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Abstract. Recently, we revisited the fast adaptation method called ref-
erence speaker weighting (RSW), and suggested a few modifications. We
then showed that the algorithmically simplest technique actually outper-
formed conventional adaptation techniques like MAP and MLLR for 5-
or 10-second supervised adaptation on the Wall Street Journal 5K task.
In this paper, we would like to further investigate the performance of
RSW in unsupervised adaptation mode, which is the more natural way
of doing adaptation in practice. Moreover, various analyses were carried
out on the reference speakers computed by the method.

1 Introduction

In practice, most automatic speech recognition systems come with a speaker-
independent (SI) acoustic model that is expected to work sufficiently well with
most users in general. However, the recognition performance can be further im-
proved for a particular user if the SI model is fine-tuned to the speaking char-
acteristics of the user through an appropriate speaker adaptation procedure. In
particular, fast unsupervised speaker adaptation method that requires only a
few seconds of adaptation speech from the users without knowing its content in
advance is more desirable, and in some cases (e.g. phone enquiries), is the only
feasible adaptation solution. Two similar fast speaker adaptation methods were
proposed at about the same time: reference speaker weighting (RSW) [1, 2] in
1997 and eigenvoice (EV) [3, 4] in 1998. Both methods have their root in speaker-
clustering-based methods [5]. In both methods, a speaker model is vectorized and
a new speaker-adapted (SA) model is required to be a linear combination of a
set of reference vectors. In eigenvoice, an orthogonal eigenspace is derived from
a set of training speakers by principal component analysis, and the eigenvectors,
now called eigenvoices, are used as the reference vectors. On the other hand,
RSW simply selects a subset of training speakers as the references.

In [6], we revisited RSW with further simplifications. We also suggested to
select the reference speakers by their likelihoods on the adaptation speech.
Supervised adaptation using 5- and 10-second of speech on the Wall Street
Journal (WSJ0) 5K-vocabulary task showed that the algorithmically simplest
RSW method actually outperformed conventional adaptation methods like the



Bayesian-based maximum a posteriori (MAP) adaptation [7], and the transformation-
based maximum likelihood linear regression (MLLR) adaptation [8] as well as
eigenvoice and eigen-MLLR [9]. Here, we would like to further our investigation
on RSW by carrying out unsupervised adaptation which is the more natural way
of doing adaptation in practice, as well as performing various analyses on the
reference speakers computed by the method.

This paper is organized as follows. We first review the theory of reference
speaker weighting (RSW) in the next Section. Unsupervised RSW adaptation
was then evaluated on the Wall Street Journal corpus WSJ0 in Section 3. The
experiments are followed by various analyses in Section 4. Finally, in Section 5,
we present some concluding remarks.

2 Reference Speaker Weighting (RSW)

In this section, we will review the theory of reference speaker weighting in its sim-
plest form. It is basically the same as that in [2] except with a few modifications
that we have outlined in [6].

Let’s consider a speech corpus consisting of N training speakers with di-
verse speaking or voicing characteristics. A speaker-independent (SI) model is
first estimated from the whole corpus. The SI model is a hidden Markov model
(HMM), and its state probability density functions are modeled by mixtures of
Gaussians. Let’s further assume that there are a total of R Gaussians in the
SI HMM. Then, a speaker-dependent (SD) model is created for each of the N
training speakers by MLLR transformation [8] of the SI model, so that all SD
models have the same topology. To perform RSW adaptation, each SD model is
represented by what is called a speaker supervector that is composed by splicing
all its R Gaussian mean vectors together.

In RSW adaptation, a subset of M reference speakers Ω(s) is chosen among
the N training speaker with M ≤ N for the adaptation of a new speaker s
as depicted in Fig. 1. (Notice that the set of reference speakers, in general, is
different for each new speaker.) Let Y = {y1,y2, . . . ,yM} be the set of reference
speaker supervectors. Then the RSW estimate of the new speaker’s supervector
is

s ≈ s(rsw) =
M∑

m=1

wmym = Yw , (1)

and for the mean vector of the rth Gaussian,

s(rsw)
r =

M∑
m=1

wmymr = Yrw . (2)

where w = [w1, w2, . . . , wM ]′ is the combination weight vector.
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Fig. 1. Concept of reference speaker weighting.

2.1 Maximum-Likelihood Estimation of Weights

Given the adaptation data O = {ot, t = 1, . . . , T}, one may estimate w by
maximizing the following Q(w) function:

Q(w) = −
R∑

r=1

T∑
t=1

γt(r)(ot − s(rsw)
r (w))′C−1

r (ot − s(rsw)
r (w))

where γt(r) is the posterior probability of observing ot in the rth Gaussian, and
Cr is the covariance matrix of the rth Gaussian. The optimal weight vector may
be found by simple calculus as follows:

∂Q
∂w

= 2
R∑

r=1

T∑
t=1

γt(r)Y′
rC

−1
r (ot −Yrw) = 0

⇒ w =

[
R∑

r=1

(
T∑

t=1

γt(r)

)
Y′

rC
−1
r Yr

]−1 [ R∑
r=1

Y′
rC

−1
r

(
T∑

t=1

γt(r)ot

)]
. (3)

Thus, the weights w may be obtained by solving a system of M linear equa-
tions. The solution requires finding the inverse of an M ×M matrix and has a
computational complexity of O(M3). Notice also that unlike Hazen’s formulation
in [2], no constraints are imposed on the combination weights.



2.2 Maximum-Likelihood Reference Speakers

In [6], we showed that good RSW adaptation performance could be achieved
by selecting those training speakers that gave the highest likelihoods of the
adaptation speech from a test speaker as his/her reference speakers. We call
these reference speakers the maximum-likelihood (ML) reference speakers. We
continue to use ML reference speakers for RSW adaptation evaluation in this
paper.

3 Experimental Evaluation

Unsupervised fast speaker adaptation was carried out on the Wall Street Journal
WSJ0 [10] 5K-vocabulary task using our modified reference speaker weighting
(RSW) method.

Table 1. Duration statistics (in seconds) of the test utterances of each WSJ0 test
speaker.

Speaker ID #Utterances min max mean std dev

440 40 4.32 12.76 8.23 6.83

441 42 2.82 10.94 6.89 4.14

442 42 2.42 11.85 7.24 4.62

443 40 3.34 14.19 8.01 5.49

444 41 2.36 11.13 7.88 4.49

445 42 2.55 10.70 5.81 4.18

446 40 2.99 12.28 7.14 5.19

447 43 2.06 11.55 7.33 5.78

3.1 WSJ0 Corpus and the Evaluation Procedure

The standard SI-84 training set was used for training the speaker-independent
(SI) model and gender-dependent (GD) models. It consists of 83 speakers (41
male speakers and 42 female speakers) and 7138 utterances for a total of about
14 hours of training speech. The standard nov’92 5K non-verbalized test set was
used for evaluation. It consists of 8 speakers (5 male and 3 female speakers), each
with about 40 utterances. The detailed duration statistics of the test utterances
of each speaker is given in Table 1.

During unsupervised adaptation, the content of each test utterance was not
assumed to be known in advance. All adaptation methods under investigation
were run with 3 EM iterations. During each iteration, the current speaker-
adapted (SA) model was used to decode the adaptation utterance and to provide



the Gaussian mixture posterior probabilities, then the adaptation method was
carried out to get a new SA model. At the first iteration, the SI model was used
for decoding instead. The last SA model was used to decode the same utterance
again to produce the final recognition output. Results from all speakers and all
utterances are pooled together and their average results are reported. Finally, a
bigram language model of perplexity 147 was employed in this recognition task.

3.2 Acoustic Modeling

The traditional 39-dimensional MFCC vectors were extracted at every 10ms
over a window of 25ms. The speaker-independent (SI) model consists of 15,449
cross-word triphones based on 39 base phonemes. Each triphone was modeled
as a continuous density HMM (CDHMM) which is strictly left-to-right and has
three states with a Gaussian mixture density of 16 components per state; there
are 3,131 tied states in total. The SI model has a word recognition accuracy of
92.60% on the test data1. GD models were then created by MAP adaptation
from the SI model using gender-specific training data, and they give a word
recognition accuracy of 92.92%.

Furthermore, 83 speaker-dependent (SD) models were created by MLLR
adaptation using a regression class tree of 32 classes for RSW adaptation meth-
ods.

3.3 Effect of the Number of Reference Speakers

We first investigate how many ML reference speakers are sufficient for RSW
adaptation. Unsupervised RSW adaptation using only a single utterance at a
time was performed with 3 EM iterations. We started with 10 ML reference
speakers and then doubled the number until all 83 training speakers were used.
The results are plotted in Fig. 2. The figure shows that although using all train-
ing speakers as reference speakers gives good results, the best adaptation per-
formance actually is obtained with 40 reference speakers, though the difference
is small. It also shows that RSW performance saturates fast after about half of
training speakers are used as reference speakers.

3.4 Comparative Study

RSW adaptation was compared with the following models and common adapta-
tion methods:

SI: the SI model.
GD: the gender-dependent models.
MAP: the SA model found by MAP adaptation [7].
MLLR: the SA model found by MLLR adaptation [8].

1 The accuracy of the SI model is better than what we had reported in [6] because
better values of grammar factor and insertion penalty are used.
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Fig. 2. Effect of the number of ML reference speakers on RSW.

Table 2. Comparing RSW with the SI and GD models, MAP and MLLR adaptation
on WSJ0. Results are word accuracies in %. (WERR is word error rate reduction in
%, and M is the number of reference speakers.)

Model/Method Word Accuracy WERR

SI 92.60 —
GD 92.98 5.14

MAP 92.60 0.0
MLLR (3 blocks) 93.24 8.65

RSW (M=10) 93.07 6.35
RSW (M=20) 93.18 7.84
RSW (M=40) 93.69 14.7
RSW (M=83) 93.61 13.6

For the evaluation using GD models, the test speaker’s gender was assumed
known and the GD model of the corresponding gender was applied to his/her
utterances; thus, there is no error from gender detection2. For each adaptation
method, we tried our best effort to get the best performance. MAP and MLLR
were performed using HTK. For MAP, scaling factors in the range of 3–15 were
attempted, but none of them gave any improvement; MLLR made use of a regres-

2 As will be explained in Section 4.2, the gender of speaker 442 is actually female.



sion tree of 32 regression classes (though it was found actually in most cases, only
a single global transform was employed) and block-diagonal transforms (with 3
blocks) as there were no improvement from using full-MLLR transforms; finally,
RSW adaptation using 10, 20, 40, and 83 ML reference speakers was attempted
for the comparison. Again, each time, only a single utterance was used for unsu-
pervised adaptation and 3 EM iterations were run. The results are summarized
in Table 2.

From Table 2, we are again surprised that the algorithmically simplest RSW
technique actually gives the best fast adaptation performance.

3.5 Saturation Effect of RSW

A more detailed look at the adaptation performance of MLLR and RSW (using
40 ML reference speakers) across the three EM iterations is shown in Fig. 3.
It can be seen that MLLR does not improve much after the first iteration and
RSW saturates after the second iteration.
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Fig. 3. Saturation effect of MLLR and RSW adaptation on WSJ0.

4 Analysis

In this section, we would like to analyze the maximum-likelihood (ML) reference
speakers found for each test speaker from each test utterance.



Table 3. Consistency percentage of ML reference speakers found for each WSJ0 test
speaker. (M is the number of reference speakers.)

Speaker ID M = 10 M = 20 M = 40

440 0.830 0.854 0.908

441 0.790 0.820 0.903

442 0.860 0.863 0.903

443 0.853 0.848 0.978

444 0.868 0.870 0.915

445 0.919 0.920 0.899

446 0.815 0.794 0.887

447 0.865 0.887 0.916

Overall 0.850 0.857 0.913

4.1 Consistency of ML Reference Speakers

Since each test speaker has about 40 test utterances for adaptation, it will be
interesting to see how likely that the same ML reference speakers are selected
for each test utterance of the same test speaker. To do that, during unsupervised
RSW adaptation using M reference speakers, the M ML reference speakers of
each test utterance were recorded. Then all the ML reference speakers over all
test utterances of the same test speaker are sorted according to their frequen-
cies. Finally the total frequency of the M most frequent reference speakers are
found and the percentage of their contribution over all the reference speakers is
computed. The percentage is used as a measure of how consistent are the ML
reference speakers found by using any utterance of a test speaker. The reference
speaker consistency percentages for each test speaker is summarized in Table 3.

From Table 3, we can see that the consistency is quite high. We may con-
clude that (1) finding reference speakers by maximizing the likelihood of a test
speaker’s adaptation speech is effective, and (2) one may find the ML reference
speakers using any utterance of a test speaker.

4.2 Consistency of ML Reference Speakers’ Gender

Since gender is generally considered as a major factor affecting one’s voicing
characteristics, it is interesting to see if one’s reference speakers have the same
gender as oneself. Here is our analysis procedure: from the RSW unsupervised
adaptation using M reference speakers of each of the N test utterances of a test
speaker, there are totally MN reference speakers; among those MN reference
speakers, count how many of them have the same gender as the test speaker’s,
and compute their ratio which we call the gender consistency percentage. Table 4
lists out the gender consistency percentages of all the 8 test speakers.



Table 4. Consistency pencentage of the gender of ML reference speakers found for
each WSJ0 test speaker. (M is the number of reference speakers.)

Speaker ID Gender M = 10 M = 20 M = 40

440 male 0.958 0.920 0.773

441 female 0.993 0.956 0.830

442 male 0.260 0.365 0.368

443 male 1.000 1.000 0.899

444 female 0.998 0.968 0.812

445 female 0.902 0.893 0.758

446 male 0.803 0.708 0.613

447 male 0.991 0.986 0.833

Overall — 0.862 0.849 0.735

442 as female — 0.923 0.883 0.769

We find that when 10 reference speakers are employed by RSW adaptation,
half of the 8 test speakers have a gender consistency percentage close to 100%.
The consistency percentage is particular bad for the test speaker labeled as 442.
However, after we listened to speaker 442’s utterances, we believe that there is
an error in the gender label and the speaker is actually a female. The last row of
Table 4 is obtained by correcting speaker 442’s gender to female. On the other
hand, as expected, the gender consistency percentage drops as more reference
speakers are employed in RSW adaptation. The high percentages suggest that (1)
the common use of gender-dependent models for speech recognition is sensible,
and (2) our approach of finding ML reference speakers may be modified to a
gender detection method.

5 Conclusions

In this paper, we show that reference speaker weighting is effective for fast
speaker adaptation in unsupervised mode as well as in supervised mode (the
latter had been investigated in [6]). Its performance is better than MAP and
MLLR on WSJ0 when only one utterance is available for unsupervised adapta-
tion. It is also a very simple algorithm. It is also found that it is not necessary to
use all training speakers as reference speakers and for this particular task, using
half of training speakers actually gives slightly better adaptation results. Anal-
yses on the reference speakers found using ML criterion show that the chosen
reference speakers are very consistent across utterances from the same speaker
in terms of their identity or gender.
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