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Abstract
Factorized Hidden Layer (FHL) adaptation has been proposed
for speaker adaptation of deep neural network (DNN) based
acoustic models. In FHL adaptation, a speaker-dependent (SD)
transformation matrix and an SD bias are included in addition
to the standard affine transformation. The SD transformation
is a linear combination of rank-1 matrices whereas the SD bias
is a linear combination of vectors. Recently, the Long Short-
Term Memory (LSTM) Recurrent Neural Networks (RNNs)
have shown to outperform DNN acoustic models in many Auto-
matic Speech Recognition (ASR) tasks. In this work, we inves-
tigate the effectiveness of SD transformations for LSTM-RNN
acoustic models. Experimental results show that when com-
bined with scaling of LSTM cell states’ outputs, SD transfor-
mations achieve 2.3% and 2.1% absolute improvements over
the baseline LSTM systems for the AMI IHM and AMI SDM
tasks respectively.
Index Terms: Long Short-Term memory (LSTM), Recurrent
Neural Networks (RNNs), Speaker Adaptation, Acoustic Mod-
eling

1. Introduction
All machine learning techniques, including deep learning based
methods, are susceptible to performance degradation due to
the training and testing mismatch. The variabilities caused by
the mismatch can be normalized by transforming the model to
match testing conditions or by transforming the runtime fea-
tures to match the model. In automatic speech recognition
(ASR), speaker adaptation techniques are developed to mini-
mize the mismatch between the training and testing conditions
due to speaker variability.

The adaptation techniques are first developed for conven-
tional Gaussian mixture model (GMM)–hidden Markov model
(HMM) systems. The commonly used techniques include max-
imum a posteriori (MAP) [1] and maximum likelihood linear
regression (MLLR) [2, 3]. In addition, speaker adaptive training
(SAT) has been applied to GMM-HMM systems [4, 5]. Then,
the adaptation techniques were developed for deep neural net-
work (DNN)-HMM hybrid systems. The adaptation of DNNs
has found to be effective as these methods improve the perfor-
mance significantly [6, 7, 8, 9, 10, 11, 12]. However, DNNs are
not effective in modeling the temporal dependencies of speech
signals. Therefore, the current state of the art in ASR is to use
models that are capable of modeling temporal dependencies of
speech signals like LSTM-RNNs. Since LSTM-RNNs are more
complex structures than DNNs, LSTM-RNN adaptation is more
challenging, especially when performed with a small amount of
data in an unsupervised fashion.

In this paper, we investigate the FHL-based adaptation for
LSTM-RNN acoustic models. The previous work on LSTM-

RNN adaptation has employed SD biases to perform adapta-
tion. In [13], speaker code is used for adaptation, while acous-
tic feature concatenation with speaker representations is used
in [14]. In addition, the adaptation of different weight ma-
trices of LSTM-RNN is investigated in [15]. Factorized hid-
den layer (FHL) adaptation is proposed to adapt DNNs and has
shown superior performance over SD bias based methods [16].
In FHL adaptation, a speaker-dependent (SD) transformation
matrix and an SD bias are estimated in addition to the stan-
dard affine transformation. The SD transformation is a linear
combination of rank-1 matrices whereas the SD bias is a lin-
ear combination of vectors. In this work, we investigate the SD
transformation-based adaptation for LSTM-RNN. Furthermore,
since learning hidden unit contributions (LHUC) [17] has been
found effective for DNN adaptation, we also investigate the ef-
fectiveness of scaling various components of LSTM-RNN for
adaptation. We evaluate the proposed method in two bench-
mark ASR tasks: the Augmented Multi-party Interaction (AMI)
[18] individual headset microphone (IHM) and the AMI single
distant microphone (SDM) tasks, respectively.

The rest of the paper is organized as follows. Section 2
reviews the LSTM-RNN acoustic model. Section 3 discusses
the FHL-based adaptation for LSTM-RNNs while in Section 4,
scaling-based LSTM-RNN adaptation is presented. In Section
5, we give the details of the experimental setup. The results are
reported in Section 6 and we conclude our work in Section 7.

2. LSTM-RNNs

LSTM is proposed in [19] to avoid the vanishing gradient prob-
lem in RNN training using stochastic gradient descent method.
LSTM contains memory blocks with self-connections to store
the temporal state of the network. Sets of units called gates are
used to control the flow of information to each LSTM cell. In
general, there are three types of gates called input, output and
forget. An input gate controls the flow of input to the mem-
ory cell whereas an output gate controls the output flow. Forget
gates decide how much information to forget during each time
step [20]. In addition to the gates, peephole connections are
used to connect cell state information to the gates [21]. Fur-
thermore, it is shown that LSTMP models where a projection
layer is used to reduce the network complexity are more effec-
tive in ASR [22]. In this paper, the adaptation is investigated for
LSTMP acoustic models. The behaviour of an LSTMP may be
summarized by the following formulas:
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are vectors with input gate, forget gate, out-
put gate, cell state, cell output, and projection values respec-
tively. W⇤⇤ are weight matrices and b⇤ are biases. All peep-
hole weight matrices W

c⇤ are diagonal.

3. FHL-based LSTM-RNN Adaptation
First, we review the FHL adaptation for DNNs. Then, the FHL-
based adaptation for LSTM-RNNs is presented.

3.1. FHL Adaptation for DNNs

W

s = W +

|ds|X

i=1

d

s(i)B(i) (7)

where {B(1),B(2), ..,B(|d
s

|) is the set of basis for the SD
transformation and d

s is the SD interpolation vector. Similarly,
the SD bias vector, bs is given by:

b

s = b+

|vs|X

i=1

v

s(i)u(k) = b+Uv

s (8)

where v

s is the SD interpolation vector.
Furthermore, in [16] B(i) weight bases are constrained to

be rank-1 matrices. This allows us to formulate the SD trans-
formation as:

W

s = W +
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d

s(i)�(i) >(i)

= W + �Ds

 

> (9)

where B(i) = �(i) >(i) and D

s is a diagonal matrix (Ds =
diag(ds)) and �(i),  (i) are i-th column vectors for �,  
respectively.

3.2. FHL Adaptation for LSTM-RNNs

FHL adaptation for LSTM-RNNs can be applied by modelling
SD transformations and SD biases for various W⇤⇤ and b⇤ in
the LSTM-RNNs (Equations (1) - (6)). For instance, it is possi-
ble to estimate SD transformations on the input feature (x

t

) as
given below:

W

s

x⇤ = W

x⇤ + �
x⇤D

s

x⇤ 
l>
x⇤ (10)

where D

s

x⇤ 2 R|ds|⇥|ds| is a diagonal matrix (Ds

x⇤ =
diag(ds)).

Similarly, it is possible to estimate an SD transformation for
the recurrence connections as given below:

W

s

r⇤ = W

r⇤ + �
r⇤D

s

r⇤ 
l>
r⇤ (11)

In our experiments, we investigate the effectiveness of SD
transformations on input features as well as recurrence connec-
tions. SD transformations are not estimated for peephole weight
matrices (W

c⇤), since those connections are diagonal.
Similar to the FHL adaptation for DNNs, the SD bias vec-

tor, bs

⇤ can be estimated for LSTM-RNNs (Equation 8).

3.3. Increasing the number of Bases

The adaptation power of the SD transformations can be in-
creased by increasing the number of bases for SD transforma-
tions. We increase the number of bases by estimating a non-
linear projection during training as given below:

d̂

s = �(⇤ds) (12)

where |d̂s| > |ds|. Then, this new SD representation can be
used to estimate the bases for SD transformation as given below:

W

s

⇤⇤ = W⇤⇤ + �⇤⇤D̂
s

⇤⇤ 
l>
⇤⇤ (13)

where D̂

s

⇤⇤ = diag(d̂s).

4. Speaker-Dependent Scaling
Inspired by LHUC [17], we investigate scaling of the LSTM
components. We describe the scaling of the input gate i

t

below.
The scaling of the forget gate f

t

and the output gate o
t

is similar.
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where A

s is the SD diagonal matrix as As = diag(as).
In LHUC adaptation, an additional constraint is applied to

the diagonal elements which restrict them in the range of [0, 2]
as given in equation 15.

a

s = 2⇥ �(zs) (15)

where z

s is the SD parameter vector for speaker s and these
z

s parameter values are estimated for the test speaker using the
adaptation data.

It is also possible to estimate these z

s parameters from a
subspace as done in the subspace LHUC method [23]:

z

s = Uv

s (16)

where v

s is a low-dimensional vector for speaker s, and U is
the connecting weight matrix and is learned using the training
data. Furthermore, this method reduces the per-speaker foot-
print considerably as |vs| ⌧ |zs|.

In all the experiments, we use the i-vector as the low-
dimensional representation v

s, however, it is possible to use
other representations like bottleneck vectors [24, 25].



Table 1: Word error rates (WER %) for various baseline mod-
els.

Model IHM SDM
DNN Baseline 29.0 56.1

LSTM Baseline 28.1 52.3

5. Experiment Setup
In this paper, we use the AMI corpus which contains about 100
hours of meetings conducted in English. The speech is recorded
by multiple microphones, including one IHM and a uniform mi-
crophone circular array. In the experiments, we use the IHM
data and the speech from the first microphone in the array which
is known as the SDM. We use the ASR split [26] of the corpus
where 78 hours of the data are used for training while about 9
hours each are used for evaluation and development. We use
90% of the training set for training, and the rest is used as the
validation set. The results are reported on the evaluation set.

For both IHM and SDM datasets, we extract the Mel-
frequency cepstral coefficients (MFCCs) from the speech using
a 25 ms window and a 10 ms frame shift. Then the linear dis-
criminant analysis (LDA) features are obtained by first splicing
7 frames of 13-dimensional MFCCs and then projecting down-
wards to 40 dimensions using LDA. A single semi-tied covari-
ance (STC) transformation [27] is applied on top of the LDA
features. The GMM-HMM system for generating the align-
ments for DNNs and LSTM-RNNs is trained on these 40 dimen-
sional LDA+STC features. We train the DNN-HMM baselines
on the LDA+STC features that span a context of 11 neighbor-
ing frames. Before being presented to the DNN, cepstral mean
variance normalization (CMVN) is performed on the features
globally. DNNs have 6 sigmoid hidden layers with 2048 units
per layer, and around 4000 senones as the outputs. We trained
LSTM-RNNs with 3 LSTM layers of 1024 memory cells and
a 512 dimensional projection as in [28]. The input feature is a
single frame with a 5 frames shift. For the training, we use trun-
cated back propagation through time (BPTT) with sequences of
20 frames. We process 40 sequences in parallel.

All the models are trained to optimize the cross-entropy
criterion using CNTK [29]. Kaldi [30] is used to build GMM-
HMM systems and for i-vector extraction. The UBM consists of
128 full Gaussians. For decodings, we use the trigram language
model as used in Kaldi, which is an interpolation of trigram lan-
guage models trained on AMI and Fisher English transcripts.

6. Results
Table 1 shows the results for the baseline DNNs and LSTM-
RNNs models trained on the IHM and SDM tasks. For both
tasks, LSTM-RNN outperforms the corresponding DNN. The
relative gain (3.2%) of the LSTM-RNN trained on IHM is
slightly worse than the relative gain (6.8%) of the LSTM-RNN
trained on SDM. This can be because LSTM-RNN is more ben-
eficial for the noisy distant microphone speech in the SDM task.

Next, we investigate where to connect the SD bias of the
LSTMP layer (Table 2). In these experiments, we only connect
the SD bias to the first LSTMP layer. As shown in [16], it is
sufficient to connect the SD bias only to the first hidden layer.
During the first pass, speaker representations of the test speak-
ers are initialized to the i-vector while during the second pass
we update the i-vector for test speakers in unsupervised adap-

Table 2: IHM : WER % for various models with SD bias con-
nected to different parts of the first LSTMP layer.

SD bias First Pass Second Pass # Speaker Params
Gates (bs

i

,bs

f

,bs

o

) 27.4 26.5 300
Cell Input (bs

c

) 27.2 26.2 100
Projection (bs

p

) 27.3 26.5 100

Table 3: IHM : WER % for various models with SD transforma-
tions of input features and / or of recurrence, which is connected
to the cell input of the first LSTMP layer.

Input (Ws

xc

) Recurrence (Ws

rc

) First Pass Second Pass
N N 27.2 26.2
Y N 27.1 26.1
N Y 27.1 26.2
Y Y 27.1 26.1

tation fashion as it was shown to be beneficial in [7]. We con-
nected the SD bias to the gates (input, forget, output), cell input
activation as well as the projection. Note that, in our models no
global bias for the projection is used (b

p

= 0). The second pass
always improves the performance significantly. The best result
is reported when the SD bias is connected to the cell input acti-
vation. This is consistent with the findings in the speaker code
adaptation of BLSTM models [13]. Therefore, we investigate
the effectiveness of SD transformations by connecting them to
cell input activation.

In Table 3, we present the results when SD transformations
are estimated on the first LSTMP layer. We investigate the ef-
fect of SD transformations estimated on the input feature as well
as the recurrence. “N” is used to denote that the SD transfor-
mation is not estimated while “Y” denotes the presence of the
respective SD transformation. For all the models in Table 3, an
SD bias is connected to the cell input activation of the first layer.
Therefore, the first row of the Table 3 denotes the SD bias only
model. As can be seen, the improvement of the SD transforma-
tion is small. Furthermore, estimating an SD transformation on
the recurrence seems not beneficial. Therefore, in rest of the ex-
periments, SD transformations are only estimated on the input
features (Ws

xc

).
In Table 4, we present the results when the SD transfor-

mation is connected to different layers of the LSTM-RNN. All
models report similar performances. Since the first pass decod-
ing is slightly better when the SD transformation is connected
to the second layer, we investigate the effect of increasing the
number of bases for that SD transformation. As can be seen in
the last two rows of the table, increasing the number of bases for
the SD transformation improve the performance slightly. There-
fore, for the IHM task, increasing the adaptation power by in-
creasing the number of adaptation parameters is useful.

Table 5 shows the second pass results for scaling and vari-
ous combinations of different adaptation techniques. As can be
seen, input gate scaling (26.6%) performs slightly better than
the output gate scaling (26.9%). The scaling of the forget gate
is not successful. The performance improves when the input
gate scaling is combined with the SD bias and the SD trans-
formation based adaptation. The best performance is obtained
when the adaptation combines input gate scaling with the SD
bias.

Next, we report the results for AMI SDM task in Table
6. When the SD bias is connected to the cell input activation,



Table 4: IHM : WER % for various models with SD trans-
formation connected to different layers of the LSTM-RNN. The
number of bases in the SD transformation is given in brackets.

Layer (#bases) First Pass Second Pass #Speaker Params
1 (100) 27.1 26.1 200
2 (100) 27.0 26.1 200
3 (100) 27.1 26.2 200
2 (1000) 27.0 26.0 1100
2 (5000) 27.0 25.8 5100

Table 5: IHM : Second pass WER % for various combinations
of different adaptation techniques.

Model WER # Speaker Params
Baseline 28.1 -

+ Input gate Scale 26.6 3072
+ Output gate Scale 26.9 3072
+ Forget gate Scale Diverged 3072
+ SD bias 26.2 100

+ Input gate Scale 25.7 3172
+SD trans 26.1 200

+ Input gate Scale 25.8 3272

the performance is improved by absolute 1.4% over the LSTM-
RNN baseline after the second pass adaptation. When the SD
transformation is connected to the cell input activation of the
second LSTMP layer, the performance is improved further by
absolute 0.6% to 50.3%. However, increasing the number of
bases of the SD transformation to 1000 degrades the perfor-
mance for SDM. Similarly, when the cell input scaling is per-
formed in combination with the SD bias and SD transformation,
the performance slightly degrades to 50.5%. This is because es-
timating more adaptation parameters using unsupervised adap-
tation is more sensitive to the poor quality of the hypotheses.
Therefore, for SDM, we perform subspace scaling as mentioned
in Equation 16 to scale the input gate. The best performance of
50.2% is achieved when the adaptation is performed in com-
bination with SD transformation, SD bias, and the input gate
subspace scaling which is a 2.1% absolute improvement over
the baseline.

Finally, in Table 7, we compare the effectiveness of unsu-
pervised adaptation methods on DNN vs LSTM-RNN acoustic
models. The results are reported on both IHM and SDM tasks.
The baseline results are given in the row where the method is
“None”. For both tasks, LSTM-RNN model outperforms the
corresponding DNN baseline. As can be clearly seen, the SD
bias after the second pass of the adaptation, improves the per-
formance consistently for DNNs as well as LSTM-RNNs on
both IHM and SDM tasks. In addition, for both IHM and SDM,
the gains we observe from the CMLLR features is considerably
reduced for LSTM-RNNs in comparison when CMLLR is used
with DNNs. For ease of comparison, our best performances of
the adaptation are listed for both DNNs and LSTM-RNNs. The
best performance for DNN adaptation is observed when FHL is
used with 600 and 800 bases on IHM and SDM respectively.
For IHM task, we get the best performance of LSTM-RNN
adaptation (25.7%) when SD bias is combined with the input
gate scaling which is worse than the performance of the best
DNN result (25.1%). For the SDM task, the best performance
of the LSTM-RNN (50.2%) is significantly better than the that

Table 6: SDM : WER % for various adaptation combinations.

Model First Pass Second Pass
LSTM Baseline 52.3 -
+SD bias 51.3 50.9

+ SD trans (100) 51.0 50.3
+ Scaling 51.0 50.5
+ Subspace Scaling 50.9 50.2

+ SD trans (1000) 51.1 50.7

Table 7: The comparison of DNN vs LSTM-RNN adaptation
results for both IHM and SDM. Relative improvement are given
in the brackets.

Method Dataset DNN LSTM-RNN
None IHM 29.0 (-) 28.1 (-)

SD bias IHM 27.0 (6.9) 26.2 (6.8)
CMLLR IHM 26.3 (9.3) 26.3 (6.4)

Best IHM 25.1 (13.5) 25.7 (8.5)
None SDM 56.1 (-) 52.3 (-)

SD bias SDM 53.7 (4.3) 50.9 (2.7)
CMLLR SDM 53.2 (5.2) 50.6 (3.3)

Best SDM 51.9 (7.5) 50.2 (4.0)

of DNN (51.9%).
As can be clearly seen from Table 7, the relative gains of the

LSTM-RNN adaptation is considerably smaller to that of DNN
adaptation for both IHM and SDM tasks. Therefore, we can
claim that the adaptation of LSTM-RNN is more difficult than
adaptation of DNN. One of the reasons for this is that LSTM-
RNNs are more complex models than the feedforward DNNs.
This increased complexity of LSTM-RNNs makes adaptation
more difficult. In addition, LSTM-RNNs may already capture
and normalize the speaker characteristics. Moreover, the SD
transformations may negatively affect the modeling of the tem-
poral dependencies. Therefore, for IHM, the SD bias and the
simple scaling of the input gate outperforms the FHL-based SD
transformations.

As future work, we want to investigate the adaptation of
residual memory networks (RMNs) which are more similar to
feedforward DNNs and temporal dependencies can be modeled
efficiently as good as LSTM-RNNs [31]. Furthermore, it is in-
teresting to employ a student-teacher mechanism to learn the
bases of the SD transformation using an FHL adapted DNN
model. We believe that it may help to estimate the bases of
the SD transformation more effectively. Furthermore, we want
to investigate the adaptation of bidirectional LSTM-RNNs and
bidirectional RMNs.

7. Conclusions
In this paper, we investigated the effect of FHL-based adapta-
tion on LSTM-RNNs. Experimental results showed that when
combined with scaling of LSTM cell states’ outputs, SD trans-
formations achieved 2.3% and 2.1% absolute improvements
over the baseline LSTM systems for the AMI IHM and AMI
SDM tasks respectively. Furthermore, we observed that adap-
tation of LSTM-RNN is more difficult than DNN adaptation.
We also discussed possible reasons for that observation and the
potential future directions for LSTM-RNN adaptation.
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