

For each training utterancexi, we would like to have the recog-
nition score of its correct word sequenceŵi greater than that of
any of its competing word sequenceswij . Thus, we may have
the following discriminants:

∀i,∀j, dij

= (ln p(xi|ŵi) + Kgf ln p(ŵi) + KwipNi)

− (ln p(xi|wij) + Kgf ln p(wij) + KwipNij)

= (ln p(xi|ŵi)− ln p(xi|wij)) + Kgf (ln p(ŵi)

− ln p(wij)) + Kwip (Ni −Nij) . (3)

Applying the following variable substitutions:

uij = ln p(xi|ŵi)− ln p(xi|wij)

vij = ln p(ŵi)− ln p(wij)

zij = Ni −Nij ,

Eqn. (3) may be simplified as

∀i,∀j, dij = uij + Kgfvij + Kwipzij . (4)

Now, the discriminative training of the decoding parame-
ters may be turned into a linear programming (LP) optimiza-
tion problem by mapping each linear discriminant to an LP con-
straint as follows:

∀i,∀j, uij + Kgfvij + Kwipzij ≥ 0 . (5)

Generally, not all theM × J constraints can be satisfied in
practice. We may relax the requirements by introducingslack
variablesξij ≥ 0 into the constraints, and require

∀i,∀j, uij + Kgfvij + Kwipzij + ξij ≥ 0 . (6)

The slack variables implements the hinge loss function so
that their values for correctly recognized utterances are zero,
and their values for incorrectly recognized utterances are posi-
tive.

2.2. LP Formulation

One may interpret the slack variables in Eqn. (6) as an approx-
imate measure of the string-level utterance recognition errors,
and tries to minimize the sum of these slack variables over all
training utterances and their competitors. Using the constraints
in Eqn. (6), we may, thus, formulate the estimation of the de-
coding parameters as a standard LP problem as follows:

minKgf ,Kwip

X
i

X
j

ξij (7)

subject to the following constraints

∀i, ∀j, uij + Kgfvij + Kwipzij + ξij ≥ 0 , (8)

∀i, ∀j, ξij ≥ 0 , (9)

Kgf ≥ 0 . (10)

Algorithm 1: An iterative linear programming algorithm
for estimating the decoding parameters.

Step 0. Set the iteration indexn = 0, and determine

• the initial values of the grammar factorKgf (0)
and word insertion penaltyKwip(0).

• the maximum change allowed in the two decoding
parameters:∆Kgf max and∆Kwipmax.

• the maximum number of iterationsnmax.

• convergence measureθ.

Step 1. Perform N-best decoding for each training utterance
using the current decoding parameters,Kgf (n) and
Kwip(n), and register the acoustic score differenceuij ,
language score differencevij , and the difference in the
number of wordszij for each of theJ hypotheses.

Step 2. Construct the linear programming problem of
Eqns. (7–10) with the following additional constraints:

|Kgf (n + 1)−Kgf (n)| ≤ ∆Kgf max (11)

|Kwip(n + 1)−Kwip(n)| ≤ ∆Kwipmax .(12)

Step 3. Solve the linear programming problem of Step 2.

Step 4. If the relative change of
p

Kgf (n)2 + Kwip(n)2 is
less than the thresholdθ, or nmax is reached, stop.

Step 5. Setn = n + 1, and go to Step 1.

2.3. Min-max Iterative Training Approach

In theory, LP is a convex optimization problem and the solu-
tion is globally optimal (with respect to the feasible region).
However, in our problem, the feasible region is, in any practical
sense, infinite! The reason is that for any utterance, there are
infinite number of word sequences of various lengths and with
various amount of leading/trailing/embedding silences/pauses
that can be considered as a competing hypothesis of the cor-
rect transcription. Consequently, in practice, one may only set-
tle with using a subset of all possible competing hypotheses to
approximate the feasible region. In our case, the competing
hypotheses are generated by N-best decoding using the current
values of the decoding parameters. Furthermore, since the cur-
rent values of the decoding parameters may not be optimal (oth-
erwise, we already have solved the problem), the competing hy-
potheses found by N-best decoding based on them, in general,
will not give the same feasible region of our original intended
LP problem.

We modify the iterative linear programming algorithm we
previously proposed for stream weights estimation [5] for the
current task as shown in Algorithm 1. The basic idea is that for
an LP problem with an incomplete and approximate feasible re-
gion at hand, the globally optimal solution is unlikely the solu-
tion of our original intended problem (which assumes complete



knowledge of the feasible region), and we should not let the es-
timating parameters to move directly to that solution. Instead,
additional constraints are imposed on the grammar factor and
word insertion penalty so that they are not allowed to change
from their current values more than∆Kgf max and∆Kwipmax

respectively in each iteration. Thus, an original one-step LP
problem is turned into a sequence of LP problems with approx-
imate feasible regions. By carefully controlling∆Kgf max and
∆Kwipmax in each iteration, it is hoped that the decoding pa-
rameters will converge gradually to their locally (if not globally)
optimal values.

We further tie the slack variablesξij of all competing hy-
potheses for a training utterance, say,xi, together to a single
slack variableξi. Besides reducing the number of variables in
the LP problem (which can result in substantial computational
savings for large LP problems), the tying also indirectly imple-
ments a min-max cost function for the LP problem. That is, it
tries to minimize the distance of the correct transcription from
its strongest competitor for each training utterance. In our pre-
liminary experiments, tying the slack variables in this way gives
more stable performance with faster convergence.

Table 1: Recognition performance using the decoding parame-
ters found by grid search on the test data.

Task Word (Utt.) Accuracy Kgf Kwip

RM1 93.16% (69.00%) 5 0
WSJ0 93.16% (44.55%) 15 -30

3. Experimental Evaluation
The proposed iterative linear programming algorithm was eval-
uated on the Resource Management RM1 and Wall Street Jour-
nal WSJ0 5K tasks. The algorithm was run with the following
4 different initial values:{ (Kgf , Kwip) } = { (0, 0), (0, 20),
(20, 0), (20, 20)} to investigate its dependency on the initial
condition.

Extensive grid search was also performed on the test data
of each task to find the best decoding parameters. The results
are shown in Table 1. The results give an “approximate” upper
bound for our proposed estimation method.

Here are some common operations and experimental set-
tings for both tasks:

(a) Feature extraction: the traditional 39-dimensional
MFCC vectors were extracted at every 10ms over a win-
dow of 25ms.

(b) Acoustic modeling: each phonetic model was a strictly
left-to-right 3-state continuous-density hidden Markov
model (CDHMM). In addition, there were a 1-state short
pause model and a 3-state silence model.

(c) System settings:

– the competing hypotheses were found by N-best
decoding withN = 20.

– the LP problems were solved by the Mosek opti-
mization software1.

– ∆Kgf max and∆Kwipmax were set to 7 and 10.

– the maximum number of iterations was set to 10.

– the convergence thresholdθ was set to10−4.

1http://www.mosek.com

3.1. Evaluation on RM1

3.1.1. Corpus and Acoustic Modeling

The 3,990 speaker-independent (SI) training utterances from
109 speakers were used for model training. Evaluation was per-
formed on the 300 utterances from 10 speakers in the SI Feb’91
test set using the standard word-pair grammar of perplexity 60.
The speaker-dependent (SD) development data set, consisting
of 1,200 utterances from 12 speakers was used for the estima-
tion of the decoding parameters.

Forty-seven context-independent phoneme models were
trained using the SI training set. There are 10 Gaussian mix-
tures per state in each phoneme CDHMM.

3.1.2. Experimental Results

The decoding parameters were optimized using the RM1 SD
development data set and the iterative LP algorithm described
in Algorithm 1. The convergence of the grammar factor and
word insertion penalty are shown in Fig. 1 and Fig. 2 respec-
tively, whereas the corresponding recognition performance on
the test data is shown in Fig. 3. It is clear that the algorithm
converges in all of the four different initial settings in 5–7 iter-
ations to thesameoptimal values:(Kgf , Kwip) = (3.5, 5.23).
The corresponding word and utterance recognition accuracies
are 93.44% and 71.67% respectively, which are better than the
ones computed with the decoding parameters found by an ex-
tensive grid search.

3.2. Evaluation on WSJ0

3.2.1. WSJ0 Corpus and Acoustic Modeling

The standard SI-84 training set was used for training the SI
model. It consists of 83 speakers (41 male speakers and 42 fe-
male speakers) and 7,138 utterances for a total of about 14 hours
of training speech. The standard Nov’92 5K non-verbalized test
set was used for evaluation using the standard 5K-vocabulary
bigram which has a perplexity of 111. It consists of 8 speakers
(5 male and 3 female speakers), each with about 40 utterances.

The SI model consists of 15,449 cross-word triphones
based on 39 base phonemes. Each triphone CDHMM has a
Gaussian mixture density of 16 components per state, and there
are totally 3,132 tied states. “Optimal” decoding parameters
were found by an extensive grid search using the test set and
the sidt 05 development set2. The SI model has a word and an
utterance recognition accuracy of 93.16% (92.92%) and 44.55%
(44.55%) respectively using the decoding parameters found by
a grid search over the test (development) data.

3.2.2. Experimental Results

Our iterative LP algorithm was again run with the 4 different
initial values as it was done in the RM experiment on the 442-
utterance subset of the sidt 05 development set to determine
the decoding parameters. The algorithm once again converged
in 5–7 iterations to give the same optimal decoding parameters
(Kgf , Kwip) = (12.6,−6.58). The ensuing word and utter-
ance accuracy are 92.53% and 42.42% respectively which are
slightly worse than but comparable with the results obtained
with the decoding parameters found by a grid search on the de-
velopment data.

2Only 442 from 10 speakers out of the total 1,206 utterances in
si dt 05 were employed because not all words in the remaining utter-
ances are covered by the WSJ0 bigram language model.
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Figure 1: Iterative LP optimization of the grammar factor on
RM1 using various initial (Kgf , Kwip) values.
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Figure 2: Iterative LP optimization of the word insertion penalty
on RM1 using various initial (Kgf , Kwip) values.

We compute the perplexities of the 442-utterance subset of
the sidt 05 development set and the test set, and the results
are 121 and 111 respectively. We hypothesize that there may
be some mismatch in the statistics of words in the two data
sets. Thus, we further performed the following experiment:
we divided the test set equally into 2 subsets A and B with no
overlapping speakers; their perplexities are 113 and 108 respec-
tively. Decoding parameters were estimated from test subset A
and they were then used to decode test utterances in test subset
B, and vice versa. The combined word and utterance accura-
cies are now 92.88% and 43.64% respectively; the findings are
summarized in Table 2.

The experiments show that if the word statistics in the data
used to train the decoding parameters matches well with that in
the test data, the proposed iterative LP algorithm can effectively
find a good set of values for the decoding parameters.

4. Conclusions
We investigate a discriminative and iterative linear program-
ming (LP) algorithm to estimate the (locally) optimal values of
the decoding parameters for ASR. The LP solution at each it-

 82

 84

 86

 88

 90

 92

 94

 1  2  3  4  5  6  7  8  9  10

W
or

d 
A

cc
ur

ac
y 

(%
)

Iteration

(0,0)
(0,20)
(20,0)

(20,20)

Figure 3: RM1 word accuracy using the decoding parameters
found by iterative LP with various initial (Kgf , Kwip) values.

Table 2: WSJ0 recognition performance using the decoding
parameters estimated from various data sets. The numbers in
parentheses are the number of utterances used in the data set.

Training Set Method Word (Utt.) Accuracy Kgf Kwip

test set (330) grid search 93.16% (44.55%) 15 -30
dev set (442) grid search 92.92% (44.55%) 14 -15
dev set (442) iterative LP 92.53% (42.42%) 12.6 -6.58
2-fold test set iterative LP 92.88% (43.64%) 12.8 -26.3

(164, 166) 13.95 -16.9

eration is globally optimal for the particular LP problem in the
iteration. Taking all the iterations together, the algorithm will
give a locally (if not globally) optimal solution. Empirically
we observe that the algorithm is effective: the performance of
speech recognition using the estimated decoding parameters is
comparable to that using decoding parameters found by an ex-
tensive grid search. Moreover, the algorithm converges quickly
within 5–7 iterations, and the results seem to be independent of
the initial values used to run the algorithm.
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