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Abstract
Recent research has shown that using senone posteriors for i-
vector extraction can achieve outstanding performance. In this
paper, we extend this idea to robust speaker verification by
constructing a deep neural network (DNN) comprising a deep
belief network (DBN) stacked on top of a denoising autoen-
coder (DAE). The proposed method addresses noise robustness
in two perspectives: (1) denoising the MFCC vectors through
the DAE and (2) extracting noise robust bottleneck (BN) fea-
tures and senone posteriors from the DBN for total-variability
matrix training and i-vector extraction. The DAE comprises
several layers of restricted Boltzmann machines (RBM), which
are trained to minimize the mean squared error between the
denoised and clean MFCCs. After training the DAE, three
layers of RBMs are put on top of it to form the DNN. The
whole network is fine-tuned by backpropagation to minimize
the cross-entropy between the senone labels and network out-
puts. This architecture allows us to extract BN features and
estimates senone posteriors given noisy MFCCs as input, re-
sulting in robust BN-based senone i-vectors. Results on NIST
2012 SRE show that these senone i-vectors outperform the con-
ventional i-vectors and the BN-based i-vectors in which the pos-
teriors are obtained from a GMM.
Index Terms: speaker verification, i-vectors, senone posteriors,
deep learning, denoising autoencoders.

1. Introduction
In recent years, the i-vector approach [1] that confines the
speaker and channel variability into a low dimensional sub-
space has dominated the speaker verification community. Due
to the great success of deep learning [2], a lot of effort has
been made on combining i-vectors and deep neural networks
(DNNs). There are several ways to achieve this combination.
For example, in [3, 4], researchers explored the potential of
using bottleneck (BN) features extracted from deep belief net-
works (DBNs) to replace the standard mel-frequency cepstral
coefficients (MFCCs) [5]. As another example, in [6], DBNs
pre-trained by contrastive divergence [7], were used to generate
the posteriors of the mixtures of a universal background model
(UBM).

Inspired by the great success of DNNs [8], convolutional
neural networks (CNNs) [9] and recurrent neural networks
(RNNs) [10, 11] in large vocabulary continuous speech recog-
nition, an i-vector extraction method that uses the posteriors
of senones rather than the posteriors of GMM-mixtures was
proposed in [12, 13]. Aligning acoustic frames to senones al-
lows direct comparisons of speakers based on the same set of

The work described in this paper was partially supported by grants
from the Research Grants Council of the Hong Kong Special Admin-
istrative Region, China (Project Nos. PolyU 152068/15E and HKUST
616513).

sub-phonetic units produced by the speakers [14]. In [15],
the method was extended to replace the MFCCs in [12] by
bottleneck features extracted from a DNN. A similar idea has
also been applied to i-vector based DNN adaptation for robust
speech recognition [16].

DNNs are also applicable to restoring spectral vectors for
speech enhancement [17, 18] and restoration of unreliable i-
vectors in short-utterance speaker recognition [19]. The idea
is to use denoising deep autoencoders (DAE) [20, 21, 22] to de-
noise or restore speech either in the spectral domain or in the
i-vector space.

This paper explores the use of DNNs for extracting ro-
bust bottleneck features from noisy speech and for computing
senone posteriors for BN-based i-vector extraction. We have re-
cently proposed a denoising deep classifier (DDC) by stacking
restricted Boltzmann machines (RBMs) on the top of a DAE
[23]. The whole network was trained to produce the posteriors
of speaker IDs given noisy speech as input. Bottleneck features
were then extracted from the RBM layer just below the output
(softmax) layer. Results in [23] suggest that the DAE is very
effective in suppressing the effect of noise in the input speech,
making the BN feature noise robust. A drawback of the method,
however, is that the BN vectors of the same utterance are very
close to each other in the BN space, causing numerical difficulty
when training the BN-based UBM and the total variability ma-
trix. In this paper, we proposed to solve this problem by train-
ing the DDC to produce senone posteriors instead of speaker
posteriors. The advantage of this remedy is that as long as a
training utterance is phonetically balance, the BN vectors ex-
tracted from the RBM layer will scatter over different regions of
the BN space. Together with the denoising capability of DAE,
the proposed denoising deep classifier can produce noise robust
BN features and robust senone posteriors for i-vector extrac-
tion. Experimental results on NIST 2012 SRE demonstrate that
the proposed BN-based i-vectors are less susceptible to babble
noise, even at 0dB.

2. System Overview
2.1. Conventional i-vector extractor

I-vectors, based on factor analysis, is a dimension reduction
method that compresses the speaker and channel information of
GMM-supervectors into a subspace. Given the i-th utterance,
we denote Oi = {oi1, . . . ,oiTi} as a set of F -dimensional
acoustic feature vectors, which are assumed to follow a mixture
distribution:

p(oit) =
∑
c

πcp(oit|c), c = 1, . . . , C

where p(oit|c) is the conditional likelihood of oit and πc’s are
the mixture weights.



In the conventional i-vector framework, the GMM-
supervector representing the i-th utterance is assumed to follow
a factor analysis model of the form:

µi = µ
(b) + Twi + εi,

where µ(b) is the supervector formed by stacking the mean vec-
tors of the UBM, T is a CF × D low-rank total variability
matrix (T-matrix) modeling the speaker and channel subspace,
wi is a latent factor of dimensionD, and εi is the residual noise
following a zero-mean Gaussian distribution. In practice, εi is
assumed to follow a Gaussian distribution: εi ∼ N (0,Σ(b)),
where Σ(b) is the covariance matrix of the UBM.

Given N training utterances, the T-matrix can be estimated
by the following EM algorithm [24, 25]:
• E-step:

〈wi|Oi〉 = L−1
i

∑
c
T ᵀ

cΣ
−1
c f̃ ic,

〈wiw
ᵀ
i |Oi〉 = L−1

i + 〈wi|Oi〉〈wi|Oi〉ᵀ,
L−1

i = I + T ᵀ(Σc)
−1N iT , i = 1, ...., N ;

•M-step:

T c =
[∑

i
f̃ ic〈wi|Oi〉ᵀ

] [∑
i
Nic〈wiw

ᵀ
i |Oi〉

]−1

.

Here, i indexes the set of training utterances, T c is the c-th
partition of T , Σc is the c-th block of Σ(b), and Nic and f̃ ic

are the 0th- and 1st-order Baum-Welch statistics respectively:

Nic =
∑

t
γc(oit),

f̃ ic =
∑

t
γc(oit)(oit − µc).

Given the t-th frame of the i-th utterance, oit is the MFCC
vector of the t-th frame and γc(oit) is the posterior of the c-th
mixture component in the UBM:

γc(oit) =
λ
(b)
c N (oit|µ(b)

c ,Σ
(b)
c )∑C

j=1 λ
(b)
j N (oit|µ(b)

j ,Σ
(b)
j )

,

where θ = {λ(b)
j ,µ

(b)
j ,Σ

(b)
j }

C
j=1 are UBM parameters.

2.2. Generalized i-vector extractor

In most systems, {µc} and {Σc} are obtained from the UBM.
However, they can also be obtained using the sufficient statistics
as follows:

µc =

∑
i

∑
t γc(oit)oit∑
iNic

Σc =

∑
i Sic∑
iNic

,

where Sic =
∑

t γc(oit)(oit − µc)(oit − µc)
ᵀ. There-

fore, without the UBM, we can still estimate the T-matrix and
i-vectors as long as the Baum-Welch statistics are available.
In fact, only the observed vectors oit and mixture posteriors
γc(oit) are necessary for i-vector extraction.

For example, we may replace the MFCC by other types of
acoustic features and estimate the mixture posteriors γc(oit)
from other model rather than the UBM Specially, the acoustic
feature vectors and mixture posteriors can respectively be writ-
ten in more general forms:

oit = f(sit), γc(sit) = P (c|sit), (1)
where sit represents the speech signal in a contextual window
comprising multiple frames centered at frame t and f(sit) is a
function that extracts acoustic vectors from sit.

2.3. DNN with Denoising Autoencoder

In [13], P (c|sit) are given by a DNN which is trained to pro-
duce the posteriors of senones given multiple frames of MFCCs
as input. Here, we train a DNN formed by stacking a DBN on
top of a denoising deep autoencoder [23] to improve the noise
robustness of P (c|sit). Furthermore, to enrich the contextual
information in oit, they are extracted from the bottleneck layer
just below the softmax layer of the DNN. More precisely, f(sit)
in Eq. 1 represents the combined effect of the denoising opera-
tion in the DAE and the feature extraction operation in the DBN
using contextual MFCCs (sit) as input.

Fig. 1 illustrates the procedures to train our denoising deep
classifier.1 To equip our autoencoder with denoising ability, we
used both clean and noisy speech as input and their correspond-
ing clean counterparts as target outputs, with the squared loss as
the error function. In the RBM pre-training, only the first half
of the RBMs are needed to be trained, and the second half of
the RBMs are their mirrored ones due to the symmetry of the
autoencoder. Since we used MFCCs as inputs to the DNN, the
first RBM is a Gaussian-Bernoulli RBM and the last layer of
the autoencoder is linear.

Once the denoising deep autoencoder has been trained, we
built the denoising deep classifier using the senone labels as the
targets. By adding three layers of RBMs on the top of the DAE
followed by backpropagation fine-tuning, the nextwork can ex-
tract the phonetic information even if the input is noisy. Al-
though the whole denoising deep classifier is fine-tuned without
parameter fixing in the bottom layers, the part of previous DAE
may still keep the denoising ability.

The first RBM on top of the DAE is Gaussian-Bernoulli and
the last RBM is Bernoulli-Gaussian where the Gaussian hidden
layer is of small size. The reason is that we aim to extract the
low dimensional BN features with Gaussian distributions from
the BN layer — the one below the softmax output layer. The BN
features are used to replace MFCCs in the i-vector framework.

Except for the BN layer and the last layer of the DAE, all
hidden layers comprise sigmoid units. The output comprises
softmax nodes. More specifically, assume that there are K dis-
tinct senones, the DNN outputs are given by

yk(x) =
ehk∑K

k′=1 e
h′
k

, k = 1, . . . ,K,

where x is the input to the DNN, hk is the activation of the k-th
output node, and yk(x) is the softmax output at node k. The
network is trained by minimizing the cross-entropy:

E(X ,Z, C) = −
∑K

i=1

∑Mi

j=1

∑K

k=1
zi,j,k log(yk(xi,j))

where zi,j’s are one-of-K vectors indicating to which senone
the input vector xi,j belongs and Mi is the number of vectors
from senone i.

2.4. Senone i-vectors

Sections 2.2 and 2.3 give us a new i-vector framework: senone i-
vectors. If we can integrate the DDC into i-vector extractor, the
resulting senone i-vectors should be noise robust. They should
also outperform the conventional i-vectors due to the phonetic
information from the BN layers.

Fig. 2 illustrates the procedure of senone i-vector extrac-
tion. As we have discussed in Section 2.2, only the 0th-, 1st-

1In the sequel, we denote a DNN equipped with a DAE in the bottom
layers (Fig. 2) as denoising deep classifier (DDC).
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Figure 1: Procedure of training the denoising deep classifier.

and 2nd-order Baum-Welch statistics are needed for T-matrix
training, and the 0th- and 1st-order statistics are necessary for
i-vector extraction. Our idea is to replace MFCC acoustic fea-
tures and the UBM posteriors by the BN features and senone
posteriors from the DDC (DNN with DAE).

Since the BN features are highly correlated, we used prin-
cipal component analysis (PCA) whitening to perform decor-
relation. The decorrelation process allows us to use diagonal
covariance matrices for the BN-based UBM.

Following the notation in Section 2.2, the procedure for ex-
tracting senone i-vectors is as follows:

• BN feature vectors: oit = BN(sit)

• Senone posteriors: γc(sit) = PDNN (c|sit), which is the
output of the c-th node in the softmax output layer.

• Baum-Welch statistics:

Nic =
∑

t
PDNN (c|sit),

f̃ ic =
∑

t
PDNN (c|sit)(BN(sit)− µc),

Sic =
∑

t
PDNN (c|sit)(BN(sit)− µc)(BN(sit)− µc)

ᵀ,

where:

µc =

∑
i

∑
t γc(sit)BN(sit)∑

iNic
, Σc =

∑
i Sic∑
iNic

.

Sic =
∑

t
γc(sit)(BN(sit)− µc)(BN(sit)− µc)

ᵀ.

Therefore we can combine the BN features and DNN posteriors
to generate the senone i-vectors, and this combination integrates
the phonetic information in the DNN into the i-vectors.

3. Experiments
3.1. Speech data and feature extraction

Speaker verification experiments were performed on the NIST
2012 SRE under Common Condition 4 (CC4). This common
condition involves 723 target speakers with 7116 target utter-
ances and 3900 test utterances. Each utterance is about 10 to
300 seconds long, sampled at 8kHz, and spoken in English.
The baseline is a conventional i-vector/PLDA system, where the
acoustic features are MFCCs and the posteriors were obtained
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Figure 2: Procedure of senone i-vector extraction.

from a GMM-based UBM with 1024 mixtures. 19 MFCCs and
log-energy were computed for each frame. Together with their
1st and 2nd derivatives, a 60-dimensional MFCC vector was
obtained for every 20-ms frame. Feature warping were then ap-
plied.

All i-vector extractors have 500 total factors. The PLDA
further reduces the speaker subspace to 150 dimensions.

3.2. Senone label extraction

We used a DNN-HMM acoustic model trained on SwitchBoard-
1 release 2 to obtain the senone label for each frame.
SWitchBoard-1 release 2 contains approximately 290 hours of
US English telephone conversations spoken by 500 speakers.
The 4870 conversation sides were spliced into 259,890 utter-
ances for acoustic modeling. The original DNN has 6 hid-
den layers with 2048 nodes per layer, and an output softmax
layer with 8704 nodes, corresponding to 8704 clustered states
(senones). We further clustered the 8704 senones to 2000
senones, resulting in a DNN with 2000 outputs nodes. The
features are 13-dimensional cepstral mean-variance normalized
(CMVN) MFCCs, and they were extracted from speech data
every 10ms over a window of 25ms. For each frame, its neigh-
bouring 4 frames were included and transformed by linear dis-
criminative analysis (LDA) to 40 dimensions, followed by max-
imum likelihood linear transformation. Speaker adaptation was
also applied with feature-space maximum likelihood linear re-
gression (fMLLR).

For each frame, the fMLLR-transformed vectors of the 5
preceding and 5 succeeding frames were fed to the DNN, which
outputs the posterior probabilities of different senones, and the
one with the highest posterior is the senone label for the frame.

3.3. Training of denoising deep classifier

The senone labels produced by the DNN-HMM were used as
targets for training the denoising deep classifier (DDC) shown
in Fig. 1. The FaNT tool [26] was used to add babble noise
to the 7116 target-speaker utterances of CC4 at 15dB, 6dB
and 0dB respectively. The input of the DDC comprises eleven
60-dimensional MFCC vectors extracted from 11 contextual
frames, which amounts to 20×11 = 220 input nodes. Element-



Table 1: Performance of various i-vector/PLDA systems in NIST 2012 SRE (CC4, male speaker, core task) with test utterances contam-
inated with different levels of babble noise. DNN2 is the DNN with DAE (Fig. 2). DNN1 has the same structure as DNN2, but its bottom
layers are not a DAE.

Original 15dB 6dB 0dB
Acoustic Features Posteriors from EER minDCF EER minDCF EER minDCF EER minDCF

MFCC GMM 3.675 0.311 3.495 0.310 3.842 0.406 6.515 0.720
BN Features from DNN1 DNN1 3.346 0.268 2.650 0.223 2.990 0.286 3.419 0.446
BN Features from DNN2 DNN2 3.243 0.268 2.403 0.211 2.882 0.277 3.741 0.453

Table 2: Performance of BN-based i-vector/PLDA systems
based on various posteriors in NIST 2012 SRE (CC4, male
speaker, core task) with test utterances contaminated with dif-
ferent levels of babble noise. DNN2 is the DNN with DAE
(Fig. 2).

Posteriors from
GMM DNN2

15dB EER 3.269 2.448
minDCF 0.263 0.236

6dB EER 3.493 2.774
minDCF 0.368 0.311

0dB EER 4.608 4.503
minDCF 0.551 0.544

wise z-norm was applied to the 220 inputs so that Gaussian-
Bernoulli RBM pre-training can be applied. As shown in Fig. 1,
the DAE has a structure 220-256-256-256-220, where the first
and last values are the number of inputs and outputs, respec-
tively.

After the DAE had been fine-tuned by backpropagation,
three RBMs were put on the top of the DAE, where the bottom
one is a Gaussian-Bernoulli RBM and the top one is a Bernoulli-
Gaussian RBM. Backpropagation fine-tuning was then applied
to the combined DAE and RBMs using the 2000 senone labels
as target outputs with the one-of-K coding scheme. As shown
in Fig. 1, the final DDC has a structure 220-256-256-256-220-
256-256-60-2000, where the last softmax layer has 2000 nodes
and the bottleneck layer has 60 nodes.

As the procedure in Section 2.4 and Fig. 2 shown, we
can obtain the senone i-vectors by combining BN features and
senone posteriors. With the same PLDA back-end as the base-
line, we can compare the performance of senone i-vectors and
conventional i-vectors.

3.4. Results on NIST 2012 SRE with babble noise

Table 1 shows the EER and minDCF of various i-vector/PLDA
systems that use different acoustic features and different ways
of computing the senone posteriors. To investigate the noise
robustness of senone i-vectors, we used the FaNT tool to add
babble noise to the test utterances at SNR of 15dB, 6dB and
0dB, respectively. Because some of the test utterances in CC4
have SNR lower than 15dB, no noise will be added to these
files when the target SNR is 15dB. As a result, the performance
at 15dB in Table 1 is based on test utterances with SNR at or
below 15dB; similarly, the performance at 6dB is based on test
utterances with SNR at or below 6dB.

The utterances used for training the PLDA models for the
four test conditions in Table 1 come from the same set of con-
versations (target-speakers’ utterances in SRE12). However,
depending on the SNR of the test conditions in Table 1, two
PLDA models were trained by using utterances with different
SNR ranges. Specifically, babble noise was added to the orig-
inal telephone conversations of target speakers at SNR of 0dB,

6dB and 15dB, which results in 3 groups of training utterances,
namely 15dB group, 6dB group, and 0dB group. Then, for
the test conditions labeled with “Original”, “15dB”, and “6dB”
in Table 1, the PLDA models were trained by using the origi-
nal telephone and microphone (interview speech and telephone
speech recorded over microphone channels) utterances plus the
noise contaminated telephone utterances with SNR of 6dB and
15dB. For the 0dB test-condition in Table 1, in addition to the
above utterances, 0dB telephone utterances were also used for
training the PLDA models.

Because the babble noise poses a great challenge to voice
activity detection (VAD), we used the VAD decisions obtained
from the original test utterances for all of the test conditions.
Although this procedure causes under-estimations of the perfor-
mance in Table 1, it avoids the complications arising from the
wrong VAD decisions. It also allows us to purely compare the
capability of different acoustic features and frame-posterior es-
timation methods, as the comparisons will become meaningless
when too many non-speech frames were leaked into the feature
and i-vector extraction processes.

Table 1 shows that BN features with frame posteriors ob-
tained from DNNs achieve better performance under all test
conditions. Specifically, the one with posteriors from DDC
achieves the best performance in most of the cases, proving the
denoising capacity of the DAE. The performance is also signif-
icantly better than the baseline where conventional i-vector ex-
traction method was used. The good performance is attributed
to (1) the denoising capability of the DAE, (2) the use of con-
textual information in the DDC input (11 frames), and (3) the
phonetic-aware frame posteriors provided by the DDC.

Given the BN-features, we may compute the i-vectors based
on the posteriors given by a BN-based UBM or the senone pos-
teriors given by the DDC (Fig. 2). To compare these two ap-
proaches, we used the original and 0dB telephone utterances
to train a DDC and a BN-based UBM and compared the per-
formance of the resulting BN-based i-vectors. Table 2 clearly
demonstrates that using the posteriors from the DDC produces
significantly better performance, even for the SNR conditions
(15dB and 6dB) never seen by the DDC.

4. Conclusions and Future Work
This paper has shown that robust BN features and frame pos-
teriors can be obtained from a denoising deep classifier (DDC)
formed by the combination of a denoising deep autoencoders
(DAE) and a deep belief network (DBN). The DAE is able
to suppress noise in MFCC vectors and the DBN enforces
the frame alignments to respect the phonetic context of input
speech. A possible extension is to train a large DDC using noisy
speech with a wide range of SNR or to train multiple DDCs so
that each one focuses on a narrow range of SNR.
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