
Fast Derivation of Cross-lingual Document Vectors from Self-attentive Neural
Machine Translation Model

Wei Li and Brian Mak

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

{wliax, mak}@cse.ust.hk

Abstract

A universal cross-lingual representation of documents, which
can capture the underlying semantics is very useful in many
natural language processing tasks. In this paper, we develop
a new document vectorization method which effectively selects
the most salient sequential patterns from the inputs to create
document vectors via a self-attention mechanism using a neu-
ral machine translation (NMT) model. The model used by our
method can be trained with parallel corpora that are unrelated
to the task at hand. During testing, our method will take a
monolingual document and convert it into a “Neural machine
Translation framework based cross-lingual Document Vector”
(NTDV). NTDV has two comparative advantages. Firstly, the
NTDV can be produced by the forward-pass of the encoder
in the NMT, and the process is very fast and does not require
any training/optimization. Secondly, our model can be conve-
niently adapted from a pair of existing attention-based NMT
models, and the training requirement on parallel corpus can be
reduced significantly. In a cross-lingual document classifica-
tion task, our NTDV embeddings surpass the previous state-
of-the-art performance in the English-to-German classification
test, and, to our best knowledge, it also achieves the best per-
formance among the fast decoding methods in the German-to-
English classification test.
Index Terms: cross-lingual text classification, distributed rep-
resentation, neural machine translation model

1. Introduction
Distributed representation of text has been one of the most pop-
ular topics in natural language processing. Comparing to text
features in discrete spaces, distributed representations can in-
clude richer syntactic and semantic information [1, 2, 3, 4, 5].
By embedding words, sentences or documents into a continuous
space, the syntactic relationship, semantic similarity, topic/gene
categories or other high-level linguistic information between the
embedded texts can be represented through their relative coor-
dinates in the vector space. Therefore, the distributed represen-
tation can help us discover the relationship between words and
sentences, categorizing documents and sharing the knowledge
between related texts [1, 2].

Recently along this endeavour, research on cross-lingual
distributed representation of multilingual texts has received in-
creasing attention. A cross-lingual embedding of the texts from
different languages to a unified space will enable comparison
and sharing knowledge between languages [6, 7, 8, 9, 10, 11].
In many applications, we often have very little data from users
speaking/writing in a different language. On the other hand, we
often have enough parallel sentences from unrelated corpora.
Thus, with cross-lingual embedding, we can use the unrelated

parallel texts to help us process and understand the resource-
scarce languages in such scenarios.

The existing research can be categorized into cross-lingual
word embeddings [12, 13, 7, 9] and cross-lingual text sequence
(document/sentence) embeddings [6, 14, 8]. For cross-lingual
representation of text sequence, there are several popular ap-
proaches. One is the multi-lingual extension of the original
paragraph vector [14, 9]. In this approach, a model is firstly
trained on a parallel corpus, then the document vector (as the
only free parameters) is trained on the monolingual test data.
One example is the para doc which is currently the state-of-
the-art cross-lingual document/sentence vector, achieving the
best result in the cross-lingual document classification task on
the Reuter’s RCV1/RCV2 dataset[12, 15]. The other popular
approaches include the extension of the multilingual/multi-task
sequence to sequence/vector learning frameworks [6]. The doc-
ument/sentence vector can be some intermediate state or the
output of the model (often with a penalty term to minimize the
distance between the vectors of the input sentence pair). After
having been trained on some parallel corpus, the document or
sentence vector of the test data can be obtained by a forward-
pass running on the trained model.

In this study, we present a neural machine translation
(NMT) based cross-lingual self-attentive document/sentence
vectorization model (NTDV) to convert a text sequence of vari-
able length into a fix-sized vector. The model is similar to the
line of works that uses the multilingual/multi-task sequence to
sequence learning framework. The NTDV model has the fol-
lowing characteristic: Firstly, as it only uses the forward-pass
in the production mode, it is faster than methods that require
training/optimization in producing document vectors. For the
same reason, this model does not need validation/tuning of the
hyper-parameters in the production mode, and will always pro-
duce consistent vectors given the trained model. (The train-
ing/optimization of the first approach is often sensitive to the
learning rate and parameter initialization scheme in the pro-
duction mode). Secondly, the NTDV model reuses the knowl-
edge from NMT models and the training time is reduced signif-
icantly. Finally, in the Reuter’s RCV1/RCV2 cross-lingual doc-
ument classification task, the NTDV model achieves the best re-
sult among the fast vectorization methods (which do not require
training in production mode), and it also surpasses the current
state-of-the-art method in the English-to-German classification
test.

2. Model architecture
2.1. The attention-based NMT model

Our NTDV model is built upon the attention-based NMT frame-
work [16], which adopts an encoder-decoder structure with an



(a) Training mode (b) Production mode

Figure 1: The cross-lingual self-attentive document/sentence
vectorization model.

attention mechanism that is coupled with a conditional GRU
(cGRUatt) layer [16]. The attention mechanism allows the de-
coder to pick the most salient information from the encoder ac-
cording to the decoder state at each step. The cGRUatt is a deep
GRU with two coupled recurrent units at each time steps. To-
gether with the attention mechanism, it allows better handling
of information from the past (previous outputs) and from below
(attention contexts). The encoder is composed of a word em-
bedding layer for the input language tokens and a bi-directional
GRU layer, whereas the decoder is composed of a word embed-
ding layer for previous output tokens and a cGRUatt layer.

The encoder and decoder in the model is connected by a
fully connected layer, whose input is the encoder’s hidden states
over all input tokens and whose output sets the initial state of the
conditional GRU in the decoder. The encoder also feeds infor-
mation to the decoder through an attention mechanism. The de-
coder state sj for generating the jth output token is determined
by its previous state sj−1, its previous output token yj−1 and
the context vector cj from the attention layer as follows:

sj = cGRUatt(sj−1, yj−1, cj) . (1)

Let Lx be the length of an input sequence. The encoder
output, which is the collection of the hidden states of its last
layer from all Lx frames can be represented by the matrix
H = [h1 · · ·hi · · ·hLx ]. Then cj is computed by the atten-
tion mechanism (ATT ) as a weighted mean of the encoder’s
hidden states H:

cj = ATT (H, ŝj) =

Lx∑
i

αijhi (2)

αij =
exp(eij)∑Lx

n=1 exp(enj)
(3)

eij = vT
a tanh(Uaŝj

T +Wah
T
i ) (4)

where ŝj is the intermediate hidden state in the conditional
GRU; αij is the normalized alignment weight between the ith
source token and the jth target token; Ua, Wa, va are the
model parameters used in the attention mechanism.

2.2. The self-attentive cross-lingual document/sentence vec-
torization model

As pointed out by [17, 18], the information coming from below
(the attention over the encoder’s states) mainly helps to deter-
mine the word/sentence semantic information and content —
the adequacy. On the other hand, the information coming from

Figure 2: The cross-lingual self-attentive document/sentence
vectorization model (illustrated along time axis).

the past (historical information in decoder LSTM/GRU) gener-
ally contributes to the correct production of function words and
word order — the fluency. This model focuses on extracting
the adequacy information via a self-attentive layer, which sum-
marizes the encoder information from an input text sequence of
variable length into a fix-sized matrix as a primary form of the
document/sentence representation by taking advantage of the
selective characteristic of the self-attentive layer [19].

Similar to the case of multilingual NMT model, we build
the NTDV model by creating shared layers between NMTa→b

and NMTb→a, where a→ b means translation from the source
language a to the target language b. In details, we insert be-
tween the encoders and decoders of the NMTa→b and NMTb→a

two shared layers: a self-attentive layer followed by a GRU
layer (GRUshr). By doing that, the shared layers forces the
information encoded by the encoders of both languages to be
represented in the same vector space, and thus resulting in a
distributed cross-lingual document representation.

Figure 1(a) shows the NTDV model in the training mode,
with a being English (en) and b being German (de). Dur-
ing training, given a pair of English and German sentences,
the English sentence will be processed through the encoder
of NMTen→de, the shared layers, and its decoder resulting in
the cross entropy loss of costen→de. Similarly, the German
sentence in the pair will be processed through the encoder of
NMTde→en, the same shared layers, and its decoder resulting
in the cross entropy loss of costde→en. The final loss of the
NTDV model due to this sentence pair is the sum of costen→de

and costde→en.
Inspired by the structured self-attentive sentence embed-

ding and the transformer network [19, 20], we use a self-
attentive layer with multiple heads. Let hi be the hidden state
of the encoder, after the linear projection layer, it becomes

ĥi = hiWe + be , (5)

where We is the weight matrix of the projection layer and be
is the bias. Note that We is different for different language
pairs. The self-attention vector pm produced by the mth atten-
tion head is:

gmi = softmax

(
(ĥiW

m
q + bmq )(ĥiW

m
k + bmk )T

√
dh

)
(6)

pm =

Lx∑
i=1

gmi (ĥiW
m
v + bmv ) (7)

where i is the index of input frames; m is the index of different



attention head; ĥi is the encoder state after the projection layer;
Wm

q , Wm
k , Wm

v and bmq , bmk , bmv are model parameters of the
mth attention head, where the subscripts q, k, v refer to quan-
tities related to the query, key and values in the attention mech-
anism (as described in the transformer network[19]). In this
study, although the same vectors are used for querys, keys and
values, their projection weight matrices Wm

q , Wm
k , and Wm

v

are different, and they all have the dimension dh×dh, where dh
is the number of hidden units in the self-attentive layer and the
shared GRU layer. bmq , bmk , and bmv are vectors of dimension
dh. Note also that compared with the self-attentive mechanism
in the transformer network, ĥi in our case does not attend to
other encoder states at different time frames. The reason is that
our goal is to summarize the input sequence to a fixed-length
vector, and the self-attentive layer therefore focuses only on the
overall sequential pattern as in the case of the structured self-
attentive sentence embedding[20].

For an attention system with r heads, its r self-attention
output vectors are grouped together in the context matrix P =
{p1, . . . ,pm, . . . ,pr}. If we set r to 1, then P will be a single
context vector consisting of the weighted average information
from the encoder. In general, the fixed-sized P is put through
GRUshr layer one row at a time to get an output from the GRU
which is given by

ki = GRUshr(pi,pi−1) , (8)

where pi is the ith row P. ki also goes through a projection
layer as shown in Figure 1 before being input to the decoder
part. The projected GRUshr output is given by

k̂i = kiWp + bp , (9)

where Wp is the projection weight matrix, and bp is the bias.
The projected GRUshr outputs from all the r context vectors
are grouped together in the matrix K̂ = {k̂1, . . . , k̂i, . . . , k̂r}.
K̂ is then fed to an attention mechanism similar to the attention
layer in the aforementioned NMT model to give the context vec-
tor for the decoder:

cj = ATT (K̂, ŝj) , (10)

where cj and ŝj are the same context vector and intermediate
decoder state vector as in Eq. 2. In Figure 2, the input sentence
has 3 words (or frames) and the output sentence has 4 words (or
frames). The self-attentive layer has two heads (i.e., r = 2). No
matter how long the sentence is, the self-attentive layer always
selects and summarizes the information into the context matrix
P of dimension 2× dh.

2.3. Deriving the document vectors in production mode

Figure 1(b) shows how the NTDV model works in the produc-
tion mode when the input is a German document/sentence. In
the production mode, only the encoder and the self-attentive
layer is used, and either or both of the encoder of NMTen→de

and NMTde→en may be used. If we want to use the encoder
of NMTen→de, the German sentence is first translated to En-
glish using the NMTde→en, and the translated English output
is then passed to the encoder of NMTen→de to get the context
vectors P(en) (and a ≡ en). On the other hand, the encoder of
NMTde→en may be used directly to produce the desired con-
text vectors P(de) (and b ≡ de). In this paper, we propose
the following different document/sentence representation vec-
tors in the form of summation or concatenation of the rows in

P(a) and/or P(b), where p
(a)
i and p

(b)
i are the ith row of P(a)

and P(b), respectively:

NTDVa =

r∑
i=1

p
(a)
i (11)

NTDVb =

r∑
i=1

p
(b)
i (12)

NTDVa:b = [NTDVa,NTDVb] (13)
NTDVa+b = NTDVa +NTDVb . (14)

The proposed document vectors may be produced by only
a forward-pass through the model till the self-attention layer;
no backward-propagation nor training is required. As a result,
it is very fast and the costly computation of the softmax layer
with a large vocabulary is spared. Before NTDV model training,
the neural network translation models, NMTa→b and NMTb→a,
are first trained. Their parameters are used in the NTDV model
without any re-estimation. NTDV model training only updates
the parameters of the shared layers. In this way, we signifi-
cantly reduce the training cost the NTDV model by transferring
knowledge from the NMT model to the latter.

Table 1: The dimension of various vectors.

Feature Dimension
NTDVen 1024
NTDVde 1024

NTDVen+de 1024
NTDVen:de 2048

3. Experiments
3.1. Training and text processing

We train our models on the Europarl v7 parallel corpus. The En-
glish (en) and German (de) pair of the corpus consists of about
1.9M parallel sentences with 49.7M English tokens and 52.0M
German tokens [21]. We segment words via byte-pair encoding
(BPE) [22, 23]. Unless otherwise stated, we follow the default
training and text processing settings in the NEMATUS toolkit
[16], upon which our codes are built.

In training the attention-based NMT models, we use the de-
fault setting with mini-batches of size 80, a vocabulary size of
85,000, a maximum sentence length of 50, word embeddings
of size 500, and hidden layers of size 1024. The models are
trained with the Adam optimizer [24] using the cross-entropy
loss. Training stops when the BLEU score does not improve
on the development set provided by the Workshop in Machine
Translation [14]. In training the NTDV model, we use mini-
batches of size 40 and set the number of heads r to 4. The
model parameters of NTDV are initialized by the model pa-
rameters of the trained NMT model with the exception of the
two newly added shared layers. The training procedure of the
NTDV model is basically the same as that of the NMT model
except that it always runs for five epochs with the original NMT
parameters fixed, and early stopping with an evaluation set is
not employed. In this way, we transfer the knowledge from the
attention-based NMT models to our NTDV model and the train-
ing time of the NTDV model is greatly reduced. In translation,
the attention-based NMT model in the pipeline also uses the de-



fault setting of the NEMATUS toolkit except that the beam size
is set to 1 (to increase the translation speed).

3.2. Cross-lingual document classification (CLDC) on
RCV1/RCV2

The effectiveness of the NTDVs is evaluated on the cross-
lingual document classification task on Reuter’s RCV1/RCV2
dataset [12, 15]. In this task, 1K English documents of four cat-
egories (Corporate/Industrial, Economics, Government/Social,
and Market) are given to classify the category of the 5K German
documents in the test set, and vice versa. The NTDV model will
produce a document representation vector for each document in
either language. As a document in the corpus usually consists of
several sentences, there are two ways to produce the document
vector. One method is to treat the entire document as a contin-
uous sequence of words and uses the NTDV model to produce
a single NTDV for the document. We will re-name such doc-
ument vectors simply as DV for the sake of brevity. The other
method is to produce one NTDV for each sentence, and then
sum and average the sentence NTDVs together to form the fi-
nal (sentence-based) document vector, which will be denoted as
SV.

During production mode, the max length of the inputing
sequence is set to be 500 for SV and 2000 for DV. Sequences
longer than these thresholds would be cut off to save the mem-
ory space. A linear SVM classifier from scikit-learn [25] is
trained on the document vectors of one language produced from
the training set. The default settings of SVM training in the
scikit-learn toolkit are used except that the maximum number of
iterations is set to 5000 and the class weight is set to ‘balanced’.
After training, the SVM classifier will be used to classify the
category of input document vectors of the opposite language in
the test set.

4. Results
Table 2 shows the performance of various methods on the
CLDC task. The method para doc marked with * is not con-
sidered as a fast method in production mode as it would re-
quire parameter training during testing. Note that all the base-
lines are cited from the original publications; for those publi-
cations that report multiple results with and without using ad-
ditional mono-lingual data, we cite the result that does not use
additional data for a fair comparison. Among all the models,
the BAE model [7] requires additional monolingual data (from
the CLDC datasets) during training. MT base is the machine
translation baseline in the original study [12], while para doc
achieves the best performance currently. All the other exist-
ing methods fall very far behind para doc in the de→en cate-
gory. However, DVs and SVs produced by our proposed NTDV
model give better performance than most of the existing meth-
ods with the only exception of para doc which still performs
better than ours in the de→en task. More specifically, our
DVen:de has the best en→de classification performance and
outperforms para doc with a significant margin. In the de→en
task, our SVen:de achieves the second best result that outper-
forms the third best also by a significant margin.

Our NTDV model has the advantage that it does not require
validation and hyper-parameter tuning on the monolingual data
at test time. It can be directly applied to the text in the CLDC
task after the model has been trained on the parallel data. Note
that our goal is to derive document/sentence vectors quickly,
as we believe that it would be impractical to do adaptive train-

ing in many online systems. Although the NTDV model re-
quires training NMT models, it is trained on the same standard
parallel data as in the previous studies. This is different from
adopting an external translator (e.g., Google translator), which
would bring in extra information and makes the comparison un-
fair. Moreover, the decoding time of the translator is also faster
than parameter training during testing. Nevertheless, we would
like to mention that the para doc model has a simpler structure
and would train faster than ours.

Although different DV and SV variants may be produced by
our NTDV model, we are glad to see that the performances of
DV/SV derived from only one language (e.g., DVen or SVen)
are not very far behind those DV/SV derived from two lan-
guages (e.g., DVen:de or SVen:de). Firstly, since they are pro-
duced by half of the NTDV model, they can be produced faster.
Secondly, it is easy to expand the cross-lingual framework into a
multi-lingual framework. For instance, in a plausible multilin-
gual NTDV modeling framework involving n languages, one
language (e.g., English) may be designated as the pivot lan-
guage, and an NMT model is separately trained between the
pivot language and each of the remaining (n− 1) languages to
obtain NMTen→b, NMTen→c, NMTen→d, etc. where b, c, d
represent different languages. Then an NTDV model may be
constructed with all the n NMT models together with the two
shared layers similar to the structure shown in Figure 1(a).

Table 2: The classification accuracy on the CLDC task (%).

Method en→de de→en Training Corpora
para doc * [14] 92.7 91.5 parallel

BAE [7] 91.8 74.2 parallel + mono
UnsupAlign [26] 90.7 80.0 parallel

BRAVE [8] 89.7 80.1 parallel
MultiVec [9] 88.2 79.1 parallel

ADD [6] 86.4 74.7 parallel
BI [6] 86.1 79.0 parallel

MT base [12] 68.1 67.4 -
DVen 92.58 82.53 parallel
DVde 92.16 79.38 parallel

DVen:de 94.39 82.70 parallel
DVen+de 93.52 82.25 parallel

SVen 93.30 82.55 parallel
SVde 91.74 79.55 parallel

SVen:de 94.30 83.18 parallel
SVen+de 93.22 81.37 parallel

5. Conclusion
In this paper, we present a NTDV model to produce cross-
lingual document embeddings. The NTDV model can produce
good cross-lingual document vectors fast in a forward-pass of
the model. Thus, it would be especially useful in systems that
have a stringent limitation in classification time (such as in an
online system).
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