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Abstract 
This study presents a novel approach of feature analysis to 
speaker verification. There are two main contributions in this 
paper. First, the feature analysis of short-time frequency with 
long-time window (SFLW) is a compact feature for the 
efficiency of speaker verification. The purpose of SFLW is to 
take account of short-time frequency characteristics and long-
time resolution at the same time. Secondly, the fusion of 
multi-resolutions is used for the effectiveness of robust 
speaker verification. The speaker verification system can be 
further improved using multi-resolution features. The 
experimental results indicate that the proposed approaches not 
only speed up the processing time but also improve the 
performance of speaker verification. 
Index Terms: speaker verification, short-time frequency with 
long-time window, fusion of multi-resolutions 

1. Introduction 
Nowadays, voice biometrics has become increasing popular 
in telephony applications [1]. The state-of-the-art text-
independent speaker verification uses signal processing and 
statistical modeling techniques to characterize speakers. 
Typically, speech activity detection is first applied [2], then 
spectral features that are robust to noise and channel effects 
are extracted. After speech feature extraction, a speaker 
verification system makes a decision with Gaussian mixture 
model (GMM) or support vector machines (SVM) classifier 
using the criterion of log-likelihood ratio (LLR). 

Speaker verification is a pattern recognition problem and 
the overall procedure can be divided into three components: 
feature analysis, statistical modeling and evaluation. In 
feature analysis, cepstral mean subtraction and cepstral 
variance normalization are used to compensate for the linear 
channel variations [3]. RASTA (RelAtive SpecTrA) 
processing [4] is used for noise reduction. Moreover, feature 
warping is robust to additive noise and linear channel effects 
[5]. In statistical modeling, maximum a posteriori (MAP) 
algorithm is the basic approach to speaker adaptation [1]. 
Eigenvoice provides a rapid speaker adaptation under the 
condition of sparse training data [6]. Eigenchannels used in 
GMM considers the various channel factors that provide the 
good solution for channel mismatch [7]. Nuisance attribute 
projection (NAP) that removes the irrelevant expansion to 
speaker recognition is used for channel compensation [8]. In 
evaluation, the various score normalization approaches are 
successfully applied for robust speaker verification. The test 
normalization (Tnorm) of the likelihood score is an online 
procedure. The input test speech utterance is computed by 
cohort models to obtain the normalization scores using mean 
and standard deviation [9]. The zero normalization (Znorm) 
of the likelihood score is an offline procedure. Every speaker 

models are tested with imposter speech utterances to obtain 
the mean and standard deviation scores of normalization [10]. 

Many efforts have been devoted to advance the 
performance of speaker verification in the past years. This 
paper furthers the feature studies by proposing a novel feature 
analysis approach. To consider the short-time frequency 
characteristics and long-time resolution at the same time, the 
short-time frequency with long-time window (SFLW) 
approach is adopted, which greatly reduces the computation 
cost. Moreover, this study proposes the fusion of multi-
resolution of feature analysis that is different from a 
combination of several subsystems. The goal of fusion of 
multi-resolutions is to improve the performance of a single 
system in various frequency resolutions. The speaker 
recognition experiments are made using the 2006 NIST 
Speaker Recognition Evaluation (SRE) core condition test 
trials. The experimental results indicate that the speaker 
verification performance has been improved in both the 
effectiveness and efficiency. The outline of this paper is in 
the following. Section 2 presents the proposed robust speaker 
verification scheme using short-time frequency with a long-
time window and the fusion of multi-resolutions approaches. 
Section 3 provides some experimental results and discussions. 
Finally, Section 4 concludes this work. 

2. The Proposed Scheme 
As shown in Fig. 1, there are several steps in the scheme of 
robust speaker verification: First, this study employs the 
speech activity detection and shot-time frequency feature 
extraction. Secondly, we analyze the sequence of short-time 
frequency feature vector using a long-time window. Thirdly, 
the GMM and eigenchannels are performed to build the 
universal background models (UBM) and speaker models. 
The log-likelihood ratio and ZTnorm score normalization are 
used for the evaluation. Finally, the fusion of multi-
resolutions is applied for robust speaker verification. 

2.1. The Baseline System of Speaker Verification 

The accuracy of speech activity detection is important for 
reliable and robust speaker verification. This study applied a 
hybrid endpoint detector [2]. The strategy is to find endpoints 
using a three-pass approach in which energy pulses were 
located and edited, and the endpoint pairs were scored in the 
order of most likely candidates. Mel-frequency cepstral 
coefficient (MFCC) was used as the short-time frequency 
feature. Each frame of the speech data is represented by a 36-
dimensional feature vector, consisting of 12 MFCCs, along 
with their deltas, and double-deltas as the raw features. After 
the log-amplitude of the magnitude spectrum, frequency bins 
are smoothed with the perceptually motivated Mel-frequency 
scaling. Additionally, the cepstral mean subtraction (CMS) 



 
Figure 1: Scheme of the robust speaker verification. 

and cepstral variance normalization (CVN) are applied for 
slowly varying convolutive noises. 

The GMM classifier is used in this study which is 
assumed to consist of a mixture of a specific number of 
multivariate Gaussian distributions. The iterative EM 
algorithm is used to estimate the parameters of Gaussian 
components [11]. There are different types of channel 
information in the NIST speaker evaluation such as cellular, 
cordless and land-line telephone callers. One of the key points 
in NIST SRE is to find a solution for the problem of channel 
mismatch. Kenny et al. proposed the eigenchannel approach 
to solve this problem [7]. In eigenchannels, many different 
channel utterances of speakers were used to estimate UBM 
and speaker models for the channel mismatch in order to 
incorporate the channel information into speaker models. 

A log-likelihood ratio (LLR) based evaluation function is 
applied for testing the trials. 
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If the log-likelihood score is higher than the threshold θΛ > , 
the claimed speaker will be accepted, else rejected. The log-
likelihood score is estimated from the multivariate Gaussian 
pdf as follows: 
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where iv  is the i-th test feature; ju  is the mean vector of 

model j-th Gaussian component; j∑  represents the 
covariance matrix, and d denotes the dimension of the mean 
vector ju . 

2.2. Short-Time Frequency with Long-Time 
Window and Fusion of Multi-Resolutions 

In feature extraction, speech is broken into small segments for 
short-time analysis. These segments have to be small enough 
to ensure the frequency characteristics of the magnitude 
spectrum are relatively stable. However, the sensation of a 
sound arises as the result of multiple short-time spectrums 
with different characteristics, such as vowel and consonant 
sections [12]. In order to capture the long term nature of 
signal, the actual features are estimated as the mean of long-
time window of the extracted short-time features. 

A sequence of feature vectors 1 2{ , ,..., }TX x x x=  is 
estimated as 1 2{ , ,..., }NV v v v=  according to short-time 

frequency with long-time window analysis (SFLW). T 
denotes the number of short-time frequency frames. N 
denotes the compacted size after the process of SFLW which 
can be denoted as N=T/M. M indicates the size of long-time 
window. Figure 2 shows the example of short-time frequency 
with long-time window. 
 

 
Figure 2: Short-time frequency with long-time window. 

 
The purpose of this transformation is to obtain a new 

representation of feature analysis which is more compact and 
suitable for statistical modeling. Due to the frame size 
reduction, SFLW can speed up the speaker verification 
process, especially in the steps of evaluation and score 
normalizations. Two resolutions are applied for the further 
fusion analysis in this study, including  

1) the short-time frequency analysis of 16 ms (128 
samples at 8k Hz sampling rate and 64-sample shift) with 
long-time window of 80 ms containing 8 short-time frequency 
frames and 

2) the short-time frequency analysis of 8 ms (64 samples 
at 8k Hz sampling rate and 32-sample shift) with long-time 
window of 72 ms containing 16 short-time frequency frames. 

Furthermore, this study proposes a novel fusion of multi-
resolutions in feature analysis based on one GMM-UBM 
system. The fusion of multi-resolutions differs from a 
combination of different kinds of subsystems which is usually 
applied for speaker verification, such as GMM-UBM, GMM-
SVM and MLLR-SVM [13]. Two different resolutions are 
applied based on the SFLW analysis, including 128 Length / 
64 Shift with 8 Frame and 64 Length / 32 Shift with 16 
Frame, and simply fused the verification scores of these two 
multi-resolution subsystems. The fusion weight was equally 
set as 0.5. The advantage of fusion of multi-resolutions is to 
improve the performance of a single speaker verification 
system by using the various feature resolutions. 

3. Experiments 
For the NIST SRE-2006 experiments, performance 
comparisons were made in different training and test 
conditions. 



Table 1. The different size of frame and shift in the baseline 
system and SFLW. 
 Male Female Average

64Length / 32Shift 12.36% 14.10% 13.23%
128Length / 64Shift 10.35% 11.87% 11.11%
256Length / 128Shift 9.96% 12.70% 11.33%
512Length / 256Shift 10.10% 12.12% 11.11%
1024Length / 512Shift 11.14% 14.13% 12.64%
64Length / 32Shift with 16Frame 9.60% 12.02% 10.81%
128Length / 64Shift with 8Frame 9.59% 11.42% 10.51%
 
Table 2. Number of feature samples in the baseline system 
and SFLW. 
 Male Female Average 

64Length / 32Shift 4,281,792 4,619,556 4,450,674
128Length / 64Shift 2,296,120 2,445,205 2,370,663
256Length / 128Shift 1,220,677 1,274,314 1,247,496
512Length / 256Shift 627,712 652,288 640,000
1024Length / 512Shift 294,321 292,233 293,277
64Length / 32Shift with 16Frame 534,971 577,187 556,079
128Length / 64Shift with 8Frame 611,149 573,756 592,453
 
Table 3. EER reports with eigenchannels in the baseline 
systems. 
 Male Female Average
128Length / 64Shift 5.52% 5.64% 5.58%
256Length / 128Shift 5.59% 6.35% 5.97%
512Length / 256Shift 6.91% 6.87% 6.89%
1024Length / 512Shift 8.91% 10.87% 9.89%
 
 

 
Figure 3: Comparison of improvement with SFLW (the setup 
of 128 Length / 64 Shift with 8 Frame), SFLW+EC, fusion of 
multi-resolutions and fusion of baseline systems. 
 
 
The effected factors, such as language, telephone 
transmission type, and microphone type were examined in the 
NIST SRE [14]. The NIST SRE-2004 1side data was used to 
train a gender-dependent GMM-UBM with 512 Gaussian 

mixtures. The NIST SRE-2004 training and test data were 
provided by 168 female and 168 male speakers. The 
following experiments were measured on the NIST SRE-2006 
1conv4w-1conv4w with 51,448 trails [14]. There are 810 
enrolled speakers including 461 female and 349 male. 

3.1. Evaluation of Baseline System and SFLW 

Two types of errors, false acceptance and false rejection, 
occur in speaker verification. The results of speaker 
verification were evaluated by the equal error rate (EER) in 
this study. EER reports the system performance when the 
false acceptance and false rejection rates are equal. Table 1 
shows the GMM-UBM performance of the baseline system 
and SFLW for the different sizes of frame and shift. 

The number of FFT sample points is usually a power of 2. 
It is advantageous computationally to have smaller frame size 
but too small or too big in frame size will hurt the 
performances in baseline systems, such as 64 Length / 32 
Shift and 1024 Length / 512 Shift. The SFLW with a smaller 
frame size (128 Length / 64 Shift with 8 Frame) achieved the 
best performance with an EER of 10.51% in the GMM-UBM 
experiment.  

The number of feature samples was also reported for 
different settings in GMM-UBM training. As shown in Table 
2, the number of feature samples of the SFLW approach is 
smaller than most of conditions of the baseline system but 
1024 Length / 512 Shift. It is obvious that SFLW provides a 
much compact and effective feature database, especially 
when compared with the conditions of 256 Length / 128 Shift, 
128 Length / 64 Shift and 64 Length / 32 Shift. 

3.2. Evaluation of Eigenchannels and Fusion of 
Multi-Resolutions 

To solve the various types of channel effects in NIST-SRE 
dataset, the eigenchannel approach (EC) was used to improve 
the performance. The number of eigenchannels was chosen to 
be EC=30 in this study. The eigenchannel evaluation of the 
baseline systems was shown in Table 3. It is observed that 
EER decreases as frame size is reduced. The setup of 128 
Length / 64 Shift achieved the best result, EER=5.58%. It is 
also noted that the smaller frame size leads to higher 
computation cost according to Table 2.  Therefore, the setup 
of 64 Length / 32 Shift was not examined due to the high 
computation cost. 

The eigenchannel evaluation of SFLW (the setup of 128 
Length / 64 Shift with 8 Window) is shown in Table 4. EER 
has been greatly reduced from 10.51% to 5.87% after the 
eigenchannel process. The fusion of multi-resolutions was 
applied for the further improvement. The results show that the 
multi-resolution features are complementary. The proposed 
SFLW and the fusion of multi-resolutions approaches 
obtained EER=5.45%. The proposed approach also reduced 
0.13% EER compared with the best case of baseline system 
128 Length / 64 Shift. The number of feature samples of 
fusion of multi-resolutions was 1,148,532 and is only one-half 
of feature samples compared with the best case of baseline 
system 128 Length / 64 Shift.  

If we don’t care about the computation cost, the 
performance of speaker verification can be further improved 
by the fusion of SFLW and baseline systems without the 
setup of 1024 Length / 512 Shift, shown in Table 5. The 
fusion weights were equal. There is a significant 
improvement in the single system with different feature 
resolutions.  



Table 4. Evaluation in the fusion of multi-resolutions. 
 Male Female Average
64Length / 32Shift with 16Frame 5.83% 6.53% 6.18%
128Length / 64Shift with 8Frame 5.45% 6.28% 5.87%
Fusion of Multi-Resolutions 5.26% 5.63% 5.45%
 
Table 5. Fusion of SFLW and baseline systems. 
 Male Female Average 
EER 4.84% 5.03% 4.94%
Feature Samples 4,755,658 4,945,563 4,850,611
 
Table 6. Evaluation in the fusion of multi-resolutions with 
ZTnorm. 
 Male Female Average
64Length / 32Shift with 16Frame 5.79% 6.43% 6.11%
128Length / 64Shift with 8Frame 5.51% 6.08% 5.80%
Fusion of Multi-Resolutions 5.10% 5.49% 5.30%
 
 
However, the disadvantage is expensive in the computation 
cost. Finally, the above evaluations are plotted with the well-
know Detection Error Tradeoff (DET) curves in Fig. 3. Figure 
3 showed that the line of Fusion of Multi-Resolutions means 
the result of Table 4 and the line of Fusion of Baseline 
Systems denotes the result of Table 5 

3.3. Evaluation of Score Normalization 

The tuning of decision thresholds is very tricky in speaker 
verification due to the score uncertainty caused by the 
intraspeaker and interspeaker variability [1]. Therefore, score 
normalization is usually applied in the speaker recognition 
task. ZTnorm was applied for the score normalization in this 
study. ZTnorm provides the score normalization both in the 
speech feature and speaker model domains. The procedure of 
ZTnorm is that Tnorm is firstly applied and then Znorm 
speaker models are tested by imposters’ speech utterances to 
find the mean ZTμ  and standard deviation ZTσ  of the 
normalization scores.  
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Comparing the experiment setups in Table 4, the log-
likelihood ratio was normalized with the ZTnorm scores for 
the robust speaker verification as shown in Table 6. The 
results showed that 0.15% EER reduction from 5.45% to 
5.30% for the fusion of multi-resolutions. It should be noted 
that the Tnorm process is considered in the Znorm process at 
the same time. 

4. Conclusions and Future Work 
This study has presented short-time frequency analysis with a 
long-time window and the fusion of multi-resolutions 
approaches for robust speaker verification. SFLW considers 
the short-time frequency characteristics and long-time 
resolution at the same time. It represents a faster and more 
efficient speaker verification system. The computation cost is 
greatly reduced in SFLW. The fusion of multi-resolutions 
further improves the performance of speaker verification 
system with the different feature resolutions. Experimental 

results showed that the proposed approaches achieved a 
satisfactory performance as well as effectiveness and 
efficiency. 

In future work we plan to explore the relations between 
speech activity detection and short-time frequency with long-
time window approaches. Moreover, SFLW would be 
incorporated with the eigenvoice approach to evaluate the 
short test of 10 sec of NIST SRE. These results would be 
interesting. Finally, all results did not contain RASTA and 
feature warping. 
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