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Abstract
Most of current state-of-the-art speaker verification (SV) sys-
tems use Gaussian mixture model (GMM) to represent the uni-
versal background model (UBM) and the speaker models (SM).
For an SV system that employs log-likelihood ratio between
SM and UBM to make the decision, its computational effi-
ciency is largely determined by the GMM computation. This
paper attempts to speedup GMM computation by converting a
continuous-density GMM to a single or a mixture of discrete
densities using scalar quantization. We investigated a spectrum
of such discrete models: from high-density discrete models to
discrete mixture models, and their combination called high-
density discrete-mixture models. For the NIST 2002 SV task,
we obtained an overall speedup by a factor of 2–100 with little
loss in EER performance.

Index Terms: speaker verification, scalar quantization, high
density discrete HMM, discrete mixture HMM

1. Introduction
Gaussian mixture model (GMM) is a probabilistic model com-
monly used in various speech areas. For example, most auto-
matic speech recognition (ASR) systems use hidden Markov
model (HMM) with GMM states; most speaker verification
(SV) or speaker recognition (SR) systems use GMM to repre-
sent the universal background model (UBM) and speaker mod-
els (SM). Hence, a fast GMM computation method is of great
interest to the speech community.

Fast GMM computation has been investigated in various
speech-related areas such as SV [1], ASR [2], and voice con-
version for text-to-speech synthesis [3]. In [1], McLaughlinet.
al identified two orthogonal factors in GMM computation: the
acoustic resolution in terms of the number of Gaussian com-
ponents in a GMM, and the temporal resolution in terms of
various forms of decimation (or down-sampling). In another
approach, under the name of Gaussian selection [4, 5] and tree-
structured UBM [6], only the most relevant Gaussian compo-
nents in the UBM are selected and evaluated. In [2], Chanet. al
defined a four-layer categorization scheme of GMM computa-
tion: two of the layers are basically the same as McLaughlin’s,
and the other two are speedup of Gaussian component compu-
tation and HMM state selection (which is irrelevant to SV). The
speedup method proposed by En-Najjary [3] is similar to that in
semi-continuous HMM or in the evaluation of speaker models

This research is supported by the Research Grants Council of
the Hong Kong SAR under the grant numbers DAG05/06.EG43,
HKUST617406, and PolyU 1-BB9W.

in SV [7]: only evaluate the topN Gaussian components that
have the highest likelihoods. For large UBM and smallN , the
method reduces the number of Gaussian evaluations almost by
half, with negligible effect on verification accuracy.

In this paper, we investigate another way to adjust the
acoustic resolution of a GMM to achieve fast GMM computa-
tion. Instead of simply reducing the number of Gaussian com-
ponents (i.e., reducing the GMM model order), a combination
of scalar quantization and discrete density techniques are used
to convert a continuous-density GMM (GMM) to

• a single discrete density called high-density discrete
model (HDDM) based on the techniques used in
the high-density discrete hidden Markov model (HD-
DHMM) [8] in ASR.

• a mixture of discrete densities called discrete mixture
model (DMM) based on the techniques used in the
discrete-mixture hidden Markov model (DMHMM) [9,
10] in ASR.

• a mixtureof high-density discrete densities called high-
density discrete-mixture model (HDDMM) which is a
combination of HDDM and DMM.

It has been shown that HDDHMM and DMHMM may reduce
GMM computations in ASR with no or little degradation in
recognition performance. Since an SV system spends almost
all its computation in GMM evaluations, the speedup achieved
by HDDM, DMM, or HDDMM should be even greater as it
is not complicated by the decoding and pruning algorithms in
ASR.

2. Discrete Models for Fast GMM
Computation

Although, in theory, given sufficient training data, a discrete
density may represent any distribution to any desirable preci-
sion by adjusting its resolution, in practice, we have to deal
with the following issues: (1) insufficient data for estimating the
probability of each bin in the discrete density; (2) increasing the
resolution by having more bins will increase the size of the den-
sity which may become too big to be stored; (3) traditionally,
vector quantization (VQ) is used to define the codebook. When
there are many bins, the codebook will also be large and find-
ing the codeword for a given input will be slow. These problems
may be solved by using scalar quantization (SQ) with additional
techniques described in this paper.

Conventional wisdom tells us that given a fixed number
of bits, VQ is more efficient than SQ in quantizing the fea-
ture space. However, SQ has the advantage of requiring much
less training data and it is much faster to find an SQ codeword.



There are two possible solutions to approximate the efficiency
of VQ by SQ:

• simply use more SQ bits. This will increase the model
size, but the availability and continually decreasing price
of large solid-state memory help push further its limit.

• use amixtureof discrete densities instead of asingledis-
crete density in which the dimensions of the feature vec-
tors are assumed independent.

The above two solutions lead to the invention of high-
density discrete hidden Markov model (HDDHMM) [8] and
discrete-mixture hidden Markov model (DMHMM) [9] in ASR.
Since a GMM may be considered as a 1-state HMM, the SQ
techniques used in HDDHMM and DMHMM can be readily
ported to speed up GMM computation for SV/SR.

In the following discussion, letd be the dimension of each
acoustic vectorxt, and each dimensioni, is scalar-quantized
to ni SQ codewords withnmax being the maximum codebook
size among all dimensions. Assume that, after per-dimension
SQ, the acoustic vectorxt falls into the d-dimensional hy-
percube with bounds{(l1, u1), (l2, u2), . . . , (ld, ud)} where
(li, ui) represents the lower bound and upper bound of the SQ
codeword of itsith dimension.

2.1. High-Density Discrete Model (HDDM)

The HDDM is asingle discrete density. The full-space VQ
codewords are constructed by the product of per-dimension
SQ codewords. Thus, if each dimension is scalar-quantized to
ni, i = 1, . . . , d, SQ bins, then there will beN =

Qd
i=1 ni

VQ bins in the full space. For instance, ifd = 12 for the
typical static MFCC vectors (without the energy term), and all
dimensions are scalar-quantized by 1 bit, then there will be
212 = 4096 bins. Although scalar quantization (SQ) is em-
ployed, it is only used to efficiently index different regions in
the originald-dimensional acoustic space through the combina-
torial effect of per-dimension SQ codewords, and the discrete
density is still estimated in the acousticfull space.

2.1.1. Conversion of GMM to HDDM

Let the probability density function (pdf) of a continuous-
density GMM with diagonal covariances be

p(xt) =

MX
m=1

cmN (xt; µm, σ2
m), (1)

where M is the number of Gaussian components, andcm,
µm, andσ2

m are the mixture weight, mean vector, and vari-
ance vector of themth component respectively. The probability
mass function (pmf) of the corresponding HDDM can be pre-
computed by

P (xt in {(l1, u1), (l2, u2), . . . , (ld, ud)})

=

MX
m=1

cm

Z u1

l1

Z u2

l2

· · ·
Z ud

ld

N(xt; µm, σ2
m)dxt

=

MX
m=1

cm

dY
i=1

Z ui

li

N(xit; µim, σ2
im)dxit , (2)

where N(xit; µim, σ2
im) represents the univariate Gaussian

density of theith dimension of themth component. The per-
dimension integral can be computed using theerf(·) function.

2.1.2. Time Complexity of HDDM

Finding an equivalent VQ codeword requiresO(d log2 nmax)
time, and it takesO(1) time to find the HDDM probability by a
table lookup among theN bins. As a consequence, computing
the GMM likelihood from its approximate HDDM can be very
fast. However, the foregoing discussion does not consider the
practical constraint on the model size.

• Tradeoff between resolution and model size
d must be small enough that the resulting HDDM has a
reasonable size. For example, for our experiments, we
used 24-dimensional acoustic vectors consisting of 12
static and 12 dynamic MFCCs. If we limit it to 1 bit per
dimension, the resulting HDDM will have224 = 16 mil-
lion bins; but if we use 2 bits per dimension, there will
be (22)

24
= 256 trillion bins! Thus, the per-dimension

resolution cannot be high, and the quantization error may
lead to inaccuracy in the GMM approximation.

• Tradeoff between multiple streams and correlation loss
One way to get higher acoustic resolution is to split the
acoustic space into multiple independent subspaces re-
sulting in multiple-stream HDDM. To obtain aK-stream
HDDM, the GMM is first approximated by aK-stream
GMM. The major shortcoming is the loss of correlation
among the features across the streams. Here, we limit to
use two streams to achieve a higher acoustic resolution
per stream and to maintain a reasonable model size.

2.2. Discrete Mixture Model

The DMM is amixtureof discrete densities, having the same
number of mixtures as the GMM from which it is converted. In
its simplest form1 in which all dimensions in a component are
assumed independent, its pmf is given by [9]:

P (xt in {(l1, u1), (l2, u2), . . . , (ld, ud)})

=

MX
m=1

cm

dY
i=1

Pim(xit ∈ {(li, ui)}) , (3)

wherePim(·) is the pmf of the discrete density of theith di-
mension in themth mixture.

2.2.1. Conversion of GMM to DMM

During the conversion from GMM to DMM, each dimension of
each mixture component is done independently. For instance,
Pim(·) is pre-computed as follows:

Pim(xit in {(li, ui)}) =

Z ui

li

N(xit; µim, σ2
im)dxit . (4)

Notice that the DMM has a total ofd×M discrete densities.

2.2.2. Time Complexity of DMM

Since finding an SQ codeword requiresO(log2 nmax) time and
there ared dimensions, the total time complexity for finding
all SQ codewords is againO(d log2 nmax). However, since
DMM is an M -mixture model,dM table lookups are required
to get the per-dimension pmf values for an inputxt. To ob-
tain the probability of the input from these discrete density val-
ues requiresdM multiplications andM − 1 additions. Essen-
tially, DMM replaces thedM Euclidean distance calculations

1In general, one may group several dimensions together and per-
form sub-vector quantization to get the discrete density for the sub-
vectors [10].



in GMM by dM table lookups. As a consequence, it is not as
fast as HDDM.

Table 1: Model size of GMM, HDDM, DMM, and HDDMM.
(M = #mixture components;K = #streams;n = #SQ bits per
dimension;d = dimension of acoustic vectors. Probabilities are
assumed 4-byte floating point numbers.)

Model M K n d Size (bytes)
GMM M — — d 4M(2d + 1)
DMM M — n d 4M(2nd + 1)

HDDM — K n d 4K(2n(d/K)
)

HDDMM M K n d 4MK(2n(d/K)
)

2.3. Comparison between HDDM and DMM

HDDM and DMM are very similar. If HDDM has only a sin-
gle stream, each Gaussian component has diagonal covariance,
and no re-estimation is performed, then the HDDM and DMM
converted from the same GMM will have the same accuracy but
HDDM pre-computes all the probabilities in a single discrete
density whereas DMM only pre-computes the discrete densities
for each dimension in each component and the the probability of
an input has to be computed from these pre-computed discrete
densities.

For the same number of SQ bits, the model size of an DMM
is generally much smaller than that of an HDDM; as a conse-
quent, DMM may approximate the original GMM more accu-
rately with more bits. On the other hand, since HDDM has only
a single discrete density, it computes much faster than DMM.
Obviously one may trade-off the speed and the size of these
two discrete models by combining them in what we callhigh-
density discrete mixture model(HDDMM). There are stillM
mixtures in an HDDMM, but each mixture component is now
a multi-stream HDDM. For HDDMM, more streams in a mix-
ture will make the model size smaller but the model runs more
slowly. Table 1 shows the formulas for finding the model size
of the various models.

Table 2: Resolution of various discrete models for SV. (Assume
that DMM and HDDMM are converted from 512-component
GMM, and probabilities are 4-byte floating-point numbers.)

Model K Bit Allocation Size
HDDM-a 2 (111111111111, 111111111111) 32KB
HDDM-b 2 (211111111111, 111111111111) 48KB
HDDM-c 2 (221111111111, 111111111111) 80KB
HDDM-d 2 (222111111111, 111111111111) 144KB
HDDM-e 2 (222211111111, 111111111111) 272KB
HDDM-f 2 (222221111111, 111111111111) 528KB
HDDM-g 2 (222222111111, 111111111111) 1.04MB
HDDM-h 2 (222222211111, 111111111111) 2.064MB
HDDM-i 2 (222222221111, 111111111111) 4.112MB
DMM-a — 111111111111111111111111 96KB
DMM-b — 222222222222222222222222 192KB
DMM-c — 333333333333333333333333 384KB
DMM-d — 444444444444444444444444 768KB

HDDMM-a 12 12× (3, 3) 1.536MB
HDDMM-b 8 8× (3, 3, 3) 4.096MB
HDDMM-c 6 6× (3, 3, 3, 3) 49.152MB

3. Experimental Evaluation
NIST SRE 2001 and 2002 were used in this work. Specifically,
all of the 1006 male utterances (from> 120 speakers) in NIST
2001 were used for creating the GMM-UBM, and speaker mod-
els were created by MAP adaptation [7] on the GMM-UBM
for each of the 139 male speakers in NIST 2002. Each adap-
tation utterance is about 2 minutes long but half of the con-
tents is silence. Each of the 1442 male verification utterances in
NIST 2002 was scored against 11 hypothesized speakers. This
amounts to 1,232 speaker trials and 14,630 impostor attempts.

The features used were 12 MFCCs plus their first deriva-
tives, leading to 24-dimensional acoustic vectors. Cepstral
mean normalization was applied to the MFCCs, followed by
feature warping. Speaker verification is based on the log-
likelihood ratio between a speaker model and the UBM.

GMM-UBMs with 64–2048 Gaussian components were
trained and converted to the three kinds of discrete models with
varied resolutions and streams. The resolution was controlled
by allotting different number of SQ bits to the 24 MFCCs as
shown in Table 2. All HDDMs had two streams and different
numbers of streams were tried for HDDMM.

For each of the following experiments, the various models,
namely, GMM, DMM, HDDM, and HDDMM are compared
in terms of their execution time2, equal error rate (EER), and
minDCF. For GMM, DMM, and HDDMM, we followed the
common practice and used only the top 5 Gaussians for com-
puting the UBM and speaker model likelihoods.

Table 3: SV performance of baseline GMMs of varied order and
their approximate HDDMs.

M GMM HDDM
EER Time(sec) EER Time(sec)

2048 11.94 12901 13.18 105.4
1024 11.84 6488.7 12.97 97.96
512 11.43 3278.9 13.23 107.0
256 11.88 1674.2 13.71 99.28
128 12.37 868.75 13.62 105.1
64 13.20 466.35 14.62 97.70

3.1. HDDM: Effect of the GMM model orders

GMM UBMs and speaker models of different orders were con-
verted to 2-stream HDDMs using the bit allocation scheme of
HDDM-i as specified in Table 2. The SV performance of the
corresponding GMMs and HDDMs are compared in Table 3.
The results show that due to their lower resolution, the EERs
of HDDM are lower than those of their GMM counterparts
by 1–2%. However, the speed of the various HDDMs is ba-
sically constant with a running time of about 100 seconds re-
gardless of the model order of the GMMs they are converted
from since they have the same discrete density structure; it is
very fast — with a speedup of 4–130 times — and the speedup
is more prominent with bigger GMM models. Thus, one is free
to choose the best GMM to convert to HDDM without worry-
ing that the model order of the GMM will affect the speed of its
HDDM counterpart.

2All experiments were run on a Linux machine that runs on the Intel
CPU, Core 2 Duo E8400 @ 3.00GHz with 2GB RAM.



Table 4: Effect of different resolutions on the performance of
DMM converted from a GMM-UBM with 512 components.

Bit/Dimension EER minDCF Time(sec)
1 (DMM-a) 14.62 0.0601 1867.5
2 (DMM-b) 11.75 0.0522 1883.4
3 (DMM-c) 11.55 0.0528 2160.0
4 (DMM-d) 11.49 0.0536 3943.3
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Figure 1: SV operating characteristics of different models.

3.2. DMM: Effect of different resolutions

The GMMs with 512 components were converted to DMMs
of different resolutions by uniformly allotting 1–4 SQ bits for
each dimension of the MFCC vector. The EER of the GMM is
11.43% and its speed is 3279s. From Table 4, the DMM with 3
bits per dimension basically has similar SV performance as its
GMM counterpart but achieves a speedup of about about 33%.

3.3. Operating characteristics of different models

From the last two experiments, it is clear that HDDM and DMM
represent the two ends of a spectrum of SQ-based discrete mod-
els: For the same model size, HDDM is fast but has a lower
resolution, whereas DMM is not much faster than GMM but
is more accurate than HDDM. Thus, it is expected that their
hybrid form, HDDMM, may tradeoff speed against accuracy
by dividing each Gaussian mixture component of a DMM into
K streams and represents each stream using the technique in
HDDM. HDDMM should have the same performance of its
DMM counterpart, but its speed will increase if fewer streams
are used.

In Fig. 1, the following models are compared:

• GMMs with varied number of Gaussian components.

• HDDMs with different resolutions as shown in Table 2
converted from the GMMs with 1024 Gaussian compo-
nents.

• DMMs with 3 bits per dimension (DMM-c in Table 2)
and varied number of mixtures.

• 8-stream HDDMMs with 3 bits per dimension
(HDDMM-c in Table 2) and varied number of mixtures.

Notice that the abscissa in drawn inlog2 scale.
It is found that for the same model order,

• the DMMs are about 30–50% faster than their GMM
counterparts.

• the HDDMMs are only faster than their DMM coun-
terparts when there are fewer than 512 mixture compo-
nents. Detailed examination of the experiments finds that
the Linux kernel has a page size of 4MB, and when the
model size of HDDMMs are larger than 4MB, the run-
time is significantly lower.

• after all, the HDDMMs are still faster than their GMM
counterparts by 30–60% whenM ≤ 512.

4. Conclusions
The results show that HDDM is very fast and can obtain a
speedup of 30 times with 1.5% drop in EER. DMM is more
accurate but provides a much smaller speedup. Their hybrid
model HDDMM is only faster when the GMM model order is
low because of their relative large model size. However, we ex-
pect that if the hardware is probably chosen, HDDMM may pro-
vide a much better speedup; further investigation of HDDMM’s
dependence on the computing hardware is needed.
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