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Abstract
The decoding parameters in automatic speech recognition —
grammar factor and word insertion penalty — are usually deter-
mined by performing a grid search on a development set. Re-
cently, we cast their estimation as a convex optimization prob-
lem, and proposed a solution using an iterative linear program-
ming algorithm. However, the solution depends on how well the
development data set matches with the test set. In this paper, we
further investigates an improvement on the generalization prop-
erty of the solution by using large margin training within the
iterative linear programming framework. Empirical evaluation
on the WSJ0 5K speech recognition tasks shows that the recog-
nition performance of the decoding parameters found by the
improved algorithm using only a subset of the acoustic model
training data is even better than that of the decoding parameters
found by grid search on the development data, and is close to
the performance of those found by grid search on the test set.

Index Terms: discriminative training, convex optimization,
large margin training, iterative linear programming, ranking
support vector machine.

1. Introduction
In the statistical pattern classification framework, themaxi-
mum a posteriori(MAP) decision rule is used in automatic
speech recognition (ASR) to determine the recognized out-
put. That is, given a sequence ofT acoustic observations,
xT

1 = {x1,x2, · · · ,xT }, the objective of ASR is to find an
N -word sequence,̂wN

1 = {ŵ1, ŵ2, · · · , ŵN}, such that

ŵN
1 = argmax

wN
1 ,N

p(wN
1 |xT

1 ) (1)

Applying the Bayes Theorem and expressing quantities in the
log domain, Eqn.(1) may be rewritten as

ŵN
1 = argmax

wN
1 ,N

ln p(xT
1 |wN

1 )| {z }
acoustic score

+ ln p(wN
1 )| {z }

language score

. (2)

The first term is called the acoustic score that is computed
from acoustic models, and the second term is called the lan-
guage score which is commonly computed fromn-gram lan-
guage models.
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Despite the strong theoretical foundation of the MAP de-
cision rule, a direct application of Eqn.(2) to ASR gives poor
results in practice. There can be two reasons: (1) the particular
mathematical models used in acoustic modeling and language
modeling may not be correct, and (2) the dynamic ranges of
the acoustic scores and language scores are very different. It is
found that ASR performance can be greatly improved if the two
scores are properly balanced with decoding parameters before
making the MAP decision [1]. In general, the ASR objective
function is modified as

ŵN
1= argmax

wN
1 ,N

n
ln p(xT

1 |wN
1 ) + Kgf ln p(wN

1 ) + KwipN
o

, (3)

whereKgf andKwip are the decoding parameters, and they
are called grammar factor and word insertion penalty respec-
tively. The decoding parameters are commonly hand-tuned by
performing a grid search using utterances from a development
set (that is separate from the training set of the acoustic mod-
els). They may also be estimated automatically by discrimina-
tive model combination [2], MAP training [3], or using some
heuristics [4].

Table 1: WSJ0 recognition performance on the standard test set
using decoding parameters estimated from various data sets and
by different approaches.

Training Set (#Utt.) Method Word (Utt.) Acc. (%)
test set (330) grid search 93.16 (44.55)

dev subset (442) grid search 92.92 (44.55)
test set (164, 166) ILP 92.88 (43.64)

dev set (442) ILP 92.53 (42.42)
train subset (1175) ILP 91.72 (37.58)

Recently we proposed an iterative linear programming
(ILP) algorithm for finding the optimal values of the parameters
in a linear function [5]. It is shown also effective for the au-
tomatic estimation of the decoding parameters [6] in Eqn. (3).
Nevertheless, there is still a performance gap between the de-
coding parameters found by our ILP algorithm and those found
by a brute-force grid search. For example, in the Wall Street
Journal WSJ0 5K task, we compare the performance between
the decoding parameters found by grid search and those found
by our ILP using the test data1 or development data; the results

1This is a cheating experiment in which the WSJ0 test data were



are shown in Table 1. The results seems to agree with the gen-
eral belief that it is better to train the decoding parameters with
data that are as similar to the test set as possible. In any case,
there is still a performance gap between the solutions of ILP
and grid search: about 0.6% (absolute) if the development set is
used, and about 2% if one only has the acoustic model training
data.

In this paper, we investigate to improve the generalization
property of ILP by large margin training [7]: it is not enough
that the correct word sequence beats all other hypotheses; it also
has to do it by a margin as large as possible. We will show that
ILP with large margin training together may close the perfor-
mance gap if the margin is properly chosen.

This paper is organized as follows. In Section 2, we will
review our iterative LP algorithm for the optimization of the
decoding parameters, and describe the modification for large
margin training. That is followed by experimental evaluation in
Section 3 and conclusions in Section 4.

2. Large-Margin Iterative Linear
Programming (LMILP)

We will first review our previous iterative linear programming
(ILP) method for the estimation of decoding parameters using
the following notations:

L : no. of training utterances
J : no. of competing hypotheses for each utterance
xi : theith training utterance
ŵi : correct transcription ofxi with Ni words
wij : jth competing hypothesis ofxi with Nij words

Notice that we have dropped the duration and length specifica-
tion from the acoustic and word sequences for simplicity.

2.1. Review of Iterative Linear Programming

For each of theL training utterancexi, we define a discriminant
dij with respect to each of itsJ competing hypotheses.dij is
the difference between the recognition score of its correct word
sequencêwi and itsjth competing word sequenceswij , and is
defined as follows:

∀i,∀j, dij

= (ln p(xi|ŵi) + Kgf ln p(ŵi) + KwipNi)

− (ln p(xi|wij) + Kgf ln p(wij) + KwipNij)

= uij + Kgfvij + Kwipzij . (4)

where

uij = ln p(xi|ŵi)− ln p(xi|wij)

vij = ln p(ŵi)− ln p(wij)

zij = Ni −Nij .

For LP optimization of the decoding parameters, we would
like these discriminants to be positive so that the true word se-
quences always prevail during recognition.

∀i,∀j, uij + Kgfvij + Kwipzij ≥ 0 . (5)

divided to two equal halves, and then one subset was used for finding
the optimal decoding parameters by ILP and its solution was used to
decode the other subset. The experiment was repeated by swapping the
role of the two subsets, and their recognition results were combined for
reporting.

However, in general, not all of theL×J constraints can be
satisfied. We may relax the requirements by introducingslack
variablesξij ≥ 0 into the constraints, and require

∀i,∀j, uij + Kgfvij + Kwipzij + ξij ≥ 0 . (6)

2.1.1. LP Formulation

The slack variables implements the hinge loss function so that
their values for correctly recognized utterances are zero, and
their values for incorrectly recognized utterances are positive.
One may interpret the slack variables in Eqn. (6) as an approx-
imate measure of the string-level utterance recognition errors,
and tries to minimize the sum of these slack variables over all
training utterances and their competitors. Thus, we formulate
the estimation of the decoding parameters as a standard LP
problem that minimizes the approximate utterance errors as fol-
lows:

minKgf ,Kwip

X
i

X
j

ξij (7)

subject to the following constraints

∀i, ∀j, uij + Kgfvij + Kwipzij + ξij ≥ 0 , (8)

∀i, ∀j, ξij ≥ 0 , (9)

Kgf ≥ 0 . (10)

2.1.2. Iterative LP

In theory, LP is a convex optimization problem and the solu-
tion is globally optimal (with respect to the feasible region).
However, in our problem, the feasible region is, in any practi-
cal sense, infinite because there are practically infinite possible
competing word sequences with infinite possible alignments!
As we may only have a finite set of competing hypotheses (for
example, N-best hypotheses), we would not have a complete
knowledge of the feasible region. As a consequence, the glob-
ally optimal solution found in the incomplete feasible region is
unlikely the solution of our original intended problem (which
assumes complete knowledge of the feasible region), and we do
not want to move directly to that solution.

In [6], we propose two modifications to the standard LP:

• impose additional constraints on the decoding parame-
ters so that they are not allowed to change from their
current values too much as follows:

|Kgf (n + 1)−Kgf (n)| ≤ ∆Kgf max (11)

|Kwip(n + 1)−Kwip(n)| ≤ ∆Kwipmax (12)

wheren is the iteration count.

• repeat the LP procedure several times. At the end of an
iteration, the LP solution is used to re-estimate theN -
best hypotheses, and the LP estimation of the decoding
parameters is repeated.

The iterative LP algorithm stops when a pre-specified maxi-
mum number of iterationsnmax is reached, or when the relative
change of the decoding parameters

p
Kgf (n)2 + Kwip(n)2 is

smaller than a convergence thresholdθ.
Furthermore, we tie the slack variablesξij of all competing

hypotheses for a training utterance, say,xi, together to a single
slack variableξi. The tying in effect implements a min-max
cost function for the LP problem.



2.2. Large Margin Training

One way to improve the generalization of a classifier is to re-
quire the classifier to have a large margin [7] despite of an in-
crease in training errors. It is a regularization method to avoid
overfitting of the training data. In this paper, we introduce large
margin training to our iterative linear programming algorithm
by requiring the recognition score of the correct word sequence
ŵi of an utterancexi to be greater than that of any of its com-
peting word sequenceswij by a positive marginM ≥ 0. That
is, we modify Eqn. (6) as follows:

∀i,∀j, uij + Kgfvij + Kwipzij + ξij ≥ M . (13)

As we will see in Section 3, although the change seems small,
it is very effective.

3. Experimental Evaluation on WSJ0
The proposed large-margin iterative linear programming algo-
rithm (LMILP) was evaluated on the Wall Street Journal WSJ0
5K tasks.

3.1. WSJ0 Corpus and Acoustic Modeling

The standard SI-84 training set was used for training the
speaker-independent (SI) model. It consists of 83 speakers (41
male speakers and 42 female speakers) and 7,138 utterances
for a total of about 14 hours of training speech. The standard
Nov’92 5K non-verbalized test set was used for evaluation us-
ing the standard 5K-vocabulary bigram which has a perplexity
of 111. It consists of 8 speakers (5 male and 3 female speakers),
each with about 40 utterances.

The SI model consists of 15,449 cross-word triphones
based on 39 base phonemes. Each triphone model is a strictly
left-to-right 3-state continuous-density hidden Markov model
(CDHMM), with a Gaussian mixture density of 16 components
per state, and there are totally 3,132 tied states. In addition,
there are a 1-state short pause model and a 3-state silence model.
The traditional 39-dimensional MFCC vectors were extracted at
every 10ms over a window of 25ms.

“Optimal” decoding parameters were found by an extensive
grid search using the test set and a subset of the sidt 05 devel-
opment set. The baseline recognition performances with these
optimal decoding parameters are given in Table 1.

3.2. Experimental Setup for LMILP

Two data sets were used in the estimation of the decoding pa-
rameters by LMILP:

• a subset of the standard WSJ0 training set, consisting of
L = 1175 utterances and 83 speakers.

• a subset of the standard WSJ0 development set sidt 05,
consisting ofL = 442 utterances and 10 speakers.

The reason for subsetting the two data sets is that not all words
in the remaining utterances are covered by the WSJ0 bigram
language model. The development subset was also used in the
grid search result in Table 1. Unless otherwise stated, all re-
ported results used the WSJ0 training subset.

Various parameters used in the LMILP were set as follows.

• the competing hypotheses were found by N-best decod-
ing with N = 20.

• the LP problems were solved by the Mosek optimization
software2.

2http://www.mosek.com

• the maximum number of iterationsnmax = 10.

• the convergence thresholdθ = 10−4.

• 4 arbitrarily chosen starting points (Kgf , Kwip) were
tried: (0, 0), (20, -20), (0, -20), and (20, 20).

• For the starting points (0, 0) and (20, -20),∆Kgf max =
7 and∆Kwipmax = 10; for the starting points (0, -20)
and (20, 20),∆Kgf max = 15 and∆Kwipmax = 30.

Table 2: Effect of the margin value on LMILP. (The word or
utterance recognition accuracies withM ≥ 70 are statistically
significantly better than those withM = 0 at the 95% confi-
dence level.)

M Parameters Word (Utt.) Acc.(%)
Kgf Kwip Train Subset Dev. Subset Test Set

0 9.79 -7.23 97.00 (71.83) 90.88 (39.82) 91.72 (37.58)
1 9.81 -7.34 97.00 (71.83) 90.88 (39.82) 91.72 (37.58)
10 9.90 -8.60 96.99 (71.74) 91.03 (40.50) 91.74 (37.58)
50 12.32 -11.93 96.98 (71.40) 91.86 (43.21) 92.55 (42.12)
70 13.70 -12.95 96.98 (71.32) 91.97 (44.12) 92.85 (44.55)
80 14.32 -13.95 96.92 (71.40) 91.92 (44.34) 92.94 (44.85)
100 15.20 -15.57 96.87 (71.06) 91.66 (42.76) 93.05 (44.85)
500 16.43 -17.85 96.76 (70.04) 91.64 (42.31) 93.03 (45.15)
1000 16.43 -17.85 96.76 (70.04) 91.64 (42.31) 93.03 (45.15)
∞ 16.43 -17.85 96.76 (70.04) 91.64 (42.31) 93.03 (45.15)

3.3. Effect of Margin

Using 1175 utterances of the WSJ0 training subset, the decod-
ing parameters were estimated using the proposed LMILP al-
gorithm with increasing marginM , starting at (Kgf , Kwip) =
(0, 0), and the solutions were used to decode the utterances in
the various WSJ0 data sets. The detailed results are shown in
Table 2 and the utterance accuracies are plotted in Fig. 1. From
Fig. 1, it is clear that when the margin increases, the utterance
accuracy of the training subset decreases (or the training error
increases); there is a tradeoff between generalization (with a
greater margin) and the training error. The benefit of gener-
alization can be seen from the recognition performance on the
development subset and the test set which are unseen during
LMILP optimization: the performance generally improves with
a larger margin. Although there is a small peak on the develop-
ment subset, it is fair to say that both data sets prefer the margin
as large as possible.

We analyze the difference in the recognition score between
the correct word sequence and the recognized sequence for each
of the 1175 utterances in the training subset before and after the
introduction of large-margin training. Fig. 2 shows the distri-
bution of the recognition score differences when the decoding
parameters were estimated by our previous ILP (i.e., with no
margin,M = 0) and our new LMILP with a large margin of
M = 1000. It is observed that the winners win by a larger
margin, and so do the losers.

3.4. Convergence with Different Starting Points

We also checked the convergence of the LMILP algorithm when
it started with 4 arbitrary initial points with the marginM = 80.
The result is shown in Fig. 3 and Fig. 4. In all four cases, the al-
gorithm converged in about 5 iterations to give the same optimal
decoding parameters(Kgf , Kwip) = (14.32,−13.95).
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Figure 1: Effect of margin on LMILP.
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Figure 2: Distribution of the recognition score differences be-
tween the correct transcription and the top-best hypothesis be-
fore and after large-margin training.

4. Conclusions
This paper investigates the effect of large margin training on
the estimation of decoding parameters using iterative linear pro-
gramming (ILP). Large margin training lives up to its promise
of improving the generalization of the solution given by ILP.
From Table 1 and Table 2, we can see that for this problem, it
is better to use a margin as large as possible and it is achieved
using only a subset of the acoustic model training data; no addi-
tional data are needed. The decoding parameters thus obtained
give a word accuracy of 93.03% on the WSJ0 test set, which
is even better than the accuracy (92.92%) produced by the de-
coding parameters found by grid search using the development
data, and is only 0.13% worse than the accuracy (93.16%) pro-
duced by the decoding parameters found by grid search using
the test data.
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