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Abstract
Recently the high-order multiple-history long short-time mem-
ory (MH-LSTM) is proposed for speech recognition. The high-
order connections to an MH-LSTM cell come from signals sim-
ilar to the original one but running with progressively longer
time lags. Each time-lagged signal keeps a slightly different
history of the input, and the history ensemble helps improve
the model’s robustness against mis-labeling or mis-alignments
in the training targets. When an MH-LSTM cell is unfolded
in time, it becomes a deep neural network with wider and wider
layers towards the inputs. Although a wider MH-LSTM is more
resilient to noisy data, we notice that when it is too wide, it
is easily under-trained and the increased history/input contexts
are not effectively utilized. In this paper, LSTMs are replaced
by the faster simple recurrent units (SRUs), which remove the
dependency on the hidden states of an MH-LSTM, and high-
order connections are instead directly applied to the inputs of
an MH-SRU. The high-order connections are further modeled
by a WaveNet block which makes use of dilated causal convo-
lution to provide a wider receptive field more effectively. Ex-
perimental results on NTIMIT and CHiME-2 demonstrate the
effectiveness of the new WaveNet MH-SRU. For example, on
CHiME-2, it achieves 1.8% and 0.6% absolute WER reductions
over the SRU and MH-SRU baseline models that have similar
number of model parameters.

Index Terms: long short-term memory, recurrent neural net-
work, WaveNet, dilated convolution

1. Introduction and related works
Recurrent neural networks (RNNs) are capable of modeling the
temporal dependencies among the observations of a sequence
signal [1]. One successful implementation of RNN is the long
short-time memory (LSTM) [2] which has been successfully ap-
plied to diverse machine learning problems such as automatic
speech recognition (ASR) [3], language modeling [4], machine
translation [5] and computer vision [6].

In ASR, it is beneficial for an acoustic model to capture the
interactions among acoustic events in a wide contextual win-
dow. However, it is difficult for a simple RNN to learn long-
term dependencies in a sequence due to the vanishing gradi-
ent problem [7]. LSTM alleviates the problem by maintain-
ing a constant error flow through the LSTM cells [2]. An-
other RNN variant called Nonlinear AutoRegressive model with
eXogenous inputs (NARX) network [8] introduces high-order
feedback paths between an RNN hidden state and its preceding
states so that gradients can flow through additional paths that are
multiple time steps apart. Clockwork RNN and multi-timescale
LSTM [9, 10, 11] further improve on NARX by grouping the
hidden states into modules that run at different clock speeds,

thus capturing information at different (usually exponential)
time scales. The highway LSTM [12], on the other hand, deals
with the problem by setting up highway connections between
the current input and the output layer so that the unfolded high-
way LSTM is equivalent to a very deep feedforward residual
networks [13]. The simple recurrent unit (SRU) [14], which
may be viewed as a simplified highway LSTM, further speeds
up the recurrent network computations by making the gate com-
putation dependent only on the current input.

Figure 1: An MH-LSTM cell unfolded in time.

In [15], a novel high-order LSTM called multiple-history
LSTM (MH-LSTM) is proposed to deal with noisy informa-
tion during acoustic modeling. For example, during the semi-
supervised training of acoustic models, most of the training tar-
gets are obtained from the recognition results of other (usually
inferior) models, and decoding errors — wrong labels or wrong
state alignments — are inevitable. The problem gets worse
with noisy training speeches which produce more decoding er-
rors. The MH-LSTM introduces high-order connections to each
LSTM cell which come from signals similar to the original one
except that they run at progressively longer time lags. As a re-
sult, each time-lagged signal keeps a slightly different history
of the input, and the ensemble of these histories helps smooth
out the mis-alignment and mis-labeling noises in the training
targets. When an MH-LSTM cell is unfolded in time as in Fig.
1, it is a deep neural network with wider and wider layers at the
bottom in terms of history and input contexts.

[15] shows that a wider MH-LSTM network is more re-
silient to noisy data as it increases its memory capacity to learn
the long-term dependencies in speech. However, we notice that
when an MH-LSTM is too wide, it is easily under-trained and



the increased history/input contexts are not effectively utilized.
To better model with wider history/input context and speed up
training, this paper proposes to use WaveNet block [16] and
SRU to implement MH-LSTM, and the ensuing model will be
called WaveNet MH-SRU. That is, the faster SRU is adopted as
the building block to construct an MH-SRU by removing the
dependency on the hidden states of an MH-LSTM, and high-
order connections are directly applied on inputs instead. A
WaveNet block is further used to model the high-order input
connections, which makes use of dilated causal convolution to
provide a larger receptive field, and is able to capture wider fea-
ture contexts with fewer layers.

2. The Model

Figure 2: Architecture of a WaveNet MH-SRU with 4 sub-layers.
The original high-order connections in an MH-SRU layer are
modeled with a 2-layer WaveNet block.

2.1. Overview

WaveNet MH-RNN follows the general design of MH-RNN
[15] and groups the hidden states into sub-layers, where the
signals run with different time lags, with the exception of the
top sub-layer, which runs with no time lag. The top sub-layer
is also called the master sub-layer, and is directly connected to
the output layer. The auxiliary sub-layers are arranged in the or-
der of increasing time lags. All of the sub-layers are initialized
differently so that each sub-layer represents a different history
of the inputs and these histories are used as inputs for the next
layer in a deep WaveNet MH-SRU model.

In this paper, the basic building block of an MH-RNN is
an SRU. An MH-RNN that is composed of SRU is called MH-
SRU. SRU parallelizes most computations of an MH-RNN by
removing the dependency on the hidden states, and high-order
connections can be directly applied to the inputs of each MH-
SRU layer alone. Furthermore, we propose modeling the high-
order connections in MH-SRU by a WaveNet block. The di-
lated causal convolutional layers where the convolution is per-
formed along the time axis of the data in a WaveNet block effec-
tively implement the high-order causal connections in the MH-
SRU. In addition, the progressive dilations in a WaveNet block
provide a larger receptive field of the input to each sub-layer

(including the input layer). For example, a single-layer time-
unfolded 2nd-order MH-SRU shown in Fig. 2 has input features
from the past two time steps for each sub-layer. In a 2nd-order
WaveNet MH-SRU using 2-layer WaveNet blocks having dila-
tion of one for the first layer and dilation of two for the second
layer will make use of input features from the past four time
steps for each sub-layer.

2.2. Multiple-history simple recurrent unit (MH-SRU)

When LSTM is used to implement MH-RNN, it runs slowly
with the computation bottleneck at the gates. SRU [14] simpli-
fies the architecture of LSTM and increases its running speed
by dropping the connections between its internal hidden states
so that the majority of computation for each step can be done
in parallel. In this paper, we accelerate the computation of our
previous MH-LSTM by replacing the LSTMs with the simpler
and faster SRUs. Below are the updating formulas of the m-th
sub-layer of a p-th order MH-SRU which runs with n histories
where 1 ≤ m ≤ n and the master sub-layer has the index 1.
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where xt is the input at time t; r
(m)
t , f (m)

t and c
(m)
t are the

reset gate output, the forget gate output and the memory cell
output, respectively; Wx(k) and Wy are the weight matrices;
b is the gate bias vector; h(m)

t is the hidden state output; yt is
the softmax output with respect to the context-dependent HMM
state label at time t; any quantity with aˆis the activation value
of the quantity before an activation function is applied; � is the
element-wise multiplication operation; σ is the logistic sigmoid
function.

2.3. WaveNet MH-SRU

WaveNet MH-SRU, as an extension to MH-SRU, aims at bet-
ter capturing more information from input sequence or multi-
ple histories. One key component of the WaveNet MH-SRU is
the dilated high-order connections. It effectively implements a
high-order MH-SRU. It is inspired by the dilated causal con-
volution used by WaveNet. Another advantage of this compo-
nent is that it can expand the receptive field of each node ex-
ponentially while the number of model parameters only grows
linearly. In our paper, there are only 2 layers in each WaveNet
block and the dilation factors are one and two for the two layers.

Another component of WaveNet MH-SRU is the gated acti-
vation function [17]. We use it to produce the dilated high-order
outputs from the WaveNet blocks. To be specific, the interme-
diate output of each layer Zt of a stacked WaveNet block in
WaveNet MH-SRU is given by

Zt = tanh(Wxf ∗Xt)� σ(Wxg ∗Xt) , (7)

where Xt = [xt−n+1,xt−n+2, ...,xt] is the input feature se-
quence; Wxf and Wxg are the convolutional weights for the



normal filters and the gates, respectively; ∗ denotes the convo-
lution operator which is performed along the time axis and �
denotes an element-wise multiplication operator. This activa-
tion function produces a weighted output vector by gating the
convolution output and is found helpful for noisy inputs because
it allows Zt to adapt to the input data based on the learned gat-
ing values.

A WaveNet MH-SRU stacks a number of dilated convolu-
tional layers in each WaveNet block which effectively increase
the receptive field of the model. As a result, during training,
for the same number of truncated BPTT time steps, the struc-
ture of a WaveNet MH-SRU can be much deeper than that of
a conventional LSTM because the total number of layers in the
time-unfolded neural network is the product of the number of
BPTT time steps and the number of dilated convolutional lay-
ers in each WaveNet block. This poses a greater challenge to
learning the model due to the gradient vanishing problem. A
common solution is the introduction of residual connections in
a very deep neural networks [13] so that the gradients can be
directly passed back to lower layers. In our WaveNet MH-SRU,
there are two types of residual connections. The first type is the
WaveNet residuals inside a WaveNet block as shown in Fig. 2.
The other type is the highway connections between the input
and output layers of each WaveNet MH-SRU layer as shown in
Eqn. (5).

3. Experiments
The proposed WaveNet MH-SRU was evaluated on two
noisy corpora: phoneme recognition on the small-vocabulary
NTIMIT [18], and word recognition on the medium-vocabulary
CHiME-2 [19].

3.1. Data sets

3.1.1. The NTIMIT speech corpus

The NTIMIT database was collected by transmitting all 6300
original TIMIT [20] utterances over various channels in the
NYNEX telephone network [18]. All utterances are time-
aligned with the original clean TIMIT utterances. Therefore,
the data preparation procedure is the same as that of TIMIT. It
is worth noting that there are two major differences between
TIMIT and NTIMIT data sets: (i) NTIMIT is noisier than
TIMIT with a signal-to-noise ratio (SNR) of 25dB vs. TIMIT’s
40dB; (ii) NTIMIT consists of narrowband speech while TIMIT
consists of wideband speech because the spectral energy above
3.5 kHz in the original TIMIT utterances are greatly reduced
due to the telephone channel. Phoneme recognition was per-
formed using Viterbi decoding with a phone bigram language
model estimated from the TIMIT training transcriptions using
the Kaldi toolkit [21]. The phoneme recognition performance
will be reported in terms of phoneme error rate (PER).

3.1.2. The CHiME-2 speech corpus

The CHiME-2 corpus is a medium-vocabulary corpus, which
was generated by convolving clean Wall Street Journal (WSJ0)
utterances with binaural room impulse responses, and adding
real background noise at SNRs in the range of [-6, 9]dB. The
training set contains 7138 simulated noisy utterances from 83
speakers. The transcriptions are the same as those of the orig-
inal WSJ0 training set. The development and test sets contain
2460 and 1980 simulated noisy utterances spoken by 10 and 8
speakers, respectively. The WSJ0 text corpus is used to train

a trigram language model, which consists of 37M words from
1.6M sentences. The speech recognition performance will be
reported in terms of word error rate (WER).

3.2. Feature extraction and model training procedure

Different acoustic hidden Markov models (HMM) were built
with states being modeled by Gaussian-mixture model (GMM),
LSTM RNN, MH-LSTM RNN, MH-SRU RNN or WaveNet
MH-SRU RNN.

The GMM-HMM models for both NTIMIT and CHiME-2
were trained with 39-dimensional fMLLR-adapted MFCC fea-
tures using the standard Kaldi recipes for the tasks. There were
1940 and 1928 context-dependent tied-states for NTIMIT and
CHiME-2, respectively.

All neural network acoustic models of NTIMIT were
trained with 39-dimensional MFCC features, whereas all neu-
ral network acoustic models of CHiME-2 were trained with
40-dimensional mel-filterbank coefficients without their deriva-
tives. Per-speaker mean and variance normalizations were per-
formed on the inputs to all neural network models. The GMM-
HMMs were used to derive the state targets for the subsequent
DNN and RNN training through forced alignment. For CHiME-
2, the state targets for subsequent RNNs training were further
obtained by aligning the noisy training data with its DNN acous-
tic model through the iterative procedure outlined in [22].

Based on the optimal configurations of LSTM/MH-LSTM
found in [15], we have the following basic setups: all basic
LSTM models had 3 hidden layers with 512 nodes per layer,
and the inputs consisted of 5 contextual frames. We define
the model order as the number of high-order connections to
each hidden node of any MH-RNN model, and the model or-
der of all MH-RNN models (MH-LSTM, MH-SRU, each layer
of WaveNet block of WaveNet MH-SRU) was set to 5 in this
paper. For all RNN models other than the basic LSTMs, the
number of hidden layers and the number of histories were var-
ied from 3–12 and 21–101, respectively, to find the best setting
for each task. In the end, all the MH-RNN models had 256
hidden nodes in each sub-layer.

All RNN training codes were developed using Theano by
ourselves. All RNNs were trained by optimizing the categor-
ical cross entropies using BPTT and SGD. The learning rate
for LSTM/SRU and MH-LSTM/MH-SRU/WaveNet MH-SRU
models was initially set to 0.25 and 0.1, respectively, and it de-
cayed after each iteration until it went below 10−6.

Table 1: NTIMIT phoneme error rate (PER %). L: number of
layers; N: number of nodes per layer; H: number of histories;
P: number of model parameters.

Model L N H P PER %

LSTM 3 512 1 10M 31.2
MH-LSTM 3 256 1 6M 30.1

SRU 3 512 1 5M 30.6
SRU 6 512 1 7M 30.4
SRU 9 512 1 10M 30.0

MH-SRU 6 256 21 4M 31.2
MH-SRU 9 256 21 6M 29.6

WaveNet MH-SRU 6 256 101 13M 29.1



3.3. Results

3.3.1. NTIMIT

Table 1 shows the NTIMIT phoneme recognition performance
of the baseline models and the new WaveNet MH-SRU mod-
els, and the effectiveness of using multiple histories in the new
models. Firstly, it can be seen that a 3-layer MH-LSTM with
21 histories outperforms an LSTM by 1.1% absolute. SRUs
show better performance with increasing number of hidden lay-
ers and a 9-layer SRU with only single history achieves similar
performance of a 3-layer MH-LSTM. We can also find that MH-
SRU requires a deeper structure to achieve better performance
than MH-LSTM, and it outperforms MH-LSTM or SRUs for
the same number of model parameters. Finally, if more model
parameters can be utilized, a 6-layer WaveNet MH-SRU gives
the best phoneme recognition performance with 6 histories. If
we compare the various models with approximately 10M pa-
rameters, we find that a 6-layer WaveNet MH-SRU outperforms
a 9-layer MH-SRU by 0.5% absolute, a 9-layer SRU by 0.9%
absolute, and a 3-layer LSTM by 2.1% absolute, respectively.

Table 2: Effect of the number of histories H on NTIMIT
phoneme recognition (PER %).

H MH-SRU WaveNet MH-SRU

21 29.6 29.7
61 30.0 29.6

101 30.2 29.1

To validate the effect of the number of histories on MH-
SRU and WaveNet MH-SRU, we selected two models with
around 10M parameters, namely a 9-layer MH-SRU and a
6-layer WaveNet MH-SRU, and checked their NTIMIT per-
formance by varying their number of histories from 21 to
101. As can be seen from Table 2, the performance of
MH-SRU constantly degrades as the number of histories in-
creases, whereas the performance of WaveNet MH-SRU im-
proves steadily. These results suggest that as the topology of
the MH-SRU is more complex with longer feature contexts and
more histories, the model was under-trained with the limited
amount of data in NTIMIT. On the other hand, the WaveNet
MH-SRU can learn more useful information from a bigger fea-
ture context and a larger number of histories probably due to its
use of dilated convolutions.

Table 3: Average WER (%) on the CHiME-2 test set. L: number
of layers; N: number of nodes per layer; H: number of histories;
P: number of model parameters.

Model L N H P WER %

DNN 7 2048 0 30M 29.2
RDNN [23] 7 2048 0 - 27.7

LSTM 3 512 1 10M 27.8
SRU 12 512 1 12M 27.6
SRU 12 1024 1 43M 26.6

MH-SRU 9 256 21 7M 26.4
WaveNet MH-SRU 6 256 101 13M 25.8

Table 4: Detailed WER (%) on each noisy condition of the
CHiME-2 test set.

Model -6 Db -3 Db 0 Db 3 Db 6 Db 9 Db

DNN 48.3 37.9 29.4 23.9 18.8 16.7
LSTM 45.1 34.8 28.8 22.3 19.2 16.7
SRU 42.6 33.0 27.7 22.0 18.4 15.8

MH-SRU 42.2 33.2 27.8 22.2 18.2 14.9
WaveNet
MH-SRU

41.5 33.1 26.8 21.8 16.9 14.8

3.3.2. CHiME-2

The proposed WaveNet MH-SRU was also evaluated and
compared with other models on the noisy CHiME-2 task.
Their average recognition performances over test data of
different SNRs are shown in Table 3. Again we see that their
performances are ranked in the following order:

WaveNet MH-SRU > MH-SRU > SRU > LSTM > DNN.

Specifically, our baseline LSTM and SRU both having 512
hidden nodes per layer and around 10M parameters give similar
performance. These results are comparable to the result from
[23] which used recurrent deep neural network (RDNN). If we
increase the number of hidden nodes in SRU to 1024, the SRU
performs better than the baseline LSTM by 1% absolute and
approaches the performance of the MH-SRU at the expense of
much more model parameters — 6 times more parameters. The
new WaveNet MH-SRU performs the best with similar number
of model parameters. In summary, for all models with approxi-
mately 10M model parameters, the WaveNet MH-SRU outper-
forms LSTM, SRU and MH-SRU by 2% and 1.8% and 0.6%
absolute, respectively.

Table 4 reports the detailed WERs for each test dataset of
different SNRs in CHiME-2. The results confirm that WaveNet
MH-SRU performs better than all other models at (basically)
all SNRs. It again suggests that the effective utilization of the
larger number of histories by the WaveNet MH-SRU lends itself
to the model’s robustness against noises.

4. Conclusions and future work
We introduce a novel model called WaveNet multiple-history
SRU (WaveNet MH-SRU), which is an extension to MH-LSTM
using WaveNet block and SRU. Through a series of carefully
designed experiments using NTIMIT and CHiME-2, we show
that WaveNet MH-SRU outperforms SRU and MH-SRU by ef-
fectively utilizing more histories from the input signal. It is
worth noting that although WaveNet MH-SRU makes use of
multiple histories, its number of model parameters is compara-
ble to other RNN models. However, it runs more slowly due
to the more possible paths in the model. In the future, we will
investigate how to speed up its computations.
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